Heavy Probes in Heavy-Ion Collisions Theory Part IV

Hendrik van Hees

Justus-Liebig Universität Gießen

August 31-September 5, 2010

Institut für Theoretische Physik

Heavy quarkonia in the vacuum

- "Stable" charmonium and bottomonium states ($M < 2m_D$)
- Non-relativistic potential models

2 Heavy quarkonia in the sQGP

- J/ψ suppression
- Heavy-quarkonium dissociation
- In-medium modification of bound-state potentials
- Heavy-quarkonia dissociation and regeneration in the QGP
- Dissociation Cross Sections

Charmonium states

- no flavor-changing neutral currents in weak interactions ⇒ prediction of fourth quark
 - GIM mechanism (Glashow, Iliopolous, Maiani)
 - CKM-quark-mixing matrix (Cabibbo, Kobayashi, Maskawa)
 - discovered as $\bar{c}c$ bound state
 - simultaneously by Ting (BNL) and Richter (RHIC) \Rightarrow name J/ψ
- today many charmonia known (only "stable" states)
- ${\ensuremath{\, \bullet }}$ higher excitations can decay strongly to $\bar D + D$

Name	η_c	J/ψ	χ_{c0}	χ_{c1}	χ_{c2}	ψ'
mass (GeV)	2.98	3.10	3.42	3.51	3.56	3.69
E_B (GeV)	0.75	0.64	0.32	0.22	0.18	0.05
state	1S	1S	1P	1P	1P	2S
J^{PC}	0^{-+}	1	0^{++}	1^{++}	2^{++}	1

[L. Kluberg, H. Satz, Landolt-Börnstein 23/I, 6-1 (2010)]

- Υ as first $\overline{b}b$ -bound state discovered by Ledermann (Fermi Lab) 1977
- even more "stable" bottomonium states (due to stronger binding)
- higher excitations \Rightarrow can decay strongly to $\overline{B} + B$

Name	Υ	χ_{b0}	χ_{b1}	χ_{b2}	Υ'	χ_{b0}'	χ_{b1}'	χ_{b2}'	Υ''
mass (GeV)	9.46	9.86	9.89	9.91	10.02	10.23	10.26	10.27	10.36
E_B (GeV)	1.10	0.70	0.67	0.64	0.53	0.34	0.3	0.29	0.20
state	1S	1P	1P	1P	2S	1P	1P	1P	3S
J^{PC}	1	0^{++}	1^{++}	2^{++}	1	0^{++}	1^{++}	2^{++}	1

[L. Kluberg, H. Satz, Landolt-Börnstein 23/I, 6-1 (2010)]

- light-quark mesons: mass from strong interaction (confinement)
- heavy quarkonia: mass due to quark masses
- can be treated as (quasi-)non-relativistic bound states

Non-relativistic potential models

• use phenomenological static potentials, e.g., Cornell potential

$$V(r) = \sigma r - \frac{\alpha}{r}$$

- long-range scale: confining (non-perturbative QCD), string tension, $\sigma\simeq 0.2~{\rm GeV}^2$
- short-range scale: Coulomb-like (pQCD), $\alpha\simeq\pi/12$
- heavy-quarkonium states from non-relativistic Schrödinger equation

$$\left[2m_Q - \frac{1}{m_Q}\Delta + V(r)\right]\Phi_i(\vec{r}) = M_i\phi_i(r)$$

- fit to spin-averaged heavy-quarkonium spectra $\Rightarrow m_c = 1.25 \text{ GeV}, m_b = 4.65 \text{ GeV}, \sqrt{\sigma} = 0.445 \text{ GeV}, \alpha = \pi/12$
- from wave function $\left< r_i^2 \right> = \left< \Phi_i \left| \vec{\mathbf{r}} \right| \Phi_i \right>$

Name	J/ψ	χ_c	ψ'	Υ	χ_b	Υ'	χ_b'	Υ''
mass (GeV)	3.10	3.53	3.68	9.46	9.99	10.02	10.26	10.36
E_B (GeV)	0.64	0.20	0.05	1.10	0.67	0.54	0.31	0.20
ΔM_i (GeV)	0.02	-0.03	0.03	0.036	-0.06	-0.06	-0.08	-0.07
r_0 (fm)	0.50	0.72	0.90	0.28	0.44	0.56	0.68	0.78

• heavy quarkonia break up in sQGP

- dissociation through inelastic scattering with medium particles
- gluon dissociation, quasi-free knock-out reactions
- in-medium modification of strong interaction; color screening
- suppression of heavy quarkonia as signal for QGP formation [T. Matsui, H. Satz, J/ψ PLB 178, 416 (1986)]
 - caveat! already suppression in pA collisions compared to pp
 - absorption, shadowing, Cronin effect as cold-nuclear-matter effects
 - must be taken into account to determine "anomalous suppression"

Heavy-quarkonium dissociation

- from non-rel. potential models: tightly bound states of small size
- need hard parton to dissociate heavy quarkonia
- leading-order process via hard gluon
- hot hadron gas
 - hadron of high momentum $p_h \Rightarrow$ distribution of gluons with momentum xp_h :

$$g(x) \propto (1-x)^2$$

• average gluon-momentum fraction

$$\langle x \rangle = \frac{\int_0^1 \mathrm{d}x x g(x)}{\int_0^1 \mathrm{d}x \ g(x)} = \frac{1}{5}$$

- in hadronic medium with $T < T_c$ average momentum $\langle p_{\rm gluon} \rangle = 3T/5 \le 0.1 \ {\rm GeV} \ll E_B \simeq 0.6 \ {\rm GeV}$
- deconfined matter (QGP)

• $p_{\rm gluon}\simeq 3T\Rightarrow$ for $T\gtrsim 1.2T_c$ gluo dissociation of J/ψ possible

Heavy-quarkonium dissociation

• dissociation cross section (similar to photo effect in QED) $g + J/\psi \rightarrow \overline{c} + c$ [M.E. Peskin, NPB 156, 365 (1979), G. Bhanot, M.E. Peskin, NPB 156, 391 (1979)]

$$\sigma_{g+J/\psi \to \bar{c} + c} \propto \frac{1}{m_c^2} \frac{(k/E_B - 1)^{3/2}}{(k/E_B)^5}$$

• for hadron: convolution with parton-distribution function g(x)

8 / 31

- modify Cornell potential by Debye screening
- confining part: Laplace equation in 1D
- perturbative part: Laplace equation in 3D
- Debye-screened Cornell potential

$$V(r,T) \simeq \sigma r \frac{1 - \exp(-\mu_D r)}{\mu_D r} - \frac{\alpha}{r} \exp(-\mu_D r)$$

- shortcomings of this model
 - $\bullet\,$ confining part treated as "1D-gauge theory" $\Rightarrow\,$ different in 3D
 - μ_D taken in high-energy form $\mu \propto T$
 - IQCD μ_D different close to T_c (strong interactions \Rightarrow sQGP!)

[F. Karsch, M.-T. Mehr, H. Satz. ZPC 37, 617 (1988); F. Karsch, H. Satz, ZPC 51, 209 (1991)]

Static heavy-quark potentials from lattice QCD

- lattice QCD at finite temperature: calculate free energy F = U TS
- \bullet calculate difference between $F_{\bar{Q}Q}$ with Q and \bar{Q} at distance, r and F
- average Hamiltonian for static $\vec{Q}Q$: $\langle H \rangle_T = U = -T^2 \partial (F/T) / \partial T$ $\Rightarrow M_{quarkonium}$
- long-distance limit: $2M_D(T) \simeq 2m_c + U(\infty, T)$
- can be reinterpreted as medium-modified heavy-quark mass
- \bullet short-distance: polarization zones overlap \Rightarrow enhancement of U over T=0 Cornell potential

• "right" potential
$$V = xU + (1 - x)F$$
?

Heavy-quarkonium spectral functions from IQCD

- IQCD: thermal expectation values of imaginary-time operators
- Monte Carlo evaluation of path integrals of discreticed QCD action
- current-correlation function for heavy quarkonia

$$G_{\alpha}(\tau, \vec{r}) = \left\langle \mathbf{j}_{\alpha}(\tau, \vec{r}) \mathbf{j}_{\alpha}^{\dagger}(0, 0) \right\rangle_{T}$$

connection with spectral function

$$G_{\alpha}(\tau, p; T) = \int_{0}^{\infty} dE \sigma_{\alpha}(E, p; T) K(E, \tau; T) \text{ with}$$
$$K(E, \tau; T) = \frac{\cosh[E(\tau - \beta/2)]}{\sinh(\beta E/2)}$$

- \bullet inversion problematic on (discretized) imaginary time $0 \leq \tau \leq \beta$
- statistical maximum-entropy method (MEM)

T-matrix approach for quarkonium-bound-state problem

T-matrix Brückner approach for heavy quarkonia as for HQ diffusion
consistency between HQ diffusion and QQ suppression!

- 4D Bethe-Salpeter equation \rightarrow 3D Lippmann-Schwinger equation
- relativistic interaction \rightarrow static heavy-quark potential (IQCD) $T_{\alpha}(E;q',q) = V_{\alpha}(q',q) + \frac{2}{\pi} \int_{0}^{\infty} \mathrm{d}k \; k^{2} V_{\alpha}(q',k) G_{Q\bar{Q}}(E;k) T_{\alpha}(E;k,q)$ $\times \{1 - n_{F}[\omega_{1}(\vec{k})] - n_{F}[\omega_{2}(k)]\}$

• q, q', k relative 3-momentum of initial, final, intermediate $\bar{Q}Q$ state [F. Riek, R. Rapp, arXiv:1005.0769 [hep-ph]]

The potential

0000

non-perturbative static gluon propagator $D_{00}(\vec{k}) = 1/(\vec{k}^2 + \mu_D^2) + m_G^2/(\vec{k}^2 + \tilde{m}_D^2)^2$

finite-T HQ color-singlet-free energy from Polyakov loops

$$\exp[-F_1(r,T)/T] = \left\langle \operatorname{Tr}[\Omega(x)\Omega^{\dagger}(y)]/N_c \right\rangle$$
$$= \exp\left[\frac{g^2}{2N_cT^2} \left\langle A_{0,\alpha}(x)A_{0,\alpha}(y) - A_{0,\alpha}^2(x) \right\rangle \right] + \mathcal{O}(g^6)$$

• identify $\langle A_{0,\alpha}(x)A_{0,\alpha}(y)\rangle = D_{00}(x-y)$

color-singlet free energy

$$F_1(r,T) = -\frac{4}{3}\alpha_s \left\{ \frac{\exp(-m_D r)}{r} + \frac{m_G^2}{2\tilde{m}_D} [\exp(-\tilde{m}_D r) - 1] + m_D \right\}$$

• in vacuo $m_D, \tilde{m}_D \rightarrow 0$ $F_1(r) = -\frac{4}{2}\frac{\alpha_s}{r} + \sigma r, \quad \sigma = \frac{2\alpha_s m_G^2}{3}$ [F. Riek, R. Rapp, arXiv:1005.0769 [hep-ph]]

Heavy quarkonia

- fit parameters, $\alpha_s(T)$, $m_D(T)$, $\tilde{m}_D(T)$, $\tilde{m}_G(T)$ to IQCD
- calculate internal energy $U(r,T)=F(r,T)-T\frac{\partial}{\partial T}F(r,T)$
- solve Lippmann-Schwinger equation \Rightarrow adjust m_Q to get s-wave charmonia/bottomonia masses in vacuum
- in the following
 - potential 1: $N_f=2+1$ [O. Kaczmarek]
 - potential 2: $N_f = 3$ [P. Petreczky]
 - BbS: Blancenblecler-Sugar reduction scheme
 - Th: Thompson reduction scheme
- vacuum-mass splittings
 - $\bullet\,$ uncertainty for charmonia $50\text{--}100\;\mathrm{MeV}$
 - $\bullet\,$ uncertainty for bottomonia $30\text{-}70\;\mathrm{MeV}$
 - overall uncertainty $\simeq 10\%$
- melting temperatures with U and F
 - s-wave (η_c , J/ψ): 2-2.5 T_c , $\gtrsim 1.3T_c$,
 - $\Upsilon:>2T_c,\gtrsim 1.7T_c, 1T_c, \gtrsim 2T_c, \ 1T_c, \ 1T_c$
 - p-wave (χ_c) : $\gtrsim 1.2T_c$, $\gtrsim 1T_c$, χ_b : $\gtrsim 1.7T_c$, $1.2T_c$, all $\gtrsim 1T_c$

[F. Riek, R. Rapp, arXiv:1005.0769 [hep-ph]]

Quarkonium-spectral functions in the vacuum

In-medium charmonium-spectral functions (s states)

Hendrik van Hees (JLU Gießen)

August 31-September 5, 2010 16 / 31

In-medium charmonium-spectral functions (p states)

dissociation rate

$$\Gamma_{\Psi} = \sum_{i} \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} f_{i}(\omega_{k}, T) v_{\mathsf{rel}} \sigma_{\Psi i}^{(\mathsf{diss})}(s)$$

• $g + \Psi \rightarrow \bar{Q} + Q$ ("gluon dissociation")

$$\sigma_{g\Psi}(k_0) = \frac{2\pi}{3} \left(\frac{32}{3}\right)^2 \left(\frac{m_Q}{E_b}\right)^{1/2} \frac{1}{m_Q^2} \frac{(k_0/E_B - 1)^{3/2}}{(k_0/E)^5}$$

- for decreasing binding energy: cross section sharply peaked at low k_0
- gluon dissociation becomes inefficient for loosely bound states
- additional channel: quasi-free dissociation $g + \Psi \rightarrow g + \bar{Q} + Q$
- [L. Granchamp, R. Rapp, PLB 523, 60 (2001); R. Rapp EPC 43, 91 (2005)]

Dissociation Cross Sections

- need dissociation cross sections to evaluate Υ yield
- Usual mechanism: gluon dissociation (in dipole approximation)
- Problem: becomes inefficient for loosely bound states

• $\epsilon_Y(T)$ from Schrödinger eq. with screened Cornell potential [Karsch, Mehr, Satz 88]

Dissociation Cross Sections

• breakup mechanism for loosely bound states: quasifree dissociation

• use LO pQCD cross sections for elastic scattering [Combridge 79]

• Color screening reduces Υ lifetime by factor of 10!

J/ψ suppression and regeneration

 use of in-medium binding energies: need both gluon absorption + quasi-free scattering

[L. Granchamp, R. Rapp, PLB 523, 60 (2001); R. Rapp EPC 43, 91 (2005)]

Quarkonium transport in heavy-ion collisions

• quarkonium transport in the sQGP

$$rac{p^{\mu}}{p_{0}}\partial_{\mu}f_{\Psi}(x,ec{p}) = -\Gamma_{\Psi}(x,ec{p}) + eta_{\Psi}(x,ec{p})$$

• gain/regeneration term (e.g., for $Q + \bar{Q} \rightarrow g + \Psi$)

$$\begin{split} \beta_{\Psi}(x,\vec{p}) = & \frac{1}{2p_0} \int \frac{\mathrm{d}^3 \vec{k}}{(2\pi)^3 2\omega_k} \int \frac{\mathrm{d}^3 \vec{p}_Q}{(2\pi)^3 2\omega_Q} \int \frac{\mathrm{d}^3 \vec{p}_{\bar{Q}}}{(2\pi)^3 2\omega_{\bar{Q}}} \\ & \times f_Q(x,\vec{p}_Q) f_{\bar{Q}}(x,\vec{p}_{\bar{Q}}) W^{g\Psi}_{Q\bar{Q}}(s) \Theta[T_{\mathsf{diss}} - T(x)] \\ & \times (2\pi)^4 \delta^{(4)}(p+q-p_Q-p_{\bar{Q}}) \end{split}$$

•
$$W^{g\Psi}_{Q\bar{Q}} = \sigma_{Q\bar{Q} \to g\Psi} v_{\text{rel}} 4 \omega_Q \omega_{\bar{Q}}$$

- cross section must be the same as for dissociation (up to kinematics)
- detailed balance

Rate equations for quarkonia

- integrate Boltzmann equation over x, \vec{p}
- assume thermalized Q/\bar{Q} distributions in the sQGP
- rate equation

$$\frac{\mathrm{d}N_{\Psi}}{\mathrm{d}\tau} = -\Gamma_{\Psi}(N_{\Psi} - N_{\Psi}^{(\mathrm{eq})})$$

- detailed balence ensures correct equilibrium limit
- conservation of heavy-quark number $N_{Q\bar{Q}}=N_Q=N_{\bar{Q}}$ over whole evolution of the medium
- HQ fugacity factors

$$\begin{split} N_{Q\bar{Q}} &= \frac{1}{2} N_{\mathsf{op}} \frac{\mathrm{I}_1(N_{\mathsf{op}})}{\mathrm{I}_0(N_{\mathsf{op}})} + V_{\mathsf{FB}} \gamma_Q^2 \sum_{\Psi} n_{\Psi}^{(\mathsf{eq})}(T) \\ N_{\mathsf{op}} &= \begin{cases} V_{\mathsf{FB}} \gamma_Q 2 n_Q^{(\mathsf{eq})}(m_Q^*, T) & \text{for } \mathsf{QGP} \\ V_{\mathsf{FB}} \gamma_Q \sum_{\alpha} n_{\alpha}^{(\mathsf{eq})}(T, \mu_B) & \text{for hadron gas} \end{cases} \end{split}$$

Initial conditions

- $\bar{Q}Q$ pairs produced in primordial hard collisions only
- subject to cold-nuclear-matter effects
 - nuclear absorption: dissociation by interaction with surrounding nucleons
 - Cronin effect: broadening of $\Psi\text{-}p_T$ spectra due to rescattering of gluons before charmonium formation
 - (anti-)shadowing: modification of the parton-distribution functions in nuclei
- after formation time: assume equilibrium distributions
- p_T distributions
 - direct part: from pp + cold-nuclear-matter effects
 - regenerated part: boosted Boltzmann distribution (blast wave)

$$\frac{\mathrm{d}N_{\Psi}}{p_{T}\mathrm{d}p_{T}} \propto m_{T} \int_{0}^{R} \mathrm{d}r \ r \ K_{1} \left(\frac{m_{T} \cosh y_{T}}{T}\right) \mathrm{I}_{0} \left(\frac{p_{T} \sinh y_{t}}{T}\right)$$

Centrality dependence of J/ψ in AA collisions

mid rapidity

[[]X. Zhao, R. Rapp, EPC 62, 109 (2009)]

Centrality dependence of J/ψ in AA collisions

- forward rapidity
- with and without shadowing

[X. Zhao, R. Rapp, EPC 62, 109 (2009)]

p_T dependence of $J/\psi~R_{AA}$

• mid rapidity

p_T dependence of $J/\psi~R_{AA}$

- How are heavy quarkonia in the vacuum theoretically described?
- What can we learn from that about fundamental properties of QCD?
- Which cold-nuclear matter (initial state) effects are important for heavy quarkonia?
- What are the main mechanisms behind "heavy-quarkonium suppression" in the sQGP?
- How are the bound-state properties of heavy quarkonia in the medium described?
- How are the heavy-quarkonium observables in heavy-ion collisions described?

• Heavy quarkonium states

- (non-relativistic) bound $ar{Q}Q$ states
- potential: "color-Coulomb" (pert.) + "confining" (non-pert.) part
- good description of charmonia, J/ψ , χ_C ,... and bottomonia, Υ , χ_b ,...
- tightly bound states with small size
- Heavy quarkonia in the medium
 - dissociation via scattering with medium particles
 - main mechanism: gluon dissociation, quasi-free break-up reaction
 - $\bullet \ \Rightarrow J/\psi$ suppression as signal for QGP formation in HICs
 - cold-nuclear-matter effects (absorption, shadowing Cronin effect)
 - $\bullet \Rightarrow \text{``anomalous suppression'' QGP signal}$

• Potential models in the medium

- heavy quarkonia with IQCD
- difficult to extract spectral properties (MEM)
- $\bullet \Rightarrow$ potential models in the medium
- use in-medium potentials from the lattice
- free energy or internal energy?
- $\bullet\,$ use screened color-Coulomb + confining ansatz for potential
- fit medium dependent parameters to IQCD
- leads to survival of some quarkonia above $T_c \Rightarrow$ regeneration important

• Dissociation/Regeneration of heavy quarkonia in the QGP

- initial conditions: production cross sections, cold-nuclear matter effects
- dissociation cross sections for gluon absorption + quasi-free scattering
- Transport approach to dissociation and regeneration of heavy quarkonia
- in-medium bound-state properties