Exercise 1: A new type of mixing (8 points)
Consider the Lagrangian

$$
\begin{align*}
\mathcal{L}_{0} & =\frac{1}{2}\left(\partial_{\mu} S_{1}\right)^{2}+\frac{1}{2}\left(\partial_{\mu} S_{2}\right)^{2}+\alpha\left(\partial_{\mu} S_{1}\right)\left(\partial^{\mu} S_{2}\right) \\
& +\frac{1}{2}\left[\left(\partial_{\mu} \varphi\right)^{2}-m^{2} \varphi^{2}\right]+g \varphi S_{1}^{2} \tag{1}
\end{align*}
$$

Which range is allowed for the parameter α ?
Determine the decay rates of the field φ.
Hint: one has to make an appropriate transformation in order to 'eliminate' the mixing term $\alpha\left(\partial_{\mu} S_{1}\right)\left(\partial^{\mu} S_{2}\right)$.
Exercise 2: Decays of a scalar particle in vector particles $(7=3+4$ points $)$
Consider the free Lagrangian

$$
\begin{equation*}
\mathcal{L}_{0}=\frac{-1}{4} \rho_{\mu \nu}^{2}+\frac{m_{\rho}^{2}}{2} \rho_{\mu}^{2}+\frac{1}{2}\left[\left(\partial_{\mu} \varphi\right)^{2}-m^{2} \varphi^{2}\right] \tag{2}
\end{equation*}
$$

where $\rho_{\mu \nu}=\partial_{\mu} \rho_{\nu}-\partial_{\nu} \rho_{\mu} ; \rho_{\mu}$ describes a vector field, while φ describes a scalar field.
Determine the decay width $\varphi \rightarrow \rho \rho$ generated by the following interaction Lagrangians:
1.

$$
\begin{equation*}
\mathcal{L}_{1}=g \varphi \rho_{\mu} \rho^{\mu} \tag{3}
\end{equation*}
$$

2.

$$
\begin{equation*}
\mathcal{L}_{1}=g \varphi\left(\partial_{\mu} \rho_{\nu}\right)\left(\partial^{\mu} \rho^{\nu}\right) \tag{4}
\end{equation*}
$$

Exercise 3: Decay of the Higgs particles into two photons (5 points)
Consider the Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{-1}{4} F_{\mu \nu}^{2}+\frac{1}{2}\left[\left(\partial_{\mu} H\right)^{2}-m_{H}^{2} H^{2}\right]+g H F_{\mu \nu} F^{\mu \nu} \tag{5}
\end{equation*}
$$

where H represents the Higgs field; $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ and A_{μ} is the photon field.
Evaluate $\Gamma_{H \rightarrow \gamma \gamma}$.
Hint: use the following polarization sum for the photon:

$$
\begin{equation*}
\sum_{a=1,2} \varepsilon_{\mu}^{a} \varepsilon_{\nu}^{a}=-g_{\mu \nu} \tag{6}
\end{equation*}
$$

