DECAYS IN QFT - WS 2012/2013

Sheet 7

14/12/2012

Exercise 1: A new type of mixing (8 points)

Consider the Lagrangian

$$\mathcal{L}_{0} = \frac{1}{2} \left(\partial_{\mu} S_{1} \right)^{2} + \frac{1}{2} \left(\partial_{\mu} S_{2} \right)^{2} + \alpha \left(\partial_{\mu} S_{1} \right) \left(\partial^{\mu} S_{2} \right) + \frac{1}{2} \left[\left(\partial_{\mu} \varphi \right)^{2} - m^{2} \varphi^{2} \right] + g \varphi S_{1}^{2} .$$
(1)

Which range is allowed for the parameter α ? Determine the decay rates of the field φ .

Hint: one has to make an appropriate transformation in order to 'eliminate' the mixing term $\alpha \left(\partial_{\mu}S_{1}\right)\left(\partial^{\mu}S_{2}\right)$.

Exercise 2: Decays of a scalar particle in vector particles (7 = 3 + 4 points)

Consider the free Lagrangian

$$\mathcal{L}_{0} = \frac{-1}{4}\rho_{\mu\nu}^{2} + \frac{m_{\rho}^{2}}{2}\rho_{\mu}^{2} + \frac{1}{2}\left[\left(\partial_{\mu}\varphi\right)^{2} - m^{2}\varphi^{2}\right]$$
(2)

where $\rho_{\mu\nu} = \partial_{\mu}\rho_{\nu} - \partial_{\nu}\rho_{\mu}$; ρ_{μ} describes a vector field, while φ describes a scalar field. Determine the decay width $\varphi \to \rho\rho$ generated by the following interaction Lagrangians:

1.

$$\mathcal{L}_1 = g\varphi\rho_\mu\rho^\mu \ . \tag{3}$$

2.

$$\mathcal{L}_1 = g\varphi\left(\partial_\mu \rho_\nu\right) \left(\partial^\mu \rho^\nu\right) \ . \tag{4}$$

Exercise 3: Decay of the Higgs particles into two photons (5 points)

Consider the Lagrangian

$$\mathcal{L} = \frac{-1}{4} F_{\mu\nu}^2 + \frac{1}{2} \left[\left(\partial_{\mu} H \right)^2 - m_H^2 H^2 \right] + g H F_{\mu\nu} F^{\mu\nu}$$
(5)

where H represents the Higgs field; $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ and A_{μ} is the photon field. Evaluate $\Gamma_{H\to\gamma\gamma}$.

Hint: use the following polarization sum for the photon:

$$\sum_{a=1,2} \varepsilon^a_\mu \varepsilon^a_\nu = -g_{\mu\nu} \ . \tag{6}$$