Exercise 1: Polarization vector (4 points)

Proove that the polariation vectors $\varepsilon_{\mu}^{a}(k)$ of a massive vector field with mass m and momentum k fullfills the following relation:

$$
\begin{equation*}
T_{\mu \nu}(k)=\sum_{a=1,2,3} \varepsilon_{\mu}^{a}(k) \varepsilon_{\nu}^{a}(k)=-g_{\mu \nu}+\frac{k_{\mu} k_{\nu}}{m^{2}} \tag{1}
\end{equation*}
$$

Hint: the tensor $T_{\mu \nu}(k)$ can be written as

$$
\begin{equation*}
T_{\mu \nu}(k)=A g_{\mu \nu}+B k_{\mu} k_{\nu} \tag{2}
\end{equation*}
$$

Use the properties $k^{\mu} \varepsilon_{\mu}^{a}(k)=0$ and $\varepsilon_{\mu}^{a}(k) \varepsilon^{b, \mu}(k)=-\delta^{a b}$ to determine A and B.
Exercise 2: Decays of a vector particle into fermion-antifermion pair (8 points)
Consider the Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{-1}{4} Z_{\mu \nu}^{2}+\frac{m_{Z}^{2}}{2} Z_{\mu}^{2}+\bar{\psi}\left[i \gamma^{\mu} \partial_{\mu}-m\right] \psi+g Z_{\mu} \bar{\psi} \gamma^{\mu} \psi \tag{3}
\end{equation*}
$$

where $Z_{\mu \nu}=\partial_{\mu} Z_{\nu}-\partial_{\nu} Z_{\mu} ; Z_{\mu}$ describes a vector field, while ψ describes a fermion field.
Determine the decay width $Z \rightarrow \bar{\psi} \psi$.
Exercise 3: Decay of a scalar field into two fermions (8 points)
Consider the free Lagrangian

$$
\begin{equation*}
\mathcal{L}_{0}=\frac{1}{2}\left[\left(\partial_{\mu} D\right)^{2}-m_{H}^{2} D^{2}\right]++\bar{\psi}\left[i \gamma^{\mu} \partial_{\mu}-m\right] \psi \tag{4}
\end{equation*}
$$

where D represents a scalar field and ψ a fermion field. The interaction Lagrangian is given by

$$
\begin{equation*}
\mathcal{L}_{1}=i g D\left(\psi^{t} C \gamma^{5} \psi-\bar{\psi} C \gamma^{5} \bar{\psi}^{t}\right) \tag{5}
\end{equation*}
$$

where C is the conjugation matrix and g a real coupling constant.
Determine the decay of D into two fermions.

