Hadrons in hot and dense matter I

Hendrik van Hees

Goethe University Frankfurt and FIAS

July 17-21, 2017

Outline

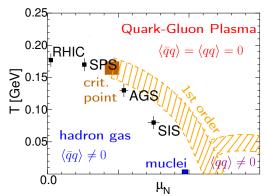
- Plan of the lectures and motivation
- 2 The phase diagram of strongly interacting matter
- QCD and chiral symmetry
 - Particles and forces in the Standard Model
 - Quantum Electrodynamics (QED)
 - Quantum Chromodynamics (QCD) and chiral symmetry
 - Chiral effective models for hadrons
- \P Strongly interacting matter: QCD/hadronic models at finite T, μ
- References
- 6 Quiz

Plan of the lectures

Plan of the Lectures

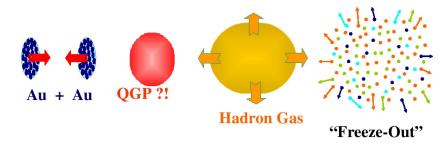
Lecture I: Fundamentals

- symmetries and conservation laws in (quantum) field theory
- the Standard Model in a nutshell
- · QCD, chiral symmetry, and effective models for hadrons
- Lecure II: electrodynamic probes in heavy-ion collisions (fundamentals)
 - transport and hydrodynamics
 - collective flow
 - radiation of electromagnetic probes from a thermal transparent medium (McLerran-Toimela formula)
 - · effective hadronic models for vector mesons

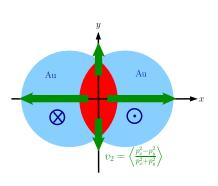

Plan of the Lectures

- Lecture III: Dileptons in heavy-ion collisions (SIS@GSI)
 - hadronic models for transport models: baryon resonances
 - Gießen Boltzmann-Uehling-Uhlenbeck (GiBUU)
 - Ultrarelativistic Quantum Molecular Dynamics (UrQMD)
 - medium modifications:
 "transport-hydro hybrid" and "coarse-graining" approach
- Lecture IV: Electromagnetic probes in heavy-ion collisions (SPS@CERN, RHIC@BNL, LHC@CERN)
 - hard-thermal-loop approved dilepton rates (emission from QGP)
 - hadronic many-body theories (emission from hadron gas)
 - dileptons at SPS and RHIC
 - access to the phase diagram?

Phase diagram, HICs, dileptons

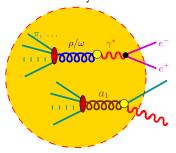

The phase diagram of strongly interacting matter

- hot and dense matter: quarks and gluons inside hadrons compressed
- highly energetic scatterings ⇒ deconfinement/chiral phase transition
- quarks and gluons relevant d.o.f. ⇒ Quark-Gluon Plasma
- still strongly couples: fast thermalization!
- in the vacuum quark condensate $\langle \bar{q} q \rangle \neq 0$
- at high $T, \mu_{\rm B}$: chiral phase transition $\langle \bar{q} q \rangle = 0$


Ultra-relativistic heavy-ion collisions

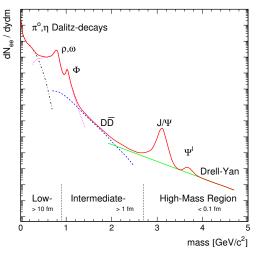
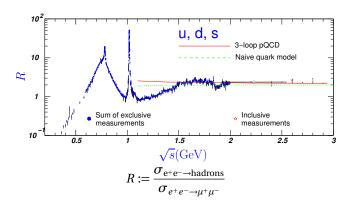
- highly energetic collisions of (heavy) nuclei
- many collisions of partons inside the nucleons
- creation of many particles ⇒ hot and dense fireball
- generation of the Quark-Gluon Plasma (QGP)?
- properties of QGP and/or compressed baryonic matter?
- signatures of 1st-order phase transition (critical end point)?

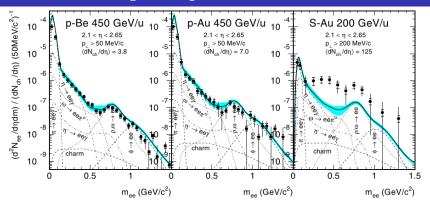
Hydrodynamical behavior


- particle spectra compatible with collective motion of an ideal fluid ⇒ small viscosity
- Medium in local thermal equilibrium (after short formation time $\lesssim 1 \text{ fm/}c$)

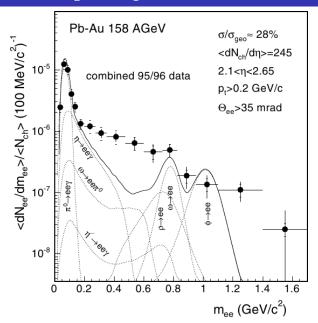
Why Electromagnetic Probes?

- γ , ℓ^{\pm} : only e. m. interactions
- reflect whole "history" of collision
- chance to see chiral symm. rest. directly?

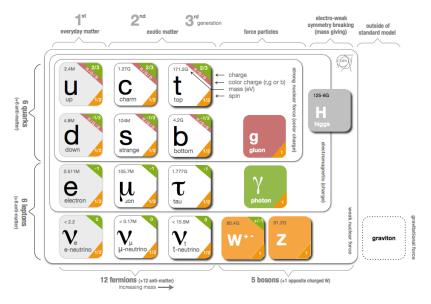




Fig. by A. Drees (from [RW00])

Vacuum Baseline: $e^+e^- \rightarrow \underline{\text{hadrons}}$


- probes all hadrons with quantum numbers of γ^*
- $R_{QM} = N_c \sum_{f=u,d,s} Q_f^2 = 3 \times [(2/3)^2 + (-1/3)^2 + (-1/3)^2] = 2$
- Our aim pp $\rightarrow \ell^+\ell^-$, pA $\rightarrow \ell^+\ell^-$, AA $\rightarrow \ell^+\ell^-$ ($\ell = e, \mu$)

The CERES findings: Dilepton enhancement


- pp (pBe): "elementary reactions"; baseline (mandatory to understand first!)
- pA: "cold nuclear matter effects"; next step (important as baseline for other observables like " J/ψ suppression")
- AA: "medium effects"; hope to learn something about in-medium properties of vector mesons, fundamental QCD properties

The CERES findings: Dilepton enhancement

QCD and chiral symmetry

The standard model in a nutshell: particles and forces

[graphics from http://www.isgtw.org/spotlight/go-particle-quest-first-cern-hackfest]

Quantum Electrodynamics (QED)

Literature: [Nac90, DGH92, B+12], conventions as in [Nac90]

- electrons+positrons: massive spin-1/2 Dirac field $\psi \in \mathbb{C}^4$
- describes electron (charge $q_e = -1$) and antielectron (=positron)
- photon: massless vector field A_{μ}
- antisymmetric field-strength tensor $\rightarrow (\vec{E}, \vec{B})$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} = \begin{pmatrix} 0 & E^{1} & E^{2} & E^{3} \\ -E_{1} & 0 & -B_{3} & B_{2} \\ -E_{2} & B_{3} & 0 & -B_{1} \\ -E_{3} & -B_{2} & B_{1} & 0 \end{pmatrix}$$

• Lagrangian (e > 0: em. coupling constant $e^2/(4\pi) = \alpha_{\rm em} \simeq 1/137$

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \overline{\psi}[\mathrm{i}(\partial\!\!\!/ + \mathrm{i}\,q_{\mathrm{e}}e\!\!\!/ A) - m]\psi, \quad q_e = -1$$

- $\begin{array}{l} \bullet \ \ \text{Dirac matrices: } \gamma^{\mu} \in \mathbb{C}^{4\times 4}, \, \mu \in \{0,1,2,3\}, \\ \left\{\gamma^{\mu},\gamma^{\nu}\right\} = 2\eta^{\mu\nu} = \text{diag}(1,-1,-1,-1), \, \overline{\psi} = \psi^{\dagger}\gamma^{0} \end{array}$
- "Feynman slash" $A = A_{\mu} \gamma^{\mu}$, $\partial = \gamma^{\mu} \partial_{\mu} = \gamma^{\mu} \frac{\partial}{\partial x^{\mu}}$

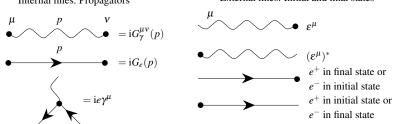
Symmetries of QED

- as a classical field theory: Least-action principle ⇒ equations of motion
- action (Lorentz invariant!)

$$S[A,\psi] = \int d^4 x \mathcal{L}$$

- symmetries lead to conservation laws (Noether's Theorem)
- space-time symmetries
 - time translations: energy conservation
 - space translations: momentum conservation
 - rotations: angular-momentum conservation
- intrinsic symmetry: invariant under change of phase factor $\psi \to \exp(-iq_e e \alpha)\psi$, $\alpha \in \mathbb{R} \Rightarrow$ electric-charge conservation

$$j_{\mathrm{em}}^{(\mathrm{e})\mu}=q_{\mathrm{e}}e\,\overline{\psi}\gamma^{\mu}\psi,\quad\partial_{\mu}j_{\mathrm{em}}^{(\mathrm{e})\mu}=0$$


• here even local gauge symmetry:

$$\psi \to \exp[-iq_e e \chi(x)]\psi, \quad A_\mu \to A_\mu + q_e \partial_\mu \chi$$

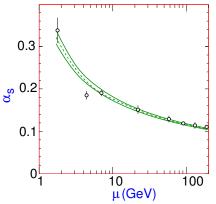
• local symmetry ⇔ gauge boson

Quantization

- fields ⇒ operators
- physical quantities S-matrix elements: $|T_{fi}|^2$ transition probabilities for scattering from asymptotic free initial to asymptotic free final state
- local, microcausal quantum field theory with stable ground state
 - spin-statistics relation:
 half-integer spin ⇔ fermions, integer spin ⇔ bosons
- can only evaluate in perturbation theory ⇒ Feynman rules
 Internal lines: Propagators
 External lines: Initial and final states

•
$$G_{\gamma}^{\mu\nu} = -\eta_{\mu\nu}/(p^2 + i0^+), G_e = (p - m)/(p^2 - m^2 + i0^+)$$

Quantum Chromodynamics: QCD


Theory for strong interactions: QCD

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} F_a^{\mu\nu} F_{\mu\nu}^a + \overline{\psi} (i \not\!\!D - \hat{M}) \psi$$

- non-Abelian gauge group SU(3)_{color}
 - each quark: color triplet
 - covariant derivative: $D_u = \partial_u + ig \hat{T}^a A^a \ (a \in \{1, ..., 8\})$
 - field-strength tensor $F_{\mu\nu}^{a} = \partial_{\mu}A_{\nu}^{a} \partial_{\nu}A_{\mu}^{a} g f^{abc}A_{\mu}^{b}A_{\nu}^{c}$
 - group structure constants: $[\hat{T}^a, \hat{T}^b] = i f^{abc} \hat{T}^c$, $\hat{T}^a = (\hat{T}^a)^{\dagger} \in \mathbb{C}^{3\times 3}$
- Particle content:
 - ψ : Quarks with flavor (u, d; c, s; t, b) (mass eigenstates!)
 - $\hat{M} = \text{diag}(m_u, m_d, m_s, ...) = \text{current quark masses}$
 - A_{μ}^{a} : gluons, gauge bosons of SU(3)_{color}
- Symmetries
 - fundamental building block: local SU(3)_{color} symmetry
 - in light-quark sector: approximate chiral symmetry $(\hat{M} \rightarrow 0)$
 - dilation symmetry (scale invariance for $\hat{M} \rightarrow 0$)

Features of QCD

- asymptotically free: at large momentum transfers $\alpha_s = 4\pi g_s^2 \rightarrow 0$
- running from renormalization group (due to self-interactions of gluons!):
 Nobel prize 2004 for Gross, Wilczek, Politzer

- quarks and gluons confined in hadrons
- theoretically not fully understood (nonperturbative phenomenon!)
- need of effective hadronic models at low energies: (Chiral) symmetry!

Chiral Symmetry of (massless) QCD

- Consider only light u, d quarks
- iso-spin 1/2 doublet: $\psi = \begin{pmatrix} u \\ d \end{pmatrix} = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$
- ullet NB: ψ has three "indices": Dirac spinor, color, flavor iso-spin!
- $\bullet \ \gamma \ \text{matrices:} \ \left\{\gamma_{\mu},\gamma_{\nu}\right\} = 2\eta_{\mu\nu} \mathbb{1}, \ \gamma_{5} := \mathrm{i}\gamma_{0}\gamma_{1}\gamma_{2}\gamma_{3}, \ \gamma_{5}\gamma_{\mu} = -\gamma_{\mu}\gamma_{5}, \ \gamma_{5}^{\dagger} = \gamma_{5}, \ \gamma_{5}^{2} = \mathbb{1}$
- Diracology of left and right-handed components

$$\begin{split} \psi_L &= \frac{\mathbb{1} - \gamma_5}{2} \psi = P_L \psi, \quad \psi_R = \frac{\mathbb{1} + \gamma_5}{2} \psi = P_R \psi, \\ P_{L/R}^2 &= P_{L/R}, \quad P_R P_L = P_L P_R = 0, \quad P_{L/R} \gamma_5 = \gamma_5 P_{L/R} = \mp P_{L/R} \\ P_{L/R} \gamma_\mu &= \gamma_\mu P_{R/L}, \quad \overline{P_L \psi} = \overline{\psi} P_R, \quad \overline{P_R \psi} = \overline{\psi} P_L \\ \overline{\psi} \gamma_\mu \psi &= \overline{\psi_L} \gamma_\mu \psi_L + \overline{\psi_R} \gamma_\mu \psi_R, \quad \overline{\psi} \psi = \overline{\psi_L} \psi_R + \overline{\psi_R} \psi_L \end{split}$$

- $\overline{\psi} := \psi^{\dagger} \gamma_0$, $\overline{\gamma_5 \psi} = \psi^{\dagger} \gamma_5^{\dagger} \gamma_0 = -\overline{\psi} \gamma_5$
- in the massless limit $(m_u = m_d = 0)$

$$\mathcal{L}_{u,d} = \overline{\psi} i \not\!\!D \psi = \overline{\psi_L} i \not\!\!D \psi_L + \overline{\psi_R} i \not\!\!D \psi_R$$

Chiral Symmetry of (massless) QCD

- in the massless limit $(m_u = m_d = 0)$
- a lot of global chiral symmetries:
 - change of independent phases for left and right components:

$$\psi_L(x) \rightarrow \exp(-i\phi_L)\psi_L(x), \quad \psi_R(x) \rightarrow \exp(-i\phi_R)\psi_R(x)$$

- symmetry group $U(1)_L \times U(1)_R$
- independent "iso-spin rotations"

$$\psi_L(x) \rightarrow \exp(-i\vec{\alpha}_L \cdot \vec{T})\psi_L(x), \quad \psi_R(x) \rightarrow \exp(-i\vec{\alpha}_R \cdot \vec{T})\psi_R(x)$$

- $\vec{T} = \vec{\tau}/2$, $\vec{\tau}$: Pauli matrices; symmetry group SU(2)_L × SU(2)_R
- alternative notation scalar-pseudoscalar phases/iso-spin rotations

$$\psi \to \exp(-i\phi_s)\psi, \quad \psi \to \exp(-i\gamma_5\phi_a)\psi$$

 $\psi \to \exp(-i\vec{\alpha}_V \cdot \vec{T})\psi, \quad \psi \to \exp(-i\gamma_5\vec{\alpha}_A \cdot \vec{T})\psi$

• U(1)_s and SU(2)_V are subgroups that are symmetries even if $m_u = m_d \neq 0 \Rightarrow$ Heisenberg's iso-spin symmetry!

Currents: relation to mesons

- based on [Koc97, Sch03, Din11]
- Noether: each global symmetry leads to a conserved quantity
- from chiral symmetries

$$\begin{split} &j_s^{\mu} = \overline{\psi} \gamma^{\mu} \psi, \quad j_a^{\mu} = \overline{\psi} \gamma^{\mu} \gamma_5 \psi \\ &\vec{j}_V^{\mu} = \overline{\psi} \gamma^{\mu} \vec{T} \psi, \quad \vec{j}_A^{\mu} = \overline{\psi} \gamma^{\mu} \gamma_5 \vec{T} \psi \end{split}$$

- Link to mesons: Build Lorentz-invariant objects with corresponding quantum numbers
 - σ : $\overline{\psi}\psi$ (scalar and iso-scalar)
 - π 's: $i\overline{\psi}\vec{T}\gamma_5\psi$ (pseudoscalar and iso-vector)
 - ρ 's: $\overline{\psi}\gamma_{\mu}\overrightarrow{T}\psi$ (vector and iso-vector)
 - a_1 's: $\overline{\psi}\gamma_{\mu}\gamma_5 \vec{T}\psi$ (axialvector and iso-axialvector)
- in nature: σ and π 's; ρ 's and a_1 's do not have same mass!
- reason: QCD ground state not symmetric under pseudoscalar and pseudovector trafos since $\langle \text{vac} | \overline{\psi} \psi | \text{vac} \rangle \neq 0$

Spontaneous symmetry breaking

- spontaneously broken symmetry: ground state not symmetric
- vacuum necessarily degenerate
- vacuum invariant under scalar and vector transformations: $U(1)_L \times U(1)_R$ broken to $U(1)_s$; $SU(2)_L \times SU(2)_R$ broken to $SU(2)_V$
- for each broken symmetry massless scalar Goldstone boson
- there are three pions which are very light compared to other hadrons (finite masses due to explicit breaking through m_u , m_d !)
- but no pseudoscalar isoscalar light particle! ($m_\eta \simeq 548 \text{ MeV}$)
- reason: U(1)_a anomaly
 - axialscalar symmetry does not survive quantization!
 - good for explanation of correct decay rate for $\pi_0 \to \gamma \gamma$
 - axial scalar current not conserved $\partial_{\mu}j_{a}^{\mu}=3/8\alpha_{s}\epsilon^{\mu\nu\rho\sigma}G_{\mu\nu}^{a}G_{\rho\sigma}^{a}$
- explicit breaking due to quark masses
 - can be treated perturbatively ⇒ chiral perturbation theory
 - axial-vector current only approximately conserved ⇒ PCAC
 - a lot of low-energy properties of hadrons derivable

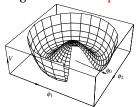
Chiral transformations

- σ meson and pions (chiral partners)
- meson = \bar{q} -q bound state
- infinitesimal chiral transformations for quarks ($\vec{T}=\vec{\tau}/2$) in SU(2)_L × SU(2)_R model

$$\psi \rightarrow (1 - i\delta\vec{\alpha}_V \cdot \vec{\tau}/2)\psi$$
 (iso-vector transformation)
 $\psi \rightarrow (1 - i\gamma_5\delta\vec{\alpha}_A \cdot \vec{\tau}/2)\psi$ (axial-vector transformation)

• transformation properties under χ transformations as $\sigma \sim \overline{\psi} \psi$, $\vec{\pi} \sim i \overline{\psi} \vec{\tau} \gamma_5 \psi$

$$\sigma \rightarrow \sigma - \delta \vec{\alpha}_A \cdot \vec{\pi}, \quad \vec{\pi} \rightarrow \vec{\pi} + \delta \vec{\alpha}_V \times \vec{\pi} + \delta \vec{\alpha}_A \sigma$$


• $\sigma^2 + \vec{\pi}^2$ invariant $\Rightarrow \chi$ symmetry realized as SO(4) rotations

The minimal linear σ model

- chiral symmetry realized by SO(4): meson fields $\phi \in \mathbb{R}^4$
- describes σ and pions (π^{\pm}, π^0)

$$\mathcal{L}_{\chi \text{limit}} = \frac{1}{2} (\partial_{\mu} \phi) (\partial^{\mu} \phi) - V(\phi) = \frac{1}{2} (\partial_{\mu} \phi) (\partial^{\mu} \phi) - \frac{\lambda}{4} (\phi^2 - f_{\pi}^2)^2$$

spontaneous symmetry breaking: mexican-hat potential

- doesn't cost energy to excite field in direction of the rim
 ⇒ massless Nambu-Goldstone bosons (pions)
- vacuum expectation value $\langle \phi^0 \rangle = f_{\pi} \neq 0$
- symmetry spontaneously broken from SO(4) to SO(3)_V
- particle spectrum: 4 field-degrees of freedom \Rightarrow vacuum inv. 3-dim SO(3) \Rightarrow 3 massless pions \Rightarrow 4 3 = 1 massive σ

Pion decay and PCAC

- weak decay $\pi^+ \rightarrow \mu^+ + \nu_\mu$
- weak interaction $\propto J_V^{\mu} J_A^{\mu}$
- pion pseudoscalar ⇒ decay must be due to axial current ⇒

$$\langle 0|J_A^{a\mu}(x)|\pi_b(p)\rangle = ip^{\mu}\delta_{ab}f_{\pi}\exp(-ip\cdot x)$$

• decay rate from Fermi model $\Rightarrow f_{\pi} \simeq 93 \text{ MeV}$

$$\langle 0|\partial_{\mu}J_{A}^{a\mu}(x)|\pi_{b}(p)\rangle = -f_{\pi}p^{2}\delta^{ab}\exp(-\mathrm{i}p\cdot x) = -f_{\pi}m_{\pi}^{2}\delta^{ab}\exp(-\mathrm{i}p\cdot x)$$

- exact chiral symmetry $\Rightarrow m_\pi = 0$ (Goldstone theorem!) $\Rightarrow \partial_\mu J_A^{a\mu} = 0$ Noether
- $m_{\pi} \neq 0$ but "small" \Rightarrow "partial conservation of axial current" (PCAC)
- in effective model

$$J_{A,\pi}^{a\mu} = f_{\pi} \partial_{\mu} \phi^{a}, \quad a \in \{1,2,3\}$$

Explicit symmetry breaking

- explicit breaking due to finite quark masses
- symmetry-breaking term in QCD: $\mathcal{L}_{\chi SB} = -m\bar{\psi}\psi$
- $m = (m_u + m_d)/2$; from $\bar{\psi}\psi \sim \sigma \Rightarrow$

$$\mathcal{L}_{\chi SB} = -\epsilon \sigma$$

• now write for σ -pion potential

$$V(\boldsymbol{\sigma}, \vec{\boldsymbol{\pi}}) = \frac{\lambda}{4} \left[(\boldsymbol{\sigma}^2 + \vec{\boldsymbol{\pi}}^2) - v_0^2 \right]^2 - \epsilon \boldsymbol{\sigma}$$

- tilted in σ -direction \Rightarrow "selects" direction of vacuum expectation value
- minimum at $f_{\pi} \Rightarrow$

$$v_0 = f_\pi - \frac{\epsilon}{2\lambda f_\pi^2}$$
, $m_\sigma^2 = 2\lambda f_\pi^2 + \frac{\epsilon}{f_\pi}$, $m_\pi^2 = \frac{\epsilon}{f_\pi}$

• Noether with symmetry breaking + PCAC (consistency!):

$$\partial_{\mu}J_{A}^{a\mu} = -\epsilon\pi^{a} \stackrel{\text{PCAC}}{=} -f_{\pi}m_{\pi}^{2}\pi^{a} \Rightarrow \epsilon = f_{\pi}m_{\pi}^{2}$$

• χ SB in QCD as in effective model \Rightarrow Gell-Mann-Oaks-Renner Relation

$$\langle 0|\epsilon\sigma|0\rangle = f_{\pi}\epsilon = m_{\pi}^2 f_{\pi}^2 = -m\langle 0|\bar{\psi}\psi|0\rangle$$

Adding nucleons

axial current of nucleon

$$\vec{J}_{A,\text{nucl}}^{\mu} = g_a \overline{\Psi} \gamma^{\mu} \gamma_5 \frac{\vec{\tau}}{2} \Psi$$

- from neutron- β decay \Rightarrow $g_a = 1.25$
- total axial current $\vec{J}_A^\mu = \vec{J}_{A,\pi}^\mu + \vec{J}_{A,\mathrm{nucl}}^\mu$ should fulfill PCAC $\partial_\mu \vec{J}_A^\mu = -f_\pi m_\pi^2 \vec{\pi} \Rightarrow$

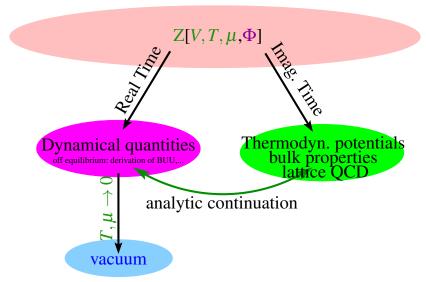
$$(\Box + m_{\pi}^{2})\pi^{a} = -g_{a}i\frac{M}{f_{\pi}}\overline{\Psi}\gamma_{5}\overrightarrow{\tau}\Psi$$

Goldberger-Treiman relation

$$g_{\pi NN} = g_a \frac{M}{f_{\pi}} \simeq 12.6$$
 vs. $g_{\pi NN}^{\text{exp}} = 13.4$

• extension of linear σ model

$$\mathcal{L}_{\rm nucl} = \overline{\Psi} i \partial \!\!\!/ \Psi - g_{\pi NN} \left[i \overline{\Psi} \gamma_5 \vec{\tau} \Psi \cdot \vec{\pi} + \overline{\Psi} \Psi \sigma \right] + \mu \overline{\Psi} \Psi$$


• GT relation: $\langle 0|\sigma|0\rangle = f_{\pi} \Rightarrow M = g_A M - \mu$

$$\mu = (g_A - 1)M \simeq \frac{M}{4}$$

QFT@finite T, μ

Finite Temperature/Density: Idealized theory picture

• partition sum: $Z(V, T, \mu_q, \Phi) = \text{Tr}\{\exp[-(\mathbf{H}[\Phi] - \mu_q \mathbf{N})/T]\}$

Finite Temperature

- Asymptotic freedom
 - quark condensate melts at high enough temperatures/densities
- all bulk properties from partition sum:

$$Z(V, T, \mu_q) = \text{Tr}\{\exp[-(\mathbf{H} - \mu_q \mathbf{N})/T]\}$$

- Free energy: $\Omega = -\frac{T}{V} \ln Z = -P$
- Quark condensate: $\langle \overline{\psi}_q \psi_q \rangle_{T,\mu_q} = \frac{V}{T} \frac{\partial P}{\partial m_q}$
- Lattice QCD (at $\mu_q = 0$)
 - chiral symmetry $\Leftrightarrow \langle \overline{\psi}\psi \rangle$
 - deconfinement transition \Leftrightarrow Polyakov Loop $\operatorname{tr}\left\langle P \exp(i\int_0^\beta d\tau A^0)\right\rangle$
 - \bullet Chiral symmetry restoration and deconfinement transition at same T_c

What can we learn from em. probes in heavy-ion collisions?

- only penetrating probe
 - leptons and photons leave hot and dense fireball unaffected
 - they are produced during the entire fireball evolution
 - dileptons provide information on in-medium spectral properties of hadrons
- theoretical challenge
 - need an understanding of QCD medium at all stages of its evolution
 transport models, hydrodynamics
 - need to identify all sources of dileptons and photons
 - perturbative QCD not applicable
 - ⇒ non-perturbative QCD, effective hadronic models
 - evaluate dilepton and photon rates \Rightarrow QFT at finite T and μ_B

Bibliography I

- [B+12] J. Beringer, et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001.
 http://dx.doi.org/10.1103/PhysRevD.86.010001
- [CSHY85] K. Chou, Z. Su, B. Hao, L. Yu, Equilibrium and Nonequilibrium Formalisms made unified, Phys. Rept. 118 (1985) 1. http://dx.doi.org/10.1016/0370-1573(85)90136-X
- [DGH92] J. F. Donoghue, E. Golowich, B. R. Holstein, Dynamics of the Standard Model, Cambridge University press (1992).

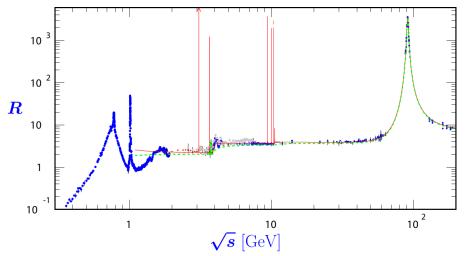
M. Dine, Goldstone Bosons and Chiral Symmetry Breaking in QCD

- (2011), lecture notes.
 http:
 //scipp.ucsc.edu/~dine/ph222/goldstone_lecture.pdf
- [KG06] J. I. Kapusta, C. Gale, Finite-Temperature Field Theory; Principles and Applications, Cambridge University Press, 2 ed. (2006).

[Din11]

Bibliography II

- [Koc97] V. Koch, Aspects of chiral symmetry, Int. J. Mod. Phys. E **6** (1997) 203. http://dx.doi.org/10.1142/S0218301397000147
- [LeB96] M. LeBellac, Thermal Field Theory, Cambridge University Press, Cambridge, New York, Melbourne (1996).
- [Lv87] N. P. Landsmann, C. G. van Weert, Real- and Imaginary-time Field Theory at Finite Temperature and Density, Physics Reports 145 (1987) 141. http://dx.doi.org/10.1016/0370-1573(87)90121-9
- [Nac90] O. Nachtmann, Elementary Particle Physics Concepts and Phenomenology, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo (1990).
- [RW00] R. Rapp, J. Wambach, Chiral symmetry restoration and dileptons in relativistic heavy-ion collisions, Adv. Nucl. Phys. **25** (2000) 1. http://arxiv.org/abs/hep-ph/9909229


Bibliography III

[Sch03] S. Scherer, Introduction to chiral perturbation theory, Adv. Nucl. Phys. **27** (2003) 277.

http://arxiv.org/abs/hep-ph/0210398

Quiz

- What are the peaks in the following figure of $R_{e^+e^-\to hadrons}$?
- Can you explain the horizontal lines (values: 2, 3.333, 3.667)?

Quiz

- Why is chiral symmetry (intuitively) only true for massless quarks?
- What's the main consequence of spontaneous symmetry breaking?
- Why can one measure the vector and axial-vector current-current correlators from $\tau \rightarrow \text{even/odd}$ number of pions + ν ?