Direct Photons - A Short Introduction

Baldo Sahlmüller, IKF Uni Frankfurt

Lecture Week of the Helmholtz Research School for Quark Matter Studies in Heavy Ion Collisions

March 31 - April 4, 2014, Burg Ebernburg, Germany

Outline

- Part I:
 - Introduction
 - Direct Photons in *p*+*p* and A+A
 - Measuring Direct Photons
- Part II:
 - Results in *p*+*p* Collisions
 - Results in A+A Collisions
 - Measurements with "real" photons
 - The internal conversion method
 - Using conversion in the detector material
 - Direct photon flow

Definition and Challenges

- Direct photons are
 - Photons not coming from decays (experimentalists view I)
 - Photons that are isolated (experimentalists view II)
 - Photons that are created directly in hard scattering processes (a possible theorists view)
- The measurement is challenging
 - Large background from decay photons
 - $\pi^0 \rightarrow \gamma \gamma$, $\eta \rightarrow \gamma \gamma$, and more
 - Finding isolated photons in large background in A+A
 - Experimental problems due to small opening angle of decay photons, $\pi^0(\eta)$ decay photons merge into one detector signal

Direct Photons in p+p Collisions

- In the late 1970's: direct photons suggested point-like charged objects within hadrons
- Different production processes
 - Top row: Quark-gluon Compton scattering (a), quark-antiquark annihilation (b)
 - Bottom row: bremsstrahlung (a), jet fragmentation (b)
- Test of QCD, processes well described
- Current focus: Constrain gluon distribution functions
 - Quark-gluon Compton scattering at leading order, unlike DIS and Drell-Yan

Direct Photons in Au+Au Collisions - why?

- Photons do not interact strongly and leave the medium (mostly) unaffected
- Different p_T regions give different information
 - Low p_T (< 4 GeV/c): thermal photons, measure the temperature of the fireball
 - Intermediate p_T (between ~2 and 6 GeV/c): are there other sources from within the QGP (e.g. from jet-plasma interaction)?
 - High p_T (> 6 GeV/c): Point like scaling for hard processes?
- Measure direct- γ hadron angular correlations
 - In p+p access to fragmentation functions
 - In A+A, photon defines parton (jet) energy

Quantify Nuclear Effects: The Nuclear Modification Facotr

- Measure to quantify nuclear effects in A+A collisions
- Compare A+A with scaled p+p collisions
- Number of binary nucleon-nucleon collisions (N_{coll}) from simulations
- R_{AA} "contains" both initial and final state effects
 - Initial state: Cronin, nuclear shadowing, ..
 - Final state: Jet quenching

 $\frac{d^{2}N_{AA}^{\quad \eta}/dydp_{T}}{N_{coll}d^{2}N_{pp}^{\quad \eta}/dydp_{T}}$ R_{AA}

Hard direct photons: bremsstrahlung / fragmentation component

Preequillibrium photons

- Produced through rescattering of the primarily produced partons prior to thermalization
- Difficult to treat theoretically

Thermal photons

Reflect temperature of the system, produced over entire evolution

■ Significant direct photon source only at low *p*_T

Hard+thermal:
Jet-Photon-
ConversionInteraction of parton from hard
scattering with soft parton
$$q_{hard} + g_{QGP} \rightarrow \gamma + q$$
 $\sigma_{jet-\gamma-conv} \sim \delta^3 (p_{jet} - p_{\gamma})$ $q_{hard} + \overline{q}_{QGP} \rightarrow \gamma + g$

Medium induced photon bremsstrahlung

- Due to multiple scattering of quarks in the medium
- Different theoretical predictions, likely rather small contribution

Summary: Direct Photons in A+A Collisions -Hard, Thermal, Hard+Thermal

Schematic Photon Spectrum in A+A

- Thermal photons expected to be a significant contribution below p_T ~ 3 GeV/c
- Hard photons dominant direct photon source for pT > ~ 6 GeV/c
- Jet-photon conversion might be significant contribution below
 p_T ~ 6 GeV/c
- Experimental challenge: Subtraction of decay photon background

Direct Photons in A+A: Realistic Calculation

Turbide, Rapp, Gale, Phys. Rev. C 69 (014902), 2004

• Window for thermal photons from QGP in this calculation: $p_T = I - 3 \text{ GeV}/c$

Photon Rates in HG and QGP

QGP rates: Arnold, Moore, Yaffe (2001) HG rates: Turbide, Rapp, Gale (2004)

- Final thermal photon spectrum: QGP and HG photon rates convoluted with space-time evolution of the reaction
- Very similar thermal photon rates for QGP and hadron gas at same temperature T

Measuring Direct Photons: Method Overview

- Calorimeter measurement with isolation and shower shape cuts
 - Works best in p+p and at high p_T
- Statistical subtraction method
 - Measure inclusive photon spectrum and subtract decay photons from hadrons
 - Inclusive photons can be measured directly with calorimeters or indirectly through conversions into e⁺e⁻ pairs
 - Decay photons come from simulations
- Tagging method
 - Remove decay photons by tagging decay photons, i.e. calculate if it can come from a decay

Direct Photon Measurement

Isolation Cut: The Idea

Isolated direct photons: Limit on transverse energy in a cone around the photon

Example of an Isolated Photon Measurement: CMS Experiment

Isolation Cut Requirements at CMS

$$R^2 = (\eta - \eta^\gamma)^2 + (\phi - \phi^\gamma)^2$$

- Photon candidates must satisfy three isolation requirements that reject photons produced in hadron decays
 - IsoTRK < 2 GeV/c in 0.04 < R < 0.40, excluding a rectangular strip of $\Delta \eta \times \Delta \Phi = 0.015$ 0.400 to remove the photon's own energy if it converts into an e+e-
 - IsoECAL < 4.2 GeV (transverse energy in ECAL in 0.06 < R < 0.40, excluding again a central region for the photon)
 - IsoHCAL < 2.2 GeV (transverse energy in HCAL)
- These conditions remove the bulk of the photons from neutral meson decays

Opening Angle of π^0 Decay Photons

• At high momenta, the opening angle gets so small that decay photons might be reconstructed as one cluster on the calorimeter

Signal Extraction

 Calculate shower width, use towers in a 5x5 window around highest energy tower

- Isolated photon yields extracted by fitting signal + background templates to measured shower width distribution
- Signal template from MC (Pythia + Geant)
- Background template determined in data-driven way

CMS Collaboration

Statistical Subtraction

Measurement of Direct Photons with the Subtraction Method

- Get clean inclusive photon sample
 - Understand detector effects, calibrations, geometry
 - Subtract non photons
- Measure p_T spectrum of π^0 and η mesons with high accuracy
- Calculate number of decay photons per π^0
 - Done with Monte-Carlo
 - m_{T} scaling for $(\eta), \eta', \omega, ...$
- Finally:

Subtract decay background from inclusive photon spectrum

Pocket formula:

$$\frac{1}{p_{T}} \frac{dN_{\pi^{0}}}{dp_{T}} \approx 1/p_{T}^{n}$$

$$\Rightarrow \frac{\gamma_{\pi^{0}}^{decay}}{\pi^{0}} = \frac{2}{n-1} \approx 0.28 \text{ at RHIC}$$

 $\gamma_{\rm direct} = \gamma_{\rm inclusive} - \gamma_{\rm decay}$

PHENIX: Photon and Electron Detectors

Pseudorapidity coverage : $|\eta| < 0.35$

 EMCal: PbSc (6 sectors) + PbGI (2 sectors)

PbSc :

- Highly segmented lead scintillator sampling calorimeter
- Module size:
 5.5 cm x 5.5 cm x 37 cm
- PbGI:
 - Highly segmented lead glass Cherenkov calorimeter
 - Module size:
 4.0 cm x 4.0 cm x 40 cm
- Ring Imaging Cherenkov Detector (RICH):
 - Electron identification (together with E/p matching in EMCal)
 - No signal for charged pions with p < 4.6 GeV/c

Direct Photons: Statistical Subtraction Method

$$\pi^{0} \rightarrow \gamma + \gamma, \ \eta \rightarrow \gamma + \gamma, \dots$$

$$\gamma_{\text{direct}} = \gamma_{\text{inclusive}} - \gamma_{\text{backgr}} = \left(1 - \frac{\gamma_{\text{backgr}}/\pi^{0}}{\gamma_{\text{inclusive}}/\pi^{0}}\right) \cdot \gamma_{\text{inclusive}}$$

$$= \left(1 - 1/R\right) \cdot \gamma_{\text{inclusive}}$$
with
$$R = \frac{\gamma_{\text{inclusive}}}{\gamma_{\text{backgr}}} = 1 + \frac{\gamma_{\text{direct}}}{\gamma_{\text{backgr}}} \equiv \frac{\gamma_{\text{inclusive}}/\pi^{0}}{(\gamma_{\text{backgr}}/\pi^{0})_{\text{calc}}}$$

$$Systematic \text{ errors}$$
(e.g. energy scale non-linearity)
(includes ω, η^{*}, \dots decays)
partially cancel in this rational equation of the sector of th

Decay Photon Calculation

- Simple Monte Carlo code
- Pure kinematics (no detector simulation needed)
- ~96% of the background photons from π⁰ and η decays
- Simulation based on measured π^0 input spectra
- Decay photons from other mesons are based on m_{T} scaling to the π^{0} spectrum

Background Photons from $K_s^0 \rightarrow \pi^0 + \pi^0$

Probability to miss a π^0 from $K_s^0 \rightarrow \pi^0 + \pi^0$ in the π^0 reconstruction due to displaced decay vertex

Formula for Fully Corrected Inclusive Photon Spectrum

Charged Background: X_{ch}

- At low p_T, mostly hadrons that are reconstructed in the calorimeter
- $X_{ch} > 0$ at high p_T largely due to photon conversion
- Artificial decay photon-charged hit (PC3) correlations at high p_T:

Neutral Background: X_{nn}

- Background from neutrons and antineutrons needs to be simulated (GEANT for detector response to neutrons)
- Input neutron and anti-neutron spectra not measured, but "determined" from measured proton and anti-proton spectra

$$\begin{aligned} \frac{\mathrm{d}^2 N}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y}\Big|_{\bar{\mathrm{n}}} &= \left. \frac{\mathrm{d}^2 N}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y} \right|_{\bar{\mathrm{p}}}, \\ \frac{\mathrm{d}^2 N}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y}\Big|_{\mathrm{n}} &= \left. \frac{\mathrm{d}^2 N}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y} \right|_{\bar{\mathrm{p}}} + \left(\left. \frac{\mathrm{d}^2 N}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y} \right|_{\mathrm{p}} - \left. \frac{\mathrm{d}^2 N}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y} \right|_{\bar{\mathrm{p}}} \right) \frac{A - Z}{Z} \end{aligned}$$

The γ/π^0 ratio

Result: Double Ratio

Multiply Inclusive Photon Spectrum by the double ratio to obtain directphoton spectrum (and add systematic uncertainties of the inclusive photon spectrum which cancelled in the double ratio)

Systematic Uncertainties of the Subtraction Method

- π^0 measurement
 - Peak extraction
 - Yield correction (acceptance + efficiency)
 - Energy scale
- Inclusive photon measurement
 - Non-photon background
 - Yield correction (acceptance + efficiency)
 - Energy scale

Many systematic uncertainties of π^0 and photon measurements are highly correlated!

Non-linearity in the EM calorimeter is also crucial. It is vital, for instance, that two 3 GeV photons have the identical response as one 6 GeV photon.

Systematic Uncertainties (Example: PHENIX, Run-2 Au+Au)

	PbGl		PbSc	
π^0 error source	$3.25{ m GeV}/c$	$8.5{\rm GeV}/c$	$3.25{ m GeV}/c$	$8.5{\rm GeV}/c$
Yield extraction	8.7%	7%	9.8%	7.2%
Yield correction	12%	12%	12%	13.3%
Energy scale	13.8%	14.1%	10.5%	11.4%
Total systematic	20.3%	19.5%	18.8%	19%
Statistical	10.6%	32.5%	3%	13.1%
γ error source			Treaties whe	
Non- γ correction	2.4%	2.4%	neasuments as	s independent
Yield correction	10.2%	12.0%	would yield a 28% systemat	
Energy scale	15.7%	13.7%		: y for γ/π ⁰
Total systematic	18.9%	18.4%	16.5%	16.7%
Statistical	1.2%	14.1%	0.7%	7.9%
γ/π^0 syst.	10.4%	10.4%	10.6%	10.6%
γ/π^0 stat.	10.7%	37.7%	3%	16.5%

PHENIX, Phys.Rev.Lett.94:232301,2005

Internal Conversion

Direct Photons via Internal Conversion

• Motivation:

Measure in low p_T region where thermal photons are expected and calorimetric measurements are difficult

- Internal conversion
 - Any source of real photons also emits virtual photons
 - Well known example: π⁰ Dalitz decay

- Rate and mee distribution calculable in QED (Kroll-Wada formula)
- Hadron decays: mee < Mhadron
- Essentially no such limit for point-like processes, such as direct photons

Improve signal-to-background ratio by measuring e+e- pairs with m_{ee} > ~ M_{pion}

Kroll-Wada Formula

Extraction of the Direct Photon Signal: Two-Component Fit

- Interpret deviation from hadronic cocktail (π, η, ω, η', φ) as signal from virtual direct photons
- Extract direct photon fraction r with twocomponent fit

$$r = \left. rac{\gamma^*_{ ext{direct}}}{\gamma^*_{ ext{inclusive}}}
ight|_{ ext{mee} < 30 \, ext{MeV}}$$

 Fit yields good χ2/NDF (13.8 / 10)

External Conversion

External Conversion: The Idea

- Use γ→e⁺e⁻ conversion (pair production) and get photon properties (energy, momentum) from pair
- Use of tracking detectors for electron reconstruction allows better energy resolution
- Experiments use different methods for finding converted photons, depending on their detector capabilities
- ALICE: use displaced vertices
 - Tracking detectors find displaced vertex of e⁺e⁻ pairs, pair is reconstructed as photon
- PHENIX: alternate track model
 - Look for e⁺e⁻ pairs from conversion plane, then reconstruct photon properties for these pairs

ALICE: Measuring Photons via Conversions

ALICE: photon conversion probability ~ 8% up to the middle of the TPC

Advantage of the conversion method: Better resolution and higher purity of the photon sample at low p_T

PHENIX: The Alternate Track Model

- Photon conversions of interest originate from the HBD shell ($r \approx 60$ cm)
 - Reconstruction assumes event vertex as origin
 - Can exploit this misreconstruction
 - Can correct for this with an alternate track model assumption

Direct Photons - A Short Introduction: Part II

Baldo Sahlmüller, IKF Uni Frankfurt

Lecture Week of the Helmholtz Research School for Quark Matter Studies in Heavy Ion Collisions

November 4-9, 2012, Burg Ebernburg, Germany

Results

Reminder I: Isolation Method

- Photons from hard scattering are "isolated", i.e. not surrounded by other particles
- To remove merging decay photons from high $p_T \ \pi^0 s,$ apply shower shape cuts

Reminder 2: Statistical Subtraction

- Difficult (or impossible) to remove decay photons on an event-by-event basis, therefore do a statistical subtraction with all available data
- $\gamma_{direct} = \gamma_{inclusive} \gamma_{decay}$
- For inclusive photons, remove PHENIX contribution from hadrons and electrons, correct for detector effects
- Decay photons from simulation based on measured meson (π^0) spectra
- To minimize systematic uncertainties, use double ratio for subtraction, systematics between π⁰ and inclusive with γ measurement partly correlated

$$\gamma_{\text{direct}} = \gamma_{\text{inclusive}} - \gamma_{\text{backgr}} = \left(1 - \frac{\gamma_{\text{backgr}}/\pi^0}{\gamma_{\text{inclusive}}/\pi^0}\right) \cdot \gamma_{\text{inclusive}}$$

$$= (1 - 1/R) \cdot \gamma_{\text{inclusive}}$$

$$R = \frac{\gamma_{\text{inclusive}}}{\gamma_{\text{backgr}}} = 1 + \frac{\gamma_{\text{direct}}}{\gamma_{\text{backgr}}} \equiv \frac{(\gamma_{\text{inclusive}}/\pi^0)_{\text{meas}}}{(\gamma_{\text{backgr}}/\pi^0)_{\text{calc}}}$$

Reminder 3: Internal Conversion

- Each source of real photons also emits virtual photons that decay into e⁺e⁻ pair
- Invariant mass shape described by Kroll-Wada forumula
- Measured dielectron spectrum fit with function composed of cocktail and direct photon shape (from Kroll-Wada)
- Fraction of direct photons and inclusive photons from fit:

$$r = \frac{\gamma^*_{\text{direct}}}{\gamma^*_{\text{inclusive}}}\Big|_{\text{m}_{ee} < 30 \, \text{MeV}}$$

Kroll-Wada-Formula

p+p(p bar) Direct Photon Data and pQCD – Status as of ~ 2006 (I)

- Decent agreement at large \sqrt{s}
- Substantial deviations between data and NLO pQCD at small √s
- Questions:
 - Is there a systematic pattern of deviation?
 - If so, can the introduction of additional transverse momentum (k_T) of initial partons improve the agreement?
 - Are the data sets mutually consistent?

Is k_{τ} Broadening Needed to Describe Direct Photon Data?

E706, Phys.Rev.D70:092009,2004 • Data from E706 fixed target experiment can be explained with $\langle k_T \rangle \approx 1.3 \text{ GeV}/c$

Is there evidence for k_T broadening in p+p at larger √s ?

p+p(p bar) Direct Photon Data and pQCD – Status as of ~ 2006 (II)

Direct Photons in p+p at 200 GeV

- Analysis includes a TOF cut to remove contamination from cosmics at very high p_T
- Data compared to pQCD calculation at three different scales
- Good agreement between theory and data over whole p_T range
- pQCD dominated by directly produced photons (in contrast to fragmentation photons) at high p_T

A more detailed look

- Higher precision PHENIX data at low p_T available
 - using internal conversion method
- pQCD calculations depend on fragmentation component
 - Data can further constrain fragmentation functions
- χ^2 test of available FF against data
 - high p_T part as control region
- Data favor BFG II FF

Adding an Isolation Criterium

- Applying isolation cut to photon candidates: most photons are isolated (~90% at high p_T)
- Theoretical calculations agree with the data, low p_T photons have larger fragmentation component

Isolated Photon Spectrum in p+p at 7 TeV (CMS)

- The photon reconstruction and selection efficiencies are determined from PYTHIA: ε = 0.916 ± 0.034 (rather independent of photon energy)
- Spectrum corrected for finite energy resolution

Isolated Photons in p+p at 7 TeV: Agreement with NLO pQCD

P.Aurenche et al., Eur. Phys. J. C 13 (2000) 347 (<u>http://lapth.in2p3.fr/PHOX_FAMILY</u>).

A New "Complete" Picture

- p+p (p bar) plotted vs. x_T
- Data scaled with empirical $(\sqrt{s})^n$ with n=4.5
- Pure vector gluon exchange: n=4 as in Rutherford scattering
- However, scale breaking effects in QCD, they empirically taken into account for by assuming n-4 = 0.5
- All data are on one universal curve

QCD works

Direct Photon Search in p+p at LHC at Low pT: Is It Possible?

Possible signal much smaller than systematic errors

Results in A+A

Early CERN SPS Results: Upper Limits

on γ _{direct} / γ _{background}					
Experiment	p	System	Upper limit		
HELIOS 2	0.1 – 1.5	p-W, O-W, S-W	13%		
WA80	0.4 – 2.8	O-Au	15%		
CERES	0.4 – 2.0	S-Au	14%		
WA80	0.5 – 2.5	S-Au	12.5%		

1. Z.Phys.C46:369-376,1990

2. Z.Phys.C51:1-10,1991

3. Z.Phys.C71:571-578,1996

4. Phys.Rev.Lett.76:3506-3509,1996

Early fixed target experiments at the CERN SPS only gave upper limits

Photons as SPS:WA98 Experiment

WA98 Result on Direct Photons

- No signal within errors in peripheral collisions
- 20% direct photon excess at high pT in central Pb+Pb collisions at CERN SPS

WA98 Direct Photon Spectrum: Hard Scattering + Nuclear k_T Broadening ?

- Better p+p and p+A measurement desirable
- Very unlikely that Pb+Pb spectrum is just hard scattering

Cronin-effect: Multiple soft scattering in p+A prior to hard scattering ("nuclear k_{T} ")

Interpretation of the WA98 Data

Interplay between T ad k_T , contribution from QGP small

Direct Photons at CERN SPS: T or k_T ?

- QGP + HG rates convoluted with simple fireball model plus pQCD hard photons
- Data described with initial temperature T_i = 205 MeV
 + some nuclear k_T broadening (Cronin-effect)
- Data also described without k_T broadening but with high initial temperature $(T_i = 270 \text{ MeV})$

WA98: New Iow-p_T Points

- Two-photon correlations observed and attributed to Bose-Einstein correlations of direct photons
- Correlation strength used to extract direct photon signal at low p_T
- Possible explanation: photon bremsstrahlung from hot hadron gas (Lui, Rapp, nucl-th/0604031)

Direct Photons at CERN SPS: Conclusions

Data can be described under a variety of different assumptions, e.g.:

Turbide, Rapp, Gale	QGP + HG + pQCD with	Τ τ ₀
(Phys.Rev.C69:014903,2004)	QGP + HG + pQCD without	Τ _i τ ₀
Renk (Phys.Rev.C67:064901,2003)	QGP + HG + _P QCD	250 < 0,5 <
Svrivastava (nucl-th/0411041)	QGP + HG + pQCC (Bjorken hydro)	Τ τ ₀
Huovinen, Ruuskanen, Räsänen	QGP + HG + pQCD (Non-boost inv. hydro)	T _i
(Nucl. Phys. A 650 (227) 1999)	Pure HG + pQCD (Non-boost inv. hydro)	T _i

- Data consistent with QGP picture, but also with pure HG picture
- Large variations in extracted initial temperature T_i (however, most models give $T_i > T_c$)
Reminder: PHENIX detector

Direct-Photon Spectra in Au+Au

Au+Au at $\sqrt{s_{NN}}$ = 200 GeV (RHIC run 2)

No indication of nuclear effects

Centrality Dependence of the Direct Photon and $\pi^0 R_{AA}$ in Au+Au Collisions at 200 GeV

Direct photons follow T_{AB} scaling

Hadron Suppression: A Final State Effect!

Hadrons are suppressed, but direct photons are not: Evidence for parton energy loss (as expected in the QGP)

pQCD: Bremsstrahlung/Fragmentation Component

- Bremsstrahlung/fragmentation contribution large
- Suppression of bremsstrahlung/fragmentation contribution expected in A+A

Effect of Parton Energy Loss

- 20-30% reduction of direct photon R_{AA} expected due to parton energy loss
- Consistent with PHENIX data

The Puzzle of the Preliminary Direct Photon R_{AA} at high p_T (PHENIX, Run 4 Au+Au data)

Interpretation of the Direct-Photon Spectrum at RHIC ($p_T > 4 \text{ GeV/c}$) (I)

Indication for relevance of photons from jet-plasma interactions for $p_T < 6 \text{ GeV}/c$?

Interpretation of the Direct-Photon Spectrum at RHIC ($p_T > 4 \text{ GeV/c}$) (II)

Interpretation of the Direct-Photon Spectrum at RHIC ($p_T > 4 \text{ GeV/c}$) (III)

And Now: The Final Results

Looks like statistical fluctuations,

The effects from the QGP appear to cancel

γ-Triggered Away-Side Correlations: Basic Idea

• p+p:

(Effective) jet fragmentation functions can be extracted from γ hadron azimuthal correlations (modulo initial k_T effect)

• A+A:

Modification of fragmentation function provides information on parton energy loss

• Variables:

$$z_T = \frac{p_T^n}{p_T^{\gamma}}$$

$$D(z_T) = \frac{1}{N_{\text{trig}}} \frac{dN(z_T)}{dz_T}$$

γ-Triggered Away-side Correlations: Jet Fragmentation Function in p+p and Au+Au

• Fit effective FF's with

$$\frac{\mathrm{d}N}{\mathrm{d}z_T} = Ne^{-bz_T}$$

- $p+p: b = 6.89 \pm 0.64$
- Au+Au: $b = 9.49 \pm 1.37$
- Difference reflects influence of the medium

γ-Triggered Away-side Correlations: Results

$$I_{AA} = D_{AA}(z_T) / D_{pp}(z_T)$$

- Different z_T regions
 probe different regions
 of the fireball
 (arXiv:0902.4000vl)
- Agreement with NLO pQCD + parton energy loss: Indication that energy loss in different regions of the fireball is understood

NLO calculation: Zhang et al. (ZOWW), arXiv:0902.4000v1

Thermal Region

Direct Photon Fraction in p+p and Au+Au at $\sqrt{s_{NN}} = 200$ GeV

- Lowest p_T ever measured in p+p
- Comparison to NLO pQCD (colored lines)
- p+p: Agreement
- Au+Au:
 - Strong enhancement at low $p_{\rm T}$

Is it Initial State?

- Use d+Au collisions
- Same method: no significant low pT enhancement in such collisions
- Hints strongly that enhancement is final state effect in Au+Au

Comparison Between the Internal Conversion Method and the Calorimeter Measurement

Low p_T Direct Photon Excess at RHIC: A Handle to Measure the Temperature of the QGP

• p+p: spectrum described with $f_{p+p}(p_T) = A \cdot (1 + p_T^2 / b)^{-n}$

• Au+Au:

Enhancement above p+p described by an exponential (as expected for a thermal source)

$$f_{Au+Au}(p_T) = \frac{N_{\text{coll}}}{\sigma_{\text{NN}}^{\text{inel}}} \times f_{p+p}(p_T) + B \times e^{-\frac{p_T}{T}}$$

Slope parameter (0-20%):
 T = (221 ± 23 ± 18) MeV

Historically expected to be a lower limit for the initial temperature!

Critical d+Au Check: No exponential excess in d +Au

Model Comparison

Similar conclusions for essentially all hydro models on the market

- Model space-time evolution with ideal hydro
- This calculation (arXiv:0904.2184v1)
 - Hydro starts early $(\tau_0 = 0.2 \text{ fm/}c)$ to take preequilibrium photons into account
 - Thermal equilibrium expected at $\tau_0 = 0.6$ fm/*c* ($T_{initial} = 340$ MeV)
 - Photons from jet-plasma interaction needed

T_{initial} > T_c ≈ 170 - 190 MeV
 → evidence for the formation of a quark-gluon plasma

PHENIX Low p_{τ} Direct Photon Data: Comparison with Different Hydro Models

Initial temperature above T_c in all models

Thermal Photons at the LHC

- ALICE measurement through external conversion also done in Pb+Pb collisions
 - Remember: no significant excess in p+p collisions
 - Same in peripheral Pb+Pb: no significant direct γ signal
- In central Pb+Pb, ALICE observes significant direct photon signal
 - At low pT, signal is also significantly above NLO!
 - There appear to be additional (thermal) photons

Direct Photon Spectrum at the LHC

- With the double ratio, direct photon spectrum is calculated, here for central Pb+Pb
- At low pT, the measured spectrum is significantly above NLO calculation
- Use exponential fit to extract slope T from the spectrum:

 $f(p_T) = A \times exp(-p_T/T)$ (same fit as used by PHENIX)

Slope parameter from exponential fit: T = 304 ± 51 MeV

compare RHIC: $T = 221 \pm 23 \pm 18$ MeV

➡ T(LHC) > T(RHIC)

How Robust is the Thermal Interpretation?

- pQCD has uncertainties
- Study effect of uncertainties on slope parameter T
 - Subtract pQCD "background" from thermal signal, including theory uncertainty
 - Fit remaining thermal photon spectrum
- T parameter is very similar to ALICE fit (depending on the BFG set and fit range)
- Thermal signal remains!

Direct Photon Flow

Direct photon v_2 further constrains T_i

Significant Elliptic Flow of Direct Photons Found in Au+Au at 200 GeV for $p_T < 3$ GeV/c

Direct Photon v_2 at $p_T = 2$ GeV/c as large as for Pions

Theory Comparison: A Big Puzzle (!?)

Hendrik van Hees, Charles Gale, Ralf Rapp, Phys.Rev. C84 (2011) 054906

Slope of low p_T direct photons spectrum points to early emission, v₂ suggests late emission from mixed/hadronic phase

Cross Checks: External Conversion

- High direct photon v2 is an unexpected result
 - Is there a cross check?
 - Use different method: external conversion with alternate track model
- First thing to compare: R_{γ}
 - R_Y is necessary to calculate v₂
- R_Y is the same, systematic uncertainties are different

Compare v₂ for Different Methods

- PHENIX v₂ result is confirmed by the external conversion method
- Both internal and external cross checks are important in experiments!

LHC Enters the Game

- ALICE measured v2 of direct photons
- Similar size as in PHENIX
 - large systematic uncertainties
- \bullet Uncertainties driven by uncertainty on R_{γ}

 This measurement seems to support the "Direct Photon Puzzle"

Recent Developments?

- Direct photon v_2 and excess still not understood
- Are the measurements wrong? We hope not, but there are more and more cross checks coming
- What is missing in theoretical description?
 - Blue shift? Additional v_2 from interaction with hadrons? Anything else?
 - Ask your favourite theorist
- to be continued ...

Thank You!