Sheet 6

Exercise 1: Tree-level decays (15 points $=3+3+3+3+3$)
Evaluate the decay rate(s) of the unstable state S when the full Lagrangian reads

$$
\begin{equation*}
\mathcal{L}=\mathcal{L}_{0}+\mathcal{L}_{1} \tag{1}
\end{equation*}
$$

whereas \mathcal{L}_{0} is the free Lagrangian reads

$$
\begin{equation*}
\mathcal{L}_{0}=\frac{1}{2}\left[\left(\partial_{\mu} S\right)^{2}-M_{0}^{2} S^{2}\right]+\frac{1}{2}\left[\left(\partial_{\mu} \varphi_{1}\right)^{2}-m_{1}^{2} \varphi_{1}^{2}\right]+\frac{1}{2}\left[\left(\partial_{\mu} \varphi_{2}\right)^{2}-m_{2}^{2} \varphi_{2}^{2}\right] \tag{2}
\end{equation*}
$$

and the interaction term \mathcal{L}_{1} takes the following forms:
1.

$$
\begin{equation*}
\mathcal{L}_{1}=g S \varphi_{1} \varphi_{2} \tag{3}
\end{equation*}
$$

2.

$$
\begin{equation*}
\mathcal{L}_{1}=g_{1} S \varphi_{1}^{2}+g_{2} S \varphi_{2}^{2}+g S \varphi_{1} \varphi_{2} \tag{4}
\end{equation*}
$$

3.

$$
\begin{equation*}
\mathcal{L}_{1}=g S\left(\partial_{\mu} \varphi_{1}\right)\left(\partial^{\mu} \varphi_{2}\right) \tag{5}
\end{equation*}
$$

4.

$$
\begin{equation*}
\mathcal{L}_{1}=g\left(\partial_{\mu} S\right) \varphi_{1}\left(\partial^{\mu} \varphi_{2}\right) \tag{6}
\end{equation*}
$$

5.

$$
\begin{equation*}
\mathcal{L}_{1}=g S \varphi_{1} \varphi_{2}+h S\left(\partial_{\mu} \varphi_{1}\right)\left(\partial^{\mu} \varphi_{2}\right) \tag{7}
\end{equation*}
$$

Which condition must be met in order that in this case the decay rate $\Gamma_{S \rightarrow \varphi_{1} \varphi_{2}}$ vanishes?
(Determine in all the previous cases the dimension of the coupling constants g and h).
Exercise 2: Mixing (5 points)
Consider the Lagrangian

$$
\begin{equation*}
\mathcal{L}_{0}=\frac{1}{2}\left[\left(\partial_{\mu} S_{1}\right)^{2}-M_{0}^{2} S_{1}^{2}\right]+\frac{1}{2}\left[\left(\partial_{\mu} S_{2}\right)^{2}-M_{0}^{2} S_{2}^{2}\right]+\alpha S_{1} S_{2} \tag{8}
\end{equation*}
$$

Determine the physical fields \tilde{S}_{1} and \tilde{S}_{2}. Which is the value of the mixing angle? Then, calculate their decay width when

$$
\begin{equation*}
\mathcal{L}_{1}=g S_{1} \varphi^{2} \tag{9}
\end{equation*}
$$

whereas the field φ has mass m.

