Hadrons in hot and dense matter III

Hendrik van Hees

Goethe University Frankfurt and FIAS

July 17-21, 2017

Outline

Transport theory and hydrodynamics

- phase-space distribution
- relativistic Boltzmann equation
- the Boltzmann H theorem
- hydrodynamics

transport simulations (UrQMD and GiBUU as examples)

- GiBUU
- UrQMD
- Dalitz decays of hadron resonances
- Baryon-resonance model at SIS energies

Dileptons in pp, pA, and AA collisions at SIS energies

🕖 Quiz

Transport theory and hydrodynamics

Phase-space distribution

- classical many-body system of relativistic particles
- all particles are on their mass shell: $E = E_p := \sqrt{\vec{p}^2 + m^2}$
- Boltzmann equation [dvv80, CK02, Hee15]: dynamical equation for phase-space distribution function $f(t, \vec{x}, \vec{p})$
- relativistic covariance of phase-space distribution
 - $f(t, \vec{x}, \vec{p})$ defined as Lorentz scalar quantity
 - particle number N: $dN = d^3 \vec{x} d^3 \vec{p} f(t, \vec{x}, \vec{p})$
 - particle-number four-vector current $(N^{\mu}) = (n, \vec{N})$

$$N^{\mu} = \int_{\mathbb{R}^3} \mathrm{d}^3 \vec{p} \, \frac{p^{\mu}}{E_p} f(t, \vec{x}, \vec{p})$$

• flow-velocity of fluid cell ("Eckart frame")

$$\vec{v}_{\rm Eck}(x) = rac{\vec{N}(x)}{N^0(x)}, \quad u^{\mu}_{\rm Eck} = rac{N^{\mu}}{\sqrt{N_{\mu}N^{\mu}}} = rac{N^{\mu}}{n_0}$$

• n_0 : particle density in local fluid (Eckart) restframe

Relativistic Boltzmann equation

- particles moving along trajectories $(\vec{x}(t), \vec{p}(t))$
- for infinitesimal time step d*t*

 $dN(t+dt) = f(t+dt, \vec{x}+dt\,\vec{v}, \vec{p}+dt\,\vec{F})d^{6}\xi(t+dt), \quad d^{6}\xi = d^{3}\vec{x}d^{3}\vec{p}$

• Jacobian for phase-space volume

$$d^{6}\xi(t+dt) = d^{6}\xi(t)det\left(\frac{\partial(\vec{x}+dt\,\vec{v},\vec{p}+dt\,\vec{F})}{\partial(\vec{x},\vec{p})}\right) = d^{6}\xi(t)\left(1+dt\,\vec{\nabla}_{p}\cdot\vec{F}\right) + \mathcal{O}(dt^{2})$$

• total change of dN

$$dN(t+dt) - dN(t) = d^{6}\xi(t)dt \left[\frac{\partial f}{\partial t} + \frac{\vec{p}}{E} \cdot \frac{\partial \vec{f}}{\partial \vec{x}} + \frac{\partial (\vec{F}f)}{\partial \vec{p}}\right]$$

Relativistic Boltzmann equation

• covariance:
$$d\tau = dt \sqrt{1 - \vec{v}^2}$$
 proper time, $\vec{v} = \vec{p}/E_p$, $\sqrt{1 - \vec{v}^2} = m/E_p$

$$dt \left[\frac{\partial f}{\partial t} + \frac{\vec{p}}{E} \cdot \frac{\partial \vec{f}}{\partial \vec{x}} \right] = d\tau \frac{p^{\mu}}{m} \frac{\partial f}{\partial x^{\mu}} \Rightarrow \text{covariant!}$$

• covariant equation of motion for point particle

$$\frac{\mathrm{d}p^{\mu}}{\mathrm{d}\tau} = K^{\mu}, \quad p_{\mu}p^{\mu} = m^{2} = \mathrm{const} \Rightarrow$$

$$K^{0} = \frac{\vec{p}}{E_{p}} \cdot \vec{K} \Rightarrow \frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \vec{F} = \vec{K} \frac{m}{E_{p}}$$

$$\frac{E_{p}}{m} \vec{\nabla}_{p}(\vec{F}f) = \frac{\partial}{\partial p^{\mu}} (K^{\mu}f) \Rightarrow \text{covariant!}$$

$$\mathrm{d}N(t + \mathrm{d}t) - \mathrm{d}N(t) = \mathrm{d}t \left[\frac{\partial f}{\partial t} + \frac{\vec{p}}{E} \cdot \frac{\partial \vec{f}}{\partial \vec{x}} + \frac{\partial (\vec{F}f)}{\partial \vec{p}} \right] = \mathrm{d}\tau \left[\frac{p^{\mu}}{m} \frac{\partial f}{\partial x^{\mu}} + \frac{\partial (K^{\mu}f)}{\partial p^{\mu}} \right]$$

Relativistic Boltzmann equation

- change of particle number due to collisions
 - short-range interactions: collisions at one point (local) in space
 - invariant cross section

$$\begin{split} \mathrm{d}N_{\mathrm{coll}}(p_1', p_2' \leftarrow p_1, p_2) &= \mathrm{d}^4 x \, \frac{\mathrm{d}^3 \vec{p}_1}{E_1} \, \frac{\mathrm{d}^3 \vec{p}_2}{E_2} \frac{\mathrm{d}^3 \vec{p}_1'}{E_1'} \frac{\mathrm{d}^3 \vec{p}_2'}{E_2'} f_1 f_2 W(p_1', p_2' \leftarrow p_1, p_2), \\ \mathrm{d}\sigma &= \frac{W(p_1', p_2' \leftarrow p_1, p_2) \mathrm{d}^4 x \, \frac{\mathrm{d}^3 \vec{p}_1}{E_1} \, \frac{\mathrm{d}^3 \vec{p}_2}{m} \frac{\mathrm{d}^3 \vec{p}_1'}{E_1'} \frac{\mathrm{d}^3 \vec{p}_2'}{E_2'} f_1 f_2}{\mathrm{d}^4 x \, \mathrm{d}^3 \vec{p}_1 \, v_{\mathrm{rel}} f_1 \, \mathrm{d}^3 \vec{p}_2 f_2}, \\ \mathrm{d}\sigma &= \frac{\mathrm{d}^3 \vec{p}_1'}{E_1'} \frac{\mathrm{d}^3 \vec{p}_2'}{E_2'} \frac{W(p_1', p_2' \leftarrow p_1, p_2)}{I}, \quad I = \sqrt{(p_1 \cdot p_2)^2 - m^4} \end{split}$$

- important: $v_{\rm rel}$ is velocity of particle 1 in rest frame of particle 2
- from relativistic covariance (or unitarity of *S*-matrix!) ⇒ detailed-balance relation

$$W(p'_1, p'_2 \leftarrow p_1, p_2) = W(p_1, p_2 \leftarrow p'_1, p'_2)$$

• Boltzmann equation (manifestly covariant form)

$$p^{\mu} \frac{\partial f}{\partial x^{\mu}} + m \frac{\partial (K^{\mu} f)}{\partial p^{\mu}} = \frac{1}{2} \int_{\mathbb{R}^{3}} \frac{\mathrm{d}^{3} \vec{p}_{2}}{E_{2}} \int_{\mathbb{R}^{3}} \frac{\mathrm{d}^{3} \vec{p}_{1}'}{E_{1}'} \int_{\mathbb{R}^{3}} \frac{\mathrm{d}^{3} \vec{p}_{2}'}{E_{2}'} W(p_{1}', p_{2}' \leftarrow p, p_{2})(f_{1}' f_{2}' - f_{2}' + p_{2}')(f_{1}' f_{2}' - f_{2}')(f_{1}' f_{$$

• collision integral: "gain minus loss"

Entropy

• input from quantum mechancis: particle in a cubic box (periodic boundary cond.)

$$\vec{p} = \frac{2\pi}{L}\vec{n}, \quad \vec{n} \in \mathbb{Z}^3$$

- $\Delta^6 \xi_j = L^3 \Delta^3 \vec{p}$ ("microscopically large, macroscopically small")
- contains *G_j* single-particle states (g: degeneracy due to spin, isospin, ...)

$$G_j = g \frac{\Delta^6 \xi_j}{(2\pi)^3}$$

- statistical weight for N_j particles in $\Delta^6 \xi_j$:
- factor 1/N_j!: indistinguishability of particles

$$\Delta \Gamma_j = \frac{1}{N_j!} G_j^{N_j}$$

• entropy a la Boltzmann

$$S = \sum_{j} \ln \Delta \Gamma_{j} \simeq \sum_{j} [N_{j} \ln G_{j} - N_{j} (\ln N_{j} - 1)]$$

= $-\int d^{3}\vec{x} d^{3}\vec{p} f(x, p) \{\ln[(2\pi)^{3}f(x, p)/g] - 1\}$

Hendrik van Hees (GU Frankfurt/FIAS)

The Boltzmann H theorem

- H = greek Eta: Boltzmann's notation for entropy
- covariant description of entropy: entropy four-flow

$$S^{\mu}(x) = -\int_{\mathbb{R}^3} \frac{\mathrm{d}^3 \vec{p}}{E} p^{\mu} f(x, p) \{ \ln[(2\pi)^3 f(x, p)/g] - 1 \}$$

• Boltzmann equation + symmetries of $W(p_1'p_2' \leftarrow p_1p_2)$

$$\begin{aligned} \frac{\partial S^{\mu}}{\partial x^{\mu}} &:= \zeta = +\frac{1}{4} \int_{\mathbb{R}^{3}} \frac{\mathrm{d}^{3} \vec{p}}{E} \int_{\mathbb{R}^{3}} \frac{\mathrm{d}^{3} \vec{p}_{2}}{E_{2}} \int_{\mathbb{R}^{3}} \frac{\mathrm{d}^{3} \vec{p}_{1}'}{E_{1}'} \int_{\mathbb{R}^{3}} \frac{\mathrm{d}^{3} \vec{p}_{2}'}{E_{2}'} f f_{2} \\ & \times \left[\frac{f_{1}' f_{2}'}{f f_{2}} - \ln\left(\frac{f_{1}' f_{2}'}{f f_{2}}\right) - 1 \right] W(p_{1}' p_{2}' \leftarrow p, p_{1}) \ge 0 \end{aligned}$$

- (on average) entropy can never decrease with time!
- equilibrium $\Leftrightarrow S$ maximal!
- bracket must vanish ⇒ Maxwell-Boltzmann distribution

$$f_{\rm eq}(x,p) = \frac{g}{(2\pi)^3} \exp\left[-\beta(x)\left(u(x) \cdot p - \mu(x)\right)\right], \quad p^0 = E = \sqrt{m^2 + \vec{p}^2}$$

β = 1/*T*: inverse temperature, *u*: fluid four-velocity, *μ*: chemical potential
temperature, chemical potential are Lorentz scalars!

Hydrodynamics

- in the limit of very small mean-free path: system in local thermal equilibrium
- switch to ideal hydrodynamics description
- forget about "particles" \Rightarrow fluid description
- equations of motion for $\vec{v}(t, \vec{x})$: conservation laws

$$\partial_{\mu}N^{\mu} = 0, \quad \partial_{\mu}T^{\mu\nu} = 0$$

- N^{μ} : net-baryon number, $T^{\mu\nu}$: energy-momentum tensor
- ideal hydrodynamics

$$N^{\mu} = n u^{\mu}, \quad T^{\mu\nu} = (\epsilon + P) u^{\mu} u^{\nu} - P \eta^{\mu\nu}$$

$$\partial_{\mu} N^{\mu} = 0, \quad \partial_{\mu} T^{\mu\nu} = 0$$

- *n*: proper net-baryon density, ϵ : proper energy density, *P*: pressure
- 5 equations of motion, 6 unknowns: \vec{v} , n, ϵ , P
- need also equation of state $\epsilon = \epsilon(P)$
- hadron-resonance gas EoS (low energies)
 lQCD based cross-over phase transition (high energies)

Transport simulations (UrQMD and GiBUU)

The GiBUU Model

GiBUU

The Giessen Boltzmann-Uehling-Uhlenbeck Project

- Boltzmann-Uehling-Uhlenbeck (BUU) framework for hadronic transport
- reaction types: pA, πA , γA , eA, νA , AA
- open-source modular Fortran 95/2003 code
- version control via Subversion
- publicly available realeases: https://gibuu.hepforge.org
- Review on hadronic transport (GiBUU): [BGG⁺12]
- all calculations for dileptons: J. Weil

The Boltzmann-Uehling-Uhlenbeck Equation

• time evolution of phase-space distribution functions

 $[\partial_t + (\vec{\nabla}_p H_i) \cdot \vec{\nabla}_x - (\vec{\nabla}_x H_i) \cdot \vec{\nabla}_p] f_i(t, \vec{x}, \vec{p}) = I_{\text{coll}}[f_1, \dots, f_i, \dots, f_j]$

- use Monte-Carlo simulation for test particles
- transition probability *W* in collision term used to define stochastic process ("random numbers" on the computer)
- Hamiltonian *H_i*
 - selfconsistent hadronic mean fields, Coulomb potential, "off-shell potential"
- collision term *I*_{coll}
 - two- and three-body decays/collisions
 - multiple coupled-channel problem
 - resonances described with relativistic Breit-Wigner distribution

$$\mathcal{A}(x,p) = -\frac{1}{\pi} \frac{\mathrm{Im}\,\Pi}{(p^2 - M^2 - \mathrm{Re}\,\Pi)^2 + (\mathrm{Im}\,\Pi)^2}; \quad \mathrm{Im}\,\Pi = -\sqrt{p^2}\Gamma$$

• off-shell propagation: test particles with off-shell potential

Ultra-relativistic Molecular Dynamics (UrQMD)

• transport model for hadrons

- all hadrons (resonances) with masses up to 2.2 GeV included
- cross sections adapted to experimental data
- no explicit medium modifications of hadrons implemented
- quantum molecular dynamics
 - hadrons represented by quantum-mechanical Gaussian wave packets

$$\psi_i(t, \vec{x}) = \left(\frac{2}{\pi L}\right)^{1/4} \exp\left\{-\frac{2}{L}[\vec{x} - q_i(t)]^2 + i\vec{p}_i(t) \cdot \vec{x}\right\}$$

- *N*-body state = product state (no Bose/Fermi symmetrization!)
- classical equations of motion from Lagrangian

$$L = \sum_{i} \left[-\dot{q}_{i} \cdot \vec{p}_{i} + \langle T_{i} \rangle + \frac{1}{2} \sum_{ij} \left\langle V_{ij}^{(2)} \right\rangle - \frac{3}{2Lm} \right]$$

- interaction potentials: similar resonance model as in GiBUU
- all calculations for dileptons: S. Endres

Dalitz decays

- Dalitz decay: 1 particle → 3 particles
- $V: \omega \to \pi + \gamma^* \to \pi + \ell^+ + \ell^-$
- *P*, *S*: $\pi, \eta \rightarrow \gamma + \gamma^* \rightarrow \gamma + \ell^+ + \ell^-$
- *R*: Baryon resonances $\Delta, N^* \rightarrow N + V \rightarrow N + \gamma^* \rightarrow N + \ell^+ + \ell^-$
- vector-meson dominance

Resonance Model

- reactions dominated by resonance scattering: $a b \rightarrow R \rightarrow c d$
- Breit-Wigner cross-section formula

$$\sigma_{ab\to R\to cd} = \frac{2s_R + 1}{(2s_a + 1)(2s_b + 1)} \frac{4\pi}{p_{\text{lab}}^2} \frac{s\Gamma_{ab\to R}\Gamma_{R\to cd}}{(s - m_R^2)^2 + s\Gamma_{\text{tot}}^2}$$

- applicable for low-energy nuclear reactions $E_{\rm kin} \lesssim 1.1 \, \text{GeV}$
- example: $\sigma_{\pi^-p \to \pi^- p}$ [Teis (PhD thesis 1996), data: Baldini et al, Landolt-Börnstein 12 (1987)]

• further cross sections

[WHM12, WM13]

• keep same resonances (parameters from Manley analysis)

		M_0	Γ_0	$ M^2 /1$	branching ratio in %							
	rating	[MeV]	[MeV]	NR	ΔR	πN	ηN	$\pi \Delta$	ρN	σN	$\pi N^{*}(1440)$	$\sigma \Delta$
$P_{11}(1440)$	****	1462	391	70		69		22_P		9		_
$S_{11}(1535)$	***	1534	151	8	60	51	43		$2_{S} + 1_{D}$	1	2	
$S_{11}(1650)$	****	1659	173	4	12	89	3	2_D	3_D	2	1	
$D_{13}(1520)$	****	1524	124	4	12	59		$5_{S} + 15_{D}$	21_{S}			
$D_{15}(1675)$	****	1676	159	17		47		53_D		_		_
$P_{13}(1720)$	*	1717	383	4	12	13			87_P			_
$F_{15}(1680)$	****	1684	139	4	12	70	_	$10_P + 1_F$	$5_P + 2_F$	12	_	_
$P_{33}(1232)$	****	1232	118	OBE	210	100		_		_	_	_
$S_{31}(1620)$	**	1672	154	7	21	9		62_{D}	$25_S + 4_D$			_
$D_{33}(1700)$	*	1762	599	7	21	14		$74_{S} + 4_{D}$	85			_
$P_{31}(1910)$	****	1882	239	14		23					67	10_{P}
$P_{33}(1600)$	***	1706	430	14		12		68_{P}			20	
$F_{35}(1905)$	***	1881	327	7	21	12		1_P	87_P			
$F_{37}(1950)$	****	1945	300	14	_	38	_	18_{F}				44_F

• production channels in Teis: $NN \rightarrow N\Delta$, $NN \rightarrow NN^*$, $N\Delta^*$, $NN \rightarrow \Delta\Delta$

• extension to
$$NN \rightarrow \Delta N^*, \Delta \Delta^*, NN \rightarrow NN\pi$$

 $NN \rightarrow NN\rho, NN\omega, NN\pi\omega, NN\phi,$

 $NN \rightarrow BYK \ (B = N, \Delta, Y = \Lambda, \Sigma)$

GiBUU Extension to HADES energies

• good description of total pp, pn (inelastic) cross section

dilepton sources

- Dalitz decays: $\pi^0, \eta \to \gamma \ell^+ \ell^-; \omega \to \pi^0 \ell^+ \ell^-, \Delta \to N \ell^+ \ell^-$
- ρ, ω, φ → ℓ⁺ℓ⁻: invariant mass ℓ⁺ℓ⁻ spectra ⇒ spectral properties of vector mesons
- for details, see [WHM12]

UrQMD: Baryon resonances

Resonance	Mass	Width	Νπ	Νη	Nω	Ne	Νππ	$\Delta_{1232}\pi$	$N^*_{1440}\pi$	ΛK	ΣK	f_0N	a_0N
N [*] ₁₄₄₀	1.440	350	0.65				0.10	0.25					
N [*] ₁₅₂₀	1.515	120	0.60			0.15	0.05	0.20					
N [*] ₁₅₃₅	1.550	140	0.60	0.30			0.05		0.05				
N_{1650}^{*}	1.645	160	0.60	0.06		0.06	0.04	0.10	0.05	0.07	0.02		
N_{1675}^{*}	1.675	140	0.40					0.55	0.05				
N_{1680}^{*}	1.680	140	0.60			0.10	0.10	0.15	0.05				
N_{1700}^{*}	1.730	150	0.05			0.20	0.30	0.40	0.05				
N_{1710}^{*}	1.710	500	0.16	0.15		0.05	0.21	0.20	0.10	0.10	0.03		
N_{1720}^{*}	1.720	550	0.10			0.73	0.05			0.10	0.02		
N_{1900}^{*}	1.850	350	0.30	0.14	0.39	0.15				0.02			
N_{1990}^{*}	1.950	500	0.12			0.43	0.19	0.14	0.05	0.03		0.04	
N_{2080}^{*}	2.000	550	0.42	0.04	0.15	0.12	0.05	0.10		0.12			
N_{2190}^{*}	2.150	470	0.29			0.24	0.10	0.15	0.05	0.12			
N_{2220}^{*}	2.220	550	0.29		0.05	0.22	0.17	0.20		0.12			
N^{*}_{2250}	2.250	470	0.18			0.25	0.20	0.20	0.05	0.12			
Δ_{1232}	1.232	115	1.00										
Δ_{1600}^{*}	1.700	350	0.10					0.65	0.25				
Δ_{1620}^{*}	1.675	160	0.15			0.05		0.65	0.15				
Δ_{1700}^{*}	1.750	350	0.20			0.25		0.55					
Δ_{1900}^{*}	1.840	260	0.25			0.25		0.25	0.25				
Δ_{1905}^{*}	1.880	350	0.18			0.80		0.02					
Δ_{1910}^{*}	1.900	250	0.30			0.10		0.35	0.25				
Δ_{1920}^{*}	1.920	200	0.27					0.40	0.30	0.03			
Δ_{1930}^{*}	1.970	350	0.15			0.22		0.20	0.28	0.15			
Δ_{1950}^{*}	1.990	350	0.38			0.08		0.20	0.18	0.12			0.04

UrQMD: Baryon resonances

Dileptons in pp, pA, and AA collisions at SIS energies

GiBUU: p p at HADES ($E_{kin} = 1.25 \text{ GeV}$)

p + p at 1.25 GeV

d p at HADES ($E_{kin} = 1.25 \text{ GeV}$)

d + p at 1.25 GeV

- triggered on forward protons → quasifree np scattering
 model uncertainties:
 - ρ production through $D_{13}(1525)$ (isospin symmetric?)
 - $S_{11}(1535)$ [enhanced in np; (from η production)]
 - d-wave function treatable as quasiclassical "distribution"?
 - bremsstrahlung contributions

GiBUU: p p at HADES ($E_{kin} = 3.5 \text{ GeV}$)

p + p at 3.5 GeV

GiBUU: p p at HADES ($E_{kin} = 3.5 \text{ GeV}$)

GiBUU: " ρ meson" in pp

• production through hadron resonances $NN \rightarrow NR \rightarrow NN\rho$, $NN \rightarrow N\Delta \rightarrow NN\pi\rho$

• " ρ "-line shape "modified" already in elementary hadronic reactions

• due to production mechanism via resonances

GiBUU: Comparison to old DLS data (pp)

- HADES data consistent with DLS data
- checked by comparing HADES data within DLS acceptance

GiBUU: Comparison to old DLS data (pd)

- HADES data consistent with DLS data
- checked by comparing HADES data within DLS acceptance

- so far: Δ -Dalitz decay treated separately from other resonances
- now: treating Δ as all other resonances via VMD model

p + p at 1.25 GeV

- so far: Δ -Dalitz decay treated separately from other resonances
- now: treating Δ as all other resonances via VMD model

d + p at 1.25 GeV

- so far: Δ -Dalitz decay treated separately from other resonances
- now: treating Δ as all other resonances via VMD model

- so far: Δ -Dalitz decay treated separately from other resonances
- now: treating Δ as all other resonances via VMD model

p + p at 3.5 GeV

UrQMD: p p at HADES ($E_{kin} = 2.2 \text{ GeV}$ and 3.5 GeV

GiBUU:

• medium effects built in transport model

- binding effects, Fermi smearing, Pauli blocking
- final-state interactions
- production from secondary collisions
- sensitivity to additional in-medium modifications of vector mesons?

GiBUU: p Nb at HADES (3.5 GeV)

• with vacuum spectral functions:

GiBUU: p Nb at HADES (3.5 GeV)

• with medium modified spectral functions:

• no definite hint for medium modifications in p Nb

GiBUU: p Nb at HADES (3.5 GeV)

- medium effects built in transport model
 - binding effects, Fermi smearing, Pauli blocking
 - final-state interactions
 - production from secondary collisions
- sensitivity on medium effects of vector-meson spectral functions?

GiBUU: Ar KCl at HADES

GiBUU: Ar KCl at HADES

UrQMD: pp and CC at HADES (lowest energies)

UrQMD: Ar KCl and CC at HADES

- [BGG⁺12] O. Buss, et al., Transport-theoretical Description of Nuclear Reactions, Phys. Rept. 512 (2012) 1. http://dx.doi.org/10.1016/j.physrep.2011.12.001
- [CK02] C. Cercignani, G. M. Kremer, The relativistic Boltzmann Equation: Theory and Applications, Springer, Basel (2002). http://dx.doi.org/10.1007/978-3-0348-8165-4
- [dvv80] S. R. de Groot, W. A. van Leeuwen, C. G. van Weert, Relativistic kinetic theory: principles and applications, North-Holland (1980).
- [EBEK01] V. Eletsky, M. Belkacem, P. Ellis, J. I. Kapusta, Properties of rho and omega mesons at finite temperature and density as inferred from experiment, Phys. Rev. C 64 (2001) 035202.
- [Hee15] H. van Hees, Introduction to relativistic transport theory (2015). http://fias.uni-frankfurt.de/~hees/publ/kolkata.pdf

Bibliography II

- [RG99] R. Rapp, C. Gale, ρ properties in a hot meson gas, Phys. Rev. C 60 (1999) 024903.
 http://dx.doi.org/10.1103/PhysRevC.60.024903
- [RW99] R. Rapp, J. Wambach, Low mass dileptons at the CERN-SPS: Evidence for chiral restoration?, Eur. Phys. J. A 6 (1999) 415. http://dx.doi.org/10.1007/s100500050364
- [RW00] R. Rapp, J. Wambach, Chiral symmetry restoration and dileptons in relativistic heavy-ion collisions, Adv. Nucl. Phys. 25 (2000) 1. http://arxiv.org/abs/hep-ph/9909229
- [WHM12] J. Weil, H. van Hees, U. Mosel, Dilepton production in proton-induced reactions at SIS energies with the GiBUU transport model, Eur. Phys. J. A 48 (2012) 111. http://dx.doi.org/10.1140/epja/i2012-12111-9
- [WM13] J. Weil, U. Mosel, Dilepton production at SIS energies with the GiBUU transport model, J. Phys. Conf. Ser. **426** (2013) 012035.

Quiz

- What's the difference between the simulation algorithms used in GiBUU (test-particle Monte Carlo simulation) and in UrQMD (quantum molecular dynamics simulation)?
- Which is the most important empirical input we need for transport models in low-energy heavy-ion collisions?
- Why are the ρ -meson properties in the particle-data booklet defined solely through reactions like $e^+ + e^- \rightarrow \pi + \pi$ and not with $p + p \rightarrow$ hadrons?
- what's the fundamental difficulty in making use of (quantitative) many-body-QFT calculations of medium-modified spectral functions?
- In how can one solve this approximately and what are the caveats?