Electromagnetic Probes Dileptons – Experiments

– Torsten Dahms – Excellence Cluster Universe - TU München

H-QM Helmholtz Research School – Lecture Week March 31st – April 4th, 2013

Technische Universität München

Introduction

The History of the Universe

Phases of Matter

Phases of QCD Matter

- Phase transition at $T_c = 170 \text{ MeV}$
 - ▶ 1 MeV ~ 10^{10} K → T_c = 2×10¹² K
- Centre of the sun: 2×10⁷ K
- The QGP is more than 100 000 times hotter than the centre of the sun

Creating the QGP: Heavy Ion Collisions

- Quark-gluon plasma (QGP) existed in the early universe:
 - conditions: extremely hot and high energy density
- To (re)create a QGP:
 - put a lot of nucleons with high energy in a small space
 - → Heavy-Ion Collisions at ultra-relativistic energies

How to Probe the Structure of Matter?

- Rutherford experiment:
 - $\alpha \rightarrow$ atom: discovery of the nucleus
 - elastic collisions
- SLAC electron scattering:
 - $e \rightarrow$ proton: discovery of quarks
 - inelastic collisions

Rutherford Experiment on a QGP?

Rutherford Experiment on a QGP?

How to Probe the QGP?

hadronic matter

Has to be well understood in pp collisions

• Effect of hadronic matter has to be understood and accounted for

 Has to be strongly affected by the QGP

- Create the probes as part of the collision
- Create probes before the QGP forms
- Control probes not affected by the QGP to calibrate measurements
- Collisions without QGP to test cold nuclear matter effects
 - pp collisions, p-nucleus collisions, light-ion collisions

control probes (γ, W^{\pm}, Z)

- Create the probes as part of the collision
- Create probes before the QGP forms
- Control probes not affected by the QGP to calibrate measurements
- Collisions without QGP to test cold nuclear matter effects
 - pp collisions, p-nucleus collisions, light-ion collisions

control probesdensity \Leftrightarrow energy loss (γ, W^{\pm}, Z) (hadrons, jets, open heavy flavour)

- Create the probes as part of the collision
- Create probes before the QGP forms
- Control probes not affected by the QGP to calibrate measurements
- Collisions without QGP to test cold nuclear matter effects
 - pp collisions, p-nucleus collisions, light-ion collisions

- Create the probes as part of the collision
- Create probes before the QGP forms
- Control probes not affected by the QGP to calibrate measurements
- Collisions without QGP to test cold nuclear matter effects
 - > pp collisions, p-nucleus collisions, light-ion collisions

The Mass of Composite Systems

Atom: 10⁻¹⁰ m

Nucleus: 10⁻¹⁴ m

Nucleon: 10^{-15} m

 $M \approx \Sigma m_i$ binding energy effect $\approx 10^{-8}$

 $M \approx \Sigma m_i$ binding energy effect $\approx 10^{-3}$

- Role of chiral symmetry breaking
 - Chiral symmetry = fundamental symmetry of QCD for massless quarks
 - Chiral symmetry broken on hadron level

 $M \gg \Sigma m_i$ mass given by energy stored in motion of quarks and by energy in colour gluon fields

Chirality

- Chirality (from the greek word for hand: "χειρ")
 - when an object differs from its mirror image
- Simplification of chirality: helicity (projection of a particle's spin on its momentum direction)
- Massive particles P
 - Ieft and right handed components must exist
 - m > 0 particle moves with v < c</p>
 - P looks left handed in the laboratory
 - P will look right handed in a rest frame moving faster than P but in the same direction
 - chirality is NOT a conserved quantity
- In a massless world
 - chirality is conserved
 - careful: m = 0 is a sufficient but not a necessary condition

QCD and Chiral Symmetry Breaking

• The QCD Lagrangian:

$$\mathcal{L}_{QCD} = \bar{q}(i\gamma^{\mu}D_{\mu} - \mathcal{M}_{q})q - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu}_{a} \quad , \qquad D_{\mu} = \partial_{\mu} + ig_{s}\frac{\lambda_{a}}{2}A^{a}_{\mu} \; ,$$

- Explicit chiral symmetry breaking
 - mass term $\overline{q} M_q q$ in the QCD Lagrangian
- Chiral limit: $m_u = m_d = m_s = 0$
 - chirality would be conserved
 - all states have a 'chiral partner' (opposite parity and equal mass)
- Real life
 - a_1 (J^P=1⁺) is chiral partner of ρ (J^P=1⁻): $\Delta m \approx 500$ MeV
 - even worse for the nucleon: $N^{*}(\frac{1}{2})$ and $N(\frac{1}{2})$: $\Delta m \approx 600 \text{ MeV}$
 - (small) current quark masses do not explain this
- Chiral symmetry is also spontaneously broken
 - spontaneously = dynamically

The Origin of Mass

- Current quark mass
 - generated by spontaneous symmetry breaking (Higgs mass)
 - contributes ~5% to the visible (our) mass
- Constituent quark mass
 - ~95% generated by spontaneous chiral symmetry breaking (QCD mass)

Chiral Symmetry Restoration

- Spontaneous symmetry breaking gives rise to a nonzero 'order parameter'
 - QCD: quark condensate $<\overline{q}q> \approx -250 \text{ MeV}^3$
 - many models (!): hadron mass and quark condensate are linked
- Numerical QCD calculations
 - at high temperature and/or high baryon density
 - \rightarrow deconfinement and $\langle \overline{q}q \rangle \rightarrow 0$
 - ▶ approximate chiral symmetry restoration (CSR)
 → constituent mass approaches current mass
- Chiral Symmetry Restoration
 - expect modification of hadron spectral properties (mass m, width Γ)
- QCD Lagrangian → parity doublets are degenerate in mass

M (GeV) Chiral Phase Transition

Wuppertal-Budapest Collaboration, JHEP 09 (2010) 073

- Lattice QCD calculation
 - Predict chiral symmetry restoration already a T lower than deconfinement phase transitions

Chiral Symmetry Restoration (CSR)

Brown-Rho scaling

G. Brown & M. Rho, PRL (1991) 2720

$$\frac{\langle\!\langle \overline{\psi}\psi\rangle\!\rangle}{\langle \overline{\psi}\psi\rangle\!} = \left(\frac{f_{\pi}^*}{f_{\pi}}\right)^3 \quad \text{and} \quad \frac{f_{\pi}^*}{f_{\pi}} = \frac{m_{\sigma}^*}{m_{\sigma}} = \frac{m_N^*}{m_N} = \frac{m_{\rho}^*}{m_{\rho}} = \frac{m_{\omega}^*}{m_{\omega}}$$

Best Probes for CSR?

- Requirement: carry hadron spectral properties from (T, ρ_B) to detectors
 - relate to hadrons in medium
 - Ieave medium without final state interaction
- Dileptons from vector meson decays:

	m [MeV/c	Г	τ [fm/c]	BR→ee	
ρ	770	150	1.3	4.7×10	
ω	782	8.6	23	7.2×10	e e
φ	1020	4.4	44	3.0×10	
 best car short deca proper 	ndidate: p meson i lived (compare to y (and regeneration erties of in-medium	vell known/	é P		

Dilepton production

• Emission rate of dileptons per volume

$$f^{B}(q_{0},T) = 1/(e^{q_{0}/T} - 1)$$

$$\frac{dR_{ll}}{d^{4}q} = -\frac{\alpha^{2}}{3\pi^{3}} \frac{L(M)}{M^{2}} \operatorname{Im}\Pi^{\mu}_{em,\mu}(M,q;T) f^{B}(q_{0},T) \qquad L(M) = \sqrt{1 - \frac{m_{l}^{2}}{M^{2}}} \left(1 + \frac{2m_{l}^{2}}{M^{2}}\right)$$

$$\gamma^{*} \rightarrow e^{+}e^{-} \quad \text{EM correlator} \quad \text{Boltzmann factor} \\ \text{decay} \quad \text{medium property temperature}$$

$$\begin{array}{c} \text{Hadronic contribution} \\ \text{Vector Meson Dominance} \longrightarrow \\ \text{Hadronic contribution} \\ \text{Vector Meson Dominance} \longrightarrow \\ \text{Im}\Pi^{\text{vac}}_{em}(M) = \begin{cases} \sum_{V=\rho,\omega,\phi} \left(\frac{m_{V}^{2}}{g_{V}}\right) \operatorname{Im}D_{V}(M) \\ -\frac{M^{2}}{12\pi} \left(1 + \frac{\alpha_{s}(M)}{\pi} + \dots\right) N_{c} \sum_{q=u,d,s}(e_{q}^{2}) \\ q\bar{q} \text{ annihilation} \longrightarrow \end{array}$$

$$\begin{array}{c} \text{Medium modification of meson} \\ \text{Chiral restoration} \\ \pi^{+} \longrightarrow \rho \quad \gamma^{*} \quad e^{-} \\ q \quad \gamma^{*} \quad e^{-} \\ q \quad \gamma^{*} \quad e^{-} \end{array}$$

Thermal radiation from partonic phase (QGP)

- From emission rate of dileptons one can decode
 - medium effect on the EM correlator
 - temperature of the medium

Properties of the QGP

- What is its temperature?
 - measure thermal photons
- Does it restore chiral symmetry?
 - modification of the vector mesons
- How does it affect heavy quarks?
 - modification of the intermediate mass region
- All these questions can be answered by measuring dileptons (e⁺e⁻ or μ⁺μ⁻)
 - no strong final state interactions:
 - leave collision system unperturbed
 - emitted at all stages: need to disentangle contributions

Properties of the QGP

- What is its temperature?
 - measure thermal photons
- Does it restore chiral symmetry?
 - modification of the vector mesons
- How does it affect heavy quarks?
 - modification of the intermediate mass region
- All these questions can be answered by measuring dileptons (e⁺e⁻ or μ⁺μ⁻)
 - no strong final state interactions:
 - leave collision system unperturbed
 - emitted at all stages: need to disentangle contributions

Dilepton Signals: p_T vs. mass

- LMR: m_{ee} < 1.2 GeV/c²
 - ► LMR I (p_T » mee)
 - quasi-real virtual photon region. Low mass pairs produced by higher order QED correction to the real photon emission
 - LMR II (p_T < 1 GeV) Enhancement of dileptons discovered at SPS (CERES, NA60)

- Low Mass Region: $m_{ee} < 1.2 \text{ GeV/c}^2$
 - Dalitz decays of pseudo-scalar mesons
 - Direct decays of vector mesons
 - In-medium decay of p mesons in the hadronic gas phase
- Intermediate Mass Region:1.2 < m_{ee} < 2.9 GeV/c²
 - correlated semi-leptonic decays of charm quark pairs
 - Dileptons from the QGP
- High Mass Region: mee > 2.9 GeV/c²
 - Dileptons from hard processes
 - Drell-Yan process
 - correlated semi-leptonic decays of heavy quark pairs
 - Charmonium
 - Upsilon
 - HMR probe the initial stage
 - Little contribution from thermal radiation

HIN Low-mass Dilepton Experiments

• Time scale of experiments

• Energy scale of experiments

The SPS at CERN

- SuperProtonSynchrotron (since 1976)
 - Parameters:
 - circumference: 6.9 km
 - beams for fixed target experiments
 - » protons up to 450 GeV/c
 - » lead ions up to 158 GeV/c
 - Past:
 - SppS proton-antiproton collider
 → discovery of vector bosons W[±], Z
 - Now:
 - injector for LHC
 - Experiments:
 - Switzerland: west area (WA)
 - France: north area (NA)
 → dileptons speak french!

Dilepton Experiments at the SPS

Experiment	Channel	System	Mass range	Publications
HELIOS (NA34)	µµ∕ee	p-Be (86)	low mass	Z. Phys. C68 (1995) 64
HELIOS-3 (NA34/3)	μμ	p-W, S-W (92)	low & intermediate	E. Phys. J. C13 (2000) 433
CERES (NA45)	ee	p-Be, p-Au, S-Au (92/93) Pb-Au (95) Pb-Au (96)	low mass	PRL (1995) 1272 Phys. Lett. B (1998) 405 Nucl. Phys. A661 (1999) 23
CERES-2 (NA45/2)	ee	Pb-Au 40 GeV (99) Pb-Au 158 GeV (2000)	low mass	PRL 91 (2002) 42301 preliminary data 2004
NA38/50	μμ	p-A, S-Cu, S-U, Pb-Pb	low (high m intermediate	E. Phys. J. C13 (2000) 69 E. Phys. J. C14 (2000) 443
NA60	μμ	p-A, In-In (2002,2003) p-A (2004)	low & intermediate	PRL 96 (2006) 162302

The CERES/NA45 Experiment

Experimental Setup: CERES-1

Electron Identification: RICH

- Main tool for electron ID
- Use the number of hits per ring (and and double rings

nise single

Dielectron Analysis Strategy

e⁺e⁻ in p-Be & p-Au collisions

- Dielectron mass spectra and expectation from a 'cocktail' of known sources
 - Dalitz decays of neutral mesons ($\pi^0 \rightarrow \gamma e^+e^-$ and η , ω , η' , φ)
 - Dielectron decays of vector mesons (ρ , ω , $\phi \rightarrow e^+e^-$)
 - Semileptonic decays of particles carrying charm quarks

Dielectron production in p-p and p-A collisions at SPS well understood in terms of known hadronic sources

What About Heavy-Ion Collisions?

- Discovery of low mass e⁺e⁻ enhancement in 1995
 - Significant excess in S-Au (factor ~5 for m>200 MeV)
As Heavy As It Gets: Pb-Au

CERES EPJ C41(2005)475

- Dielectron excess at low and intermediate masses in HI collisions is well established
 - Onset at ~2 m_π
 → π-π annihilation?
 - Maximum below p meson near 400 MeV/c²
- Hint for modified ρ meson in dense matter

π - π annihilation: theoretical approaches

- Low mass enhancement due to π-π annihilation?
 - Spectral shape dominated by ρ meson
- Vacuum ρ
 - Vacuum values of width and mass
- In-medium ρ
 - Brown-Rho scaling
 - Dropping masses as chiral symmetry is restored
 - Rapp-Wambach melting resonances
 - Collision broadening of spectral function
 - Only indirectly related to CSR
 - Medium modifications driven by baryon density
- Model space-time evolution of collision

Results from the SPS: CERES

- Attempt to attribute the observed excess to
 - vacuum ρ meson (-----)
 - inconsistent with data
 - overshoot in ρ region
 - undershoots @ low mass
 - modification p meson
 - needed to describe data
 - data do not distinguish between:
 - broadening or melting of ρ-meson (Rapp-Wambach)
- Indication for medium modifications, but data are not accurate enough to distinguish models

 Largest discrimination between ρ/ω and φ
 → need mass resolution!

$\mathsf{CERES-1} \rightarrow \mathsf{CERES-2}$

- Addition of a TPC to CERES
 - Improved momentum resolution
 - Improved mass resolution
 - dE/dx → hadron identification and improved electron ID
 - Inhomogeneous magnetic field
 → a nightmare to calibrate

radial drift TPC: momentum and energy loss

∆p/p=2%⊕1%*p/GeV ∆m/m = 3.8 % for φ

∆(dE/dx)/(dE/dx) = 10%

- CERES-1 results persists
 - strong enhancement in the low-mass region
 - enhancement factor (0.2 < m < 1.1 GeV/c2): 3.1 ± 0.3 (stat.)
- But the improvement in mass resolution is not outrageous
- Vacuum p not enough to reproduce the data
- in-medium modifications of ρ:
 - broadening p spectral shape (Rapp and Wambach)
 - dropping p meson mass (Brown et al.)

- CERES-1 results persists
 - strong enhancement in the low-mass region
 - enhancement factor (0.2 < m < 1.1 GeV/c2): 3.1 ± 0.3 (stat.)
- But the improvement in mass resolution is not outrageous
- Vacuum ρ not enough to reproduce the data
- in-medium modifications of ρ:
 - broadening p spectral shape (Rapp and Wambach)
 - dropping p meson mass (Brown et al.)

- CERES-1 results persists
 - strong enhancement in the low-mass region
 - enhancement factor (0.2 < m < 1.1 GeV/c2): 3.1 ± 0.3 (stat.)
- But the improvement in mass resolution is not outrageous
- Vacuum p not enough to reproduce the data
- in-medium modifications of ρ:
 - broadening p spectral shape (Rapp and Wambach)
 - dropping p meson mass (Brown et al.)

- CERES-1 results persists
 - strong enhancement in the low-mass region
 - enhancement factor (0.2 < m < 1.1 GeV/c2): 3.1 ± 0.3 (stat.)
- But the improvement in mass resolution is not outrageous
- Vacuum p not enough to reproduce the data
- in-medium modifications of ρ:
 - broadening p spectral shape (Rapp and Wambach)
 - dropping p meson mass (Brown et al.)

- CERES-1 results persists
 - strong enhancement in the low-mass region
 - enhancement factor (0.2 < m < 1.1 GeV/c2): 3.1 ± 0.3 (stat.)
- But the improvement in mass resolution is not outrageous
- Vacuum p not enough to reproduce the data
- in-medium modifications of ρ:
 - broadening p spectral shape (Rapp and Wambach)
 - dropping p meson mass (Brown et al.)

thermal radiation

 e⁺e⁻ yield calculated from
 qq annihilation in pQCD
 (B.Kämpfer et al.)

Centrality Dependence of Excess

- Naïve expectation: quadratic multiplicity dependence
 - Medium radiation proportional to particle density squared
- More realistic: smaller than quadratic increase
 - Density profile in transverse plane
 - Life time of reaction volume

Centrality Dependence of Excess

- Naïve expectation: quadratic multiplicity dependence
 - Medium radiation proportional to particle density squared
- More realistic: smaller than quadratic increase
 - Density profile in transverse plane
 - Life time of reaction volume

What Did We Learn From CERES?

- First systematic study of e⁺e⁻ production in elementary and HI collisions at SPS energies
 - p-p and p-A collisions are consistent with the expectation from known hadronic sources
 - A strong low-mass low-p⊤ enhancement is observed in HI collisions
- Consistent with in-medium modification of the ρ meson
- Data cannot distinguish between two scenarios
 - Dropping p mass as direct consequence of CSR
 - Collisional broadening of ρ in dense medium
- WHAT IS NEEDED FOR PROGRESS?
 - STATISTICS
 - MASS RESOLUTION

How to Overcome these limitations

- More statistics
 - ▶ Run forever → not an option
 - Higher interaction rate
 - Higher beam intensity
 - Thicker target
 - Needed to tolerate this
 - Extremely selective hardware trigger
 - Reduced sensitivity to secondary interactions, e.g. in target
 - Cannot be done with dielectrons as a probe, but dimuons are just fine!
- Better mass resolution
 - Stronger magnetic field
 - Detectors with better position resolution
 - Silicon tracker embedded in strong magnetic field!

The NA60 Experiment

- A huge absorber and muon spectrometer (and trigger)
- And a tiny, high resolution, radiation hard vertex spectrometer

Standard $\mu^+\mu^-$ detection: NA50

- Thick hadron absorber to reject hadronic background
- Trigger system based on fast detectors to select muon candidates (1 in 10⁴ PbPb collisions at SPS energy)
- Muon tracks reconstructed by a spectrometer (tracking detectors + magnetic field)
- Extrapolate muon tracks back to the target taking into account multiple scattering and energy loss, but ...
 - Poor reconstruction of interaction vertex ($\sigma_z \sim 10$ cm)
 - Poor mass resolution (80 MeV at the φ)

Standard $\mu^+\mu^-$ detection: NA50

- Thick hadron absorber to reject hadronic background
- Trigger system based on fast detectors to select muon candidates (1 in 10⁴ PbPb collisions at SPS energy)
- Muon tracks reconstructed by a spectrometer (tracking detectors + magnetic field)
- Extrapolate muon tracks back to the target taking into account multiple scattering and energy loss, but ...
 - Poor reconstruction of interaction vertex ($\sigma_z \sim 10$ cm)
 - Poor mass resolution (80 MeV at the φ)

Standard $\mu^+\mu^-$ detection: NA50

- Thick hadron absorber to reject hadronic background
- Trigger system based on fast detectors to select muon candidates (1 in 10⁴ PbPb collisions at SPS energy)
- Muon tracks reconstructed by a spectrometer (tracking detectors + magnetic field)
- Extrapolate muon tracks back to the target taking into account multiple scattering and energy loss, but ...
 - Poor reconstruction of interaction vertex ($\sigma_z \sim 10$ cm)
 - Poor mass resolution (80 MeV at the φ)

A step forward: the NA60 case

- Origin of muons can be determined accurately
- Improved dimuon mass resolution

The NA60 Pixel Vertex Spectrometer

Vertexing in NA60

• Good vertex identification with \geq 4 tracks

Extremely clean target identification (Log scale!)

Contributions to Mass Resolution

- Two components:
 - multiple scattering in the hadron absorber
 - dominant at low momentum
 - tracking accuracy
 - dominant at high momentum
- High mass dimuons (~3 GeV/c²)
 - absorber does not matter
- Low mass dimuons (~1 GeV/c²)
 - absorber is crucial
 - momentum measurement before the absorber promises huge improvement in mass resolution
- Track matching is critical for high resolution low mass dimuon measurements!

- To be most effective: the track matching has to be done in
 - position space
 - momentum space
- The pixel telescope has to be a spectrometer!

Improvement in Mass Resolution

 Opposite sign dimuon mass distribution before quality cuts and without muon track matching

Improvement in Mass Resolution

- Opposite sign dimuon mass distribution before quality cuts and without muon track matching
- Drastic improvement in mass resolution
- Still a large unphysical background

Event mixing: Same-sign Pairs

- Compare measured and mixed like-sign pairs
- Accuracy in NA60: ~1% over the full mass range

LMR in peripheral In-In Collisions

- Well described by meson decay 'cocktail': η, η', ρ, ω, φ and DD contributions (Genesis generator developed within CERES and adapted for dimuons by NA60)
- Similar cocktail describes NA60 p-Be, In, Pb 400 GeV data

Part II

LMR in min. bias In-In Collisions

- Improvements: •
 - Statistics
 - Resolution

ω

0.6

0.8

φ

1.2

1

M (GeV)

LMR in min. bias In-In Collisions

- Improvements:
 - Statistics
 - Resolution

Cocktail Subtraction

- How to nail down an unknown source?
 - Try to find excess above cocktail without fit constraints
- p: not subtracted/included in cocktail
- ω and φ:

fix yields such as to get, after subtraction, a smooth underlying continuum

η:
(▼) set upper limit, defined by
"saturating" the measured yield in
the mass region close to 0.2 GeV
(lower limit for excess)

(\triangle) use yield measured for $p_T > 1.4$ GeV/c

Cocktail Subtraction

- How to nail down an unknown source?
 - Try to find excess above cocktail without fit constraints
 - p: not subtracted/included in cocktail
- ω and φ :

fix yields such as to get, after subtraction, a smooth underlying continuum

n:
(▼) set upper limit, defined by
"saturating" the measured yield in
the mass region close to 0.2 GeV
(lower limit for excess)

(\triangle) use yield measured for $p_T > 1.4 \text{ GeV/c}$

Excess Yield vs. Centrality

- data cocktail (all p_T)
- No cocktail p and no DD subtracted
- Clear excess above the cocktail ρ, centred at the nominal ρ pole and rising with centrality
- Excess even more pronounced at low p_T

Model Comparison

- Rapp & Wambach:
 - hadronic model with strong broadening but no mass shift
- Brown & Rho:
 - dropping mass due to dropping chiral condensate
- Calculations for all scenarios in In-In for $dN_{ch}/d\eta = 140$ (Rapp et al.)
- Spectral functions after acceptance filtering, averaged over space-time and momenta
- Keeping original normalization
- Data consistent with broadening of ρ (RW), mass shift (BR) not needed

Hadron-Parton Duality

- Dominant at high M:
 - Hadronic processes
 - 4π ...

- Dominant at high M:
 - Partonic processes
 - Mainly $q-\overline{q}$ annihilation

Intermediate Mass Region (IMR)

- NA50: excess observed in IMR in central Pb-Pb collisions
 - Charm enhancement?
 - Thermal radiation?
- Answering this question was one of the main motivations for building NA60

How well does it work?

- Measure for vertex displacement
 - primary vertex resolution
 - momentum dependence of secondary vertex resolutions
 - "dimuon weighted offset"
- Charm decays (D mesons) → displaced
- $J/\psi \rightarrow \text{prompt}$
- Vertex tracking under control!

IMR excess: charm enhancement?

- Approach:
 - fix the prompt contribution to the expected Drell-Yan yield
 - check whether the offset distribution is consistent with charm

• Charm cannot describe the small offset region!

How many prompt pairs are needed?

- Approach:
 - fit offset distribution with both charm and prompt contributions as free parameters
- Prompt component:
 - ~2.3 times larger than Drell-Yan contribution
- Charm component:
 - ~70% of the yield extrapolated from NA50's p-A data

Decomposition of Mass Spectrum

- IMR: 1.16 < M < 2.56 GeV/c² (between ϕ and J/ ψ)
- Definition of excess:
 - excess = signal [Drell-Yan (1.0 ± 0.1) + Charm (0.7 ± 0.15)]

More detailed look at p_T dependence

- Investigate excess in different mass regions as function of m_T
 - fit with exponential function (shown for IMR)
- extract T_{eff} slope parameter 1/m_dN/dm_ 10₀ M (GeV) T (MeV) 1.16 - 1.40 199+21+3 1.40 - 2.0 193±16±2 $m_T = \sqrt{p_T^2 + M^2}$ 2.0 - 2.56 171±23±3 10⁴ $\frac{dN}{m_T \, dm_T} \propto \mathrm{e}^{-m_T/T_{\mathrm{eff}}}$ 10³ 10² • $\langle T_{eff} \rangle \approx 190 \; MeV$ 10 0.2 0.4 0.8 0.6 m_ - M (GeV)
 - is this related to temperature?
 - if so, this is close to the critical temperature at which the QCD phase transition occurs

Interpretation of T_{eff}

- Interpretation of T_{eff} from fitting to exp(-m_T/T_{eff})
 - Static source: T_{eff} interpreted as the source temperature
 - Radially expanding source:
 - T_{eff} reflects temperature and flow velocity
 - T_{eff} depends on the m_T range
 - High-p_T limit: $T_{\text{eff}} = T_f \sqrt{\frac{1 + v_T}{1 v_T}}$ $p_T \gg m$ (common to all hadrons) Low-p_T limit: $T_{\text{eff}} \approx T_f + \frac{1}{2}m\langle v_T^2 \rangle$ $p_T \ll m$ (mass ordering of hadrons)
- Final spectra: space-time history $T_i \rightarrow T_{fo}$ & emission time
 - Hadrons
 - interact strongly
 - freeze out at different times depending on cross section with pions
 - $T_{eff} \rightarrow$ temperature and flow velocity at thermal freeze out
 - Dileptons
 - do not interact strongly
 - decouple from medium after emission
 - $T_{eff} \rightarrow$ temperature and velocity evolution averaged over emission time

Mass ordering of hadronic slopes

- Separation of thermal and collective motion
- Reminder
 - blast wave fit to all hadrons simultaneously
- Simplest approach

$$T_{\rm eff} \approx T_f + \frac{1}{2}m\langle v_T^2 \rangle \quad p_T \ll m_T$$

 slope of (T_{eff}) vs. m is related to radial expansion

- baseline is related to thermal motion
- Works (at least qualitatively) at SPS

NA60 Analysis of m_T spectra

PRL 96 (2006) 162302

- Decomposition of low mass region:
 - contributions of mesons (η , ω , ϕ)
 - continuum plus ρ meson
 - extraction of vacuum p
- Hadron m_T spectra for:
 - η, ω, φ
 - vacuum ρ
- Dilepton m_T spectra for:
 - Iow mass excess
 - intermediate mass excess

Examples of m_T Distributions

Dilepton T_{eff} Summary

- Hadrons (η, ω, ρ, φ)
 - T_{eff} depends on mass
 - T_{eff} smaller for ϕ decouples early
 - T_{eff} large for p decouples late
- Low mass excess
 - Clear flow effect visible
 - Follows trend set by hadrons
 - Possible late emission
- Intermediate mass excess
 - No mass dependence
 - Indication for early emission

What did we get from NA60

- High statistics & high precision dimuon spectra
- Decomposition of mass spectra into "sources"
- Gives access to in-medium ρ spectral function
- Data consistent with broadening of the ρ
- Data do not require mass shift of the ρ
- Large prompt component at intermediate masses
- Dimuon m_T spectra promise to separate time scales
 - Low mass dimuons shows clear flow contribution indicating late emission
 - Intermediate mass dimuons show no flow contribution hinting toward early emission

RHIC

RHIC at BNL

Relativistic Heavy Ion Collider at Brookhaven National Lab

Experiments at RHIC

- What is so special about RHIC?
 - It is a collider
 - No thick targets
 - Detector systematics do not depend on $E_{\mbox{\scriptsize CM}}$
 - p+p: $\sqrt{s} \le 500$ GeV (polarized beams)
 - A+A: $\sqrt{s_{NN}} \le 200$ GeV (per nucleon–nucleon pair)
- Experiments with specific focus
 - BRAHMS (until Run-6, 2006)
 - PHOBOS (until Run-5, 2005)
- Multi purpose experiments
 - PHENIX
 - STAR

Experiments at RHIC

- What is so special about RHIC?
 - It is a collider
 - No thick targets
 - Detector systematics do not depend on $E_{\mbox{\scriptsize CM}}$
 - p+p: $\sqrt{s} \le 500$ GeV (polarized beams)
 - A+A: $\sqrt{s_{NN}} \le 200$ GeV (per nucleon–nucleon pair)
- Experiments with specific focus
 - BRAHMS (until Run-6, 2006)
 - PHOBOS (until Run-5, 2005)
- Multi purpose experiments
 - PHENIX
 - STAR

From SPS to RHIC

- 2 scenarios @ SPS profit from high baryon density
 - dropping ρ mass
 - broadening of p
- What to expect at RHIC?
 - increase of centre-of-mass per nucleon-nucleon pair from 17 to 200 GeV

	SPS (Pb+Pb)	RHIC (Au+Au)
dN(p̄)/dy	6.2	20.1
produced baryons (p, \overline{p} , n, \overline{n})	24.8	80.4
p - p	33.5	8.6
particpating nucleons (p - \overline{p})A/Z	85	21.4
total baryon number	110	102

 Baryon density: almost the same at SPS & RHIC (although the NET baryon density is not!)

Expectations at RHIC

- In-medium modifications of vector mesons persists
- Open charm contribution becomes significant

The founding fathers' view

- Before 1991:
 - proposals for various experiments at RHIC
 - STAR, TALES, SPARC, OASIS, DIMUON ...
 - except for STAR everything else is burned down
 - from the ashes rises PHENIX
 - Pioneering High Energy Nuclear Interaction eXperiment
- 1991: PHENIX "conceptual design report"
 - philosophy
 - measure simultaneously as many observables relevant for QCD phase transitions as you can imagine
 - all but one: low-mass dielectrons
 - why no dielectrons?
 - included in first TALES proposal
 - considered to be "too difficult" for PHENIX
- A lot of work can make impossible things happen

The PHENIX detector at RHIC

Nuclear matter in extremis

The PHENIX detector at RHIC

- 3 detectors for global event characterisation
- Central spectrometers
 - measurement in range: |η| ≤ 0.35 p ≥ 0.2 GeV/c
- Forward spectrometers
 - muon measurement in range: 1.2 < |η| < 2.4 p ≥ 2 GeV/c

two central electron/photon/hadron spectrometers

$$\eta = -\ln\left[\tan\left(\frac{\theta}{2}\right)\right]$$

two forward muon spectrometers

Momentum Determination

Simple relation between bending angle and momentum:
α = K/p_T (with K ~ 0.206 rad GeV/c, depends on magnetic field)

Electron Identification I

- Charged particle tracking
 - DC, PC1, PC2, PC3 and TEC
 - Target: mass resolution of 1%
- PHENIX optimized for Electron ID
 - Cherenkov light RICH +

- Emission and measurement of Cherenkov light in the Ring Imaging Cherenkov detector measure of minimum velocity
- How can pions ever be misidentified below 4.9 GeV/c?
 - ▶ Radiation of Cherenkov light (≥ 4.9 GeV/c)
 - Production of delta electrons
 - Random coincidence (high multiplicity)
 - spherical mirror
 - parallel tracks produce rings at SAME location

Electron Identification II

- Production of em. shower in the Electro-Magnetic Calorimeter
 - measure of energy E
- PbSc: sampling calorimeter, layers of lead and scintillator
- PbGI: homogeneous lead-glass volume, Cherenkov radiator

- After RICH cuts: clear e[±] signal
- Cut on E/p cleans e[±] sample!
- Main background source:
 - random combination of hadron track with uncorrelated RICH ring
 - Statistical subtraction technique:
 - Flip-and-slide of RICH
 - Swapped background agrees in shape with E/p distribution of identified hadrons
 - Does not work for pair analysis
- Other background:
 - photon conversions (real electrons)
- Background increases with detector occupancy (can reach ~30% in central Au+Au collisions)

Background

Type I: identified on a pair-by-pair basis

- Overlapping hits in the detectors (mostly RICH)
- Photon conversions

Type II: cannot be identified on pair-by-pair basis removed statistically

- Combinatorial (B_{comb}):
 - all combinations where the origin of the two electrons is totally uncorrelated
- Correlated (B_{corr}):
 - Cross pairs: Two e⁺e⁻ pairs in the final state of a meson
 - Jet pairs: Two hadrons within the same jet or in back-to-back jets, decay into e⁺e⁻ pairs

Overlapping Pairs

- If h^{\pm} points to the same ring as e^{\pm}
 - associated to the same ring
 - considered as e[±]
- Happens for typical values of opening angle (different for like and unlike sign), which folded with the average momentum of the electron corresponds to a particular invariant mass (different for like and unlike sign)
 - cut: requested minimum distance between the rings (~1 ring diameter)
- Cut applied as event cut:
 - Real events: discarded and never reused
 - Mixed events: regenerated to avoid topology dependence

Overlapping Pairs

- If h[±] points to the same ring as e[±]
 - associated to the same ring
 - considered as e[±]
- Happens for typical values of opening angle (different for like and unlike sign), which folded with the average momentum of the electron corresponds to a particular invariant mass (different for like and unlike sign)
 - cut: requested minimum distance between the rings (~1 ring diameter)
- Cut applied as event cut:
 - Real events: discarded and never reused
 - Mixed events: regenerated to avoid topology dependence

Photon Conversion Rejection

- Artefact of PHENIX tracking
 - assume that all tracks originate from the vertex
 - off vertex tracks → wrong momentum vector
 - Conversions are reconstructed with m ≠ 0 (m ~ r)

 Conversions "open" in a plane perpendicular to the magnetic field

Low-mass e⁺e⁻ pairs: the Problem

- Average number of electrons/event in PHENIX:
 - $N_e = (dN/d\eta)_{\pi^0} \times (BR+CONV) \times acceptance \times f(p_T>0.2GeV) \\ 350 \qquad (0.012+0.02) \qquad 0.5 \times 0.7 \qquad 0.32 = 1.3$
- Combinatorial background pairs/event
 - $B = N_e^2 / 2! \exp(-N_e) = 0.2$ (assume Poisson distribution)
- Expected signal pairs/event (m > 0.2 GeV, $p_T > 0.2$ GeV)
 - ► S = 4.2×10^{-4}
- Signal/Background
 - as small as 1/ few hundred
 - depends on mass
- What can we do to reduce the combinatorial background?
- Where does it come from?

Conversion/Dalitz rejection?

- Typically only one "leg" of the pair is in the acceptance
 - Acceptance holes
 - "Soft" tracks curl up in the magnetic field
- Only (!) solution:
 - Catch electrons before they are lost
 - Need new detector and modification of magnetic field

Conversion/Dalitz rejection?

- Typically only one "leg" of the pair is in the acceptance
 - Acceptance holes
 - "Soft" tracks curl up in the magnetic field
- Only (!) solution:
 - Catch electrons before they are lost
 - Need new detector and modification of magnetic field

Conversion/Dalitz rejection?

- Typically only one "leg" of the pair is in the acceptance
 - Acceptance holes
 - "Soft" tracks curl up in the magnetic field
- Only (!) solution:
 - Catch electrons before they are lost
 - Need new detector and modification of magnetic field
Combinatorial Background Shape

- Shape determined with event mixing
 - Excellent agreements for like-sign pairs
- Normalisation of mixed pairs
 - Small correlated background at low masses
 - Normalise B_{++} and B_{--} to N_{++} and N_{--} for $m_{ee} > 0.7$ GeV/c²
 - Normalise mixed B_{+−} pairs to N_{+−} = 2√N₊₊N_{−−}
 - Subtract correlated background
- Systematic uncertainties
 - Statistics of N₊₊ and N₋₋: 0.12%
 - Different pair cuts in like- and unlikesign: 0.2%

Combinatorial and Correlated

- Combinatorial Background from mixed events normalized to $2\sqrt{N_{++}N_{--}}$
- Cross pairs simulated with decay generator EXODUS
- Jet pairs simulated with PYTHIA

Hadronic Cocktail

• Parameterization of PHENIX π^{\pm} , π^{0} data $\pi^{0} = (\pi^{+} + \pi^{-})/2$

$$E\frac{d^3\sigma}{dp^3} = \frac{A}{\left(\exp(-ap_T - bp_T^2) + p_T/p_0\right)^n}$$

- Other mesons: fit with m_T scaling of π^0 $p_T \rightarrow \sqrt{(p_T^2 + m_{meson}^2 - m_{\pi}^2)}$ fit the normalisation constant
- All mesons m_T scale!
- Hadronic cocktail was well tuned to individually measured yield of mesons in PHENIX for both p+p and Au+Au collisions
- Mass distributions from hadron decays are simulated by Monte Carlo: π⁰, η, η', ω, φ, ρ, J/ψ, ψ'

Hadronic Cocktail

• Parameterization of PHENIX π^{\pm} , π^{0} data $\pi^{0} = (\pi^{+} + \pi^{-})/2$

$$E\frac{d^3\sigma}{dp^3} = \frac{A}{\left(\exp(-ap_T - bp_T^2) + p_T/p_0\right)^n}$$

- Other mesons: fit with m_T scaling of π^0 $p_T \rightarrow \sqrt{(p_T^2 + m_{meson}^2 - m_{\pi}^2)}$ fit the normalisation constant
- All mesons m_T scale!
- Hadronic cocktail was well tuned to individually measured yield of mesons in PHENIX for both p+p and Au+Au collisions
- Mass distributions from hadron decays are simulated by Monte Carlo: π⁰, η, η', ω, φ, ρ, J/ψ, ψ'

p+p at $\sqrt{s} = 200 \text{ GeV}$

- Data absolutely normalised
- Excellent agreement with Cocktail
 - Filtered in PHENIX acceptance

Light hadron contributions subtracted

Extract Heavy Quark Cross Sections

PLB 670 (2009) 313

d+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$

- Data consistent with cocktail
 - No significant cold nuclear matter effects
- Extract charm and beauty in mass & $p_{\rm T}$
 - σ_{cc}^{NN} = 704 ± 47 (stat) ± 183 (syst) ± 40 (model) μb
 - σ_{bb}^{-NN} = 4.29 ± 0.39 (stat) ± 1.08 (syst) ± 0.11 (model) μb

D. Sharma, Hard Probes 2013

Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$

PRC 81 (2010) 034911

- Low Mass Region: enhancement 150 < $m_{ee} < 750 \; MeV/c^2$
 - $4.7 \pm 0.4(\text{stat}) \pm 1.5(\text{syst}) \pm 0.9(\text{model})$
- Intermediate Mass Region: dominated by charm (N_{coll} × σ_{cc})
 - PYTHIA
 - ▶ Random cc correlation
- Single electron measurement:
 - ► High p_T suppression
 - Flow
- Expected modifications in the pair invariant mass
 - Random cc correlation?
- Room for thermal contribution?

Centrality Dependence: IMR

PRC 81 (2010) 034911

- Charm is a hard probe
 - Total yield follows binary scaling (known from single e[±])
 - Intermediate mass yield shows the same scaling

Centrality Dependence: IMR

m_{ee} (GeV/c²)

Centrality Dependence: LMR

PRC 81 (2010) 034911

Centrality Dependence: LMR

PRC 81 (2010) 034911

Centrality Dependence: LMR

Model Comparison

ππ annihilation + modified ρ spectral function

PRC 81 (2010) 034911

- Broadening
- Mass shifting
- Both
- Insufficient to explain data

Low Mass Dileptons from STAR

• STAR measured low mass dileptons at three $\sqrt{s_{NN}}$

J. Butterworth, Hard Probes 2013

- STAR observes smaller enhancement than PHENIX
 - In better agreement with models that involve broadening of ρ spectral function
- Waiting for results from PHENIX HBD data

Momentum Dependence: PHENIX

- p+p in agreement with cocktail
- Au+Au low mass enhancement concentrated at low p_{T}

LHC

The Large Hadron Collider

Expectations at the LHC

- With higher dN/dy thermal radiation from hadron gas dominant for m<1GeV
- For m>1GeV stronger QGP radiation:
 - comparable to DD but be does not include charm energy loss

Low mass dileptons at the LHC

- CMS or ATLAS:
 - good mass resolution and vertexing
 - but: large magnetic field and absorber:
 - single muon $p_{min} \sim 3\text{--}5~GeV/c$
 - ▶ cannot measure at low p_T
- ALICE:
 - the only LHC experiment that can measure dileptons at low pT 2^{1.2}
 - Letter of Intent:
 - dedicated lower B-field run

Figure 2.45: Acceptance for e^+e^- -pairs from PYTHIA at B = 0.5 T (left) and B = 0.2 T (right).

ALICE, Letter of Intent, LHCC-I-022

Low Mass Dileptons in ALICE: Status

• Challenging electron identification:

A. Uras, Hard Probes 2013

- Time Projection Chamber and Time Of Flight
- S/B ratio of few ‰ in the lowest p_T bin:
 - accurate combinatorial background evaluation needed
- Analysis ongoing

Low Mass Dileptons in ALICE: Future

TPC and ITS upgrades:

H. Appelshäuser, ECT* dilepton workshop 2013

allow high data rates

0 - 10%, 2.5E9

 $p_{\tau}^{e} > 0.2 \text{ GeV/c}$

 $0.0 < p_{t,ee} < 3.0$

ly_l < 0.84

0.2

0.4

dN/dM_{ee}dy (GeV⁻¹)

10⁻²

10⁻³

10⁻⁴

10⁻⁵

- reduce charm background with dca cut
- Dedicated low B-field run (B=0.2 T)

Summary

- EM probes ideal "penetrating probes" of dense partonic matter created at RHIC and the LHC
 - also at the SPS?
- Double differential measurement of dilepton emission rates can provide
 - Temperature of the matter
 - Medium modification of EM spectral function
- But extremely challenging measurements

SPS results:

- CERES and NA60 see enhancement in LMR
- NA60 measured ρ spectral function:
 - favours broadening over dropping mass scenario
 - observes prompt excess in IMR with inv. slopes close/above to T_c

At RHIC:

- PHENIX measured dilepton continuum in p+p, d+Au and Au+Au:
 - In p+p and d+Au: good agreement between data and hadronic cocktail
 - measured charm and beauty cross section in IMR and HMR
 - In Au+Au: low p_T and low mass enhancement above hadronic cocktail
 - 4.7 ± 0.4 (stat) ± 1.5 (syst) ± 0.9 (model)
 - not reproduced by theoretical models
- STAR also measured LMR enhancement
 - smaller than PHENIX, in better agreement with models
 - LMR elliptic flow consistent with hadron v₂

At the LHC:

- first performance studies from ALICE
- need ITS and TPC upgrades for precise measurements (+ low B-field)

Backup

My Car

Temperature

QGP

Sun

My Car

- Measure the energy spectrum of photons
 - real or virtual photons
 - Thermal photons in a QGP

- Thermal photons in a Hadron Gas:
 e.g. π + ρ → π + γ
- Need to subtract background sources
 - hadron decays
 - prompt photons from the initial partonparton collisions

- No strong final state interaction
 - Leave reaction volume undisturbed and reach detector
- Emitted at all stages of the space time development
 - Information must be deconvoluted

- Measure the energy spectrum of photons
 - real or virtual photons
 - Thermal photons in a QGP

- Thermal photons in a Hadron Gas:
 e.g. π + ρ → π + γ
- Need to subtract background sources
 - hadron decays
 - prompt photons from the initial partonparton collisions

Dileptons vs. virtual photons

• Emission rate of thermal dileptons:

$$\frac{dR_{ll}}{d^4q} = -\frac{\alpha^2}{3\pi^3} \frac{L(M)}{M^2} \text{Im}\Pi^{\mu}_{\text{em},\mu}(M,q;T) f^B(q_0,T)$$

• Emission rate of thermal virtual photons

$$q_0 \frac{dR_{\gamma^*}}{d^4 q} = -\frac{\alpha}{2\pi^2} \text{Im}\Pi^{\mu}_{\text{em},\mu}(M,q;T) f^B(q_0,T)$$

Relationship between them

virtual photon

 $\begin{array}{l} q_0 \frac{dR_{ll}}{dM^2 d^3 q} = \frac{1}{2} \frac{dR_{ll}}{d^4 q} = \frac{\alpha}{3\pi} \frac{L(M)}{M^2} q_0 \frac{dR_{\gamma^*}}{d^3 q} \\ \text{dileptons} & \text{prob. } \gamma^* \rightarrow |^+|^- \end{array}$

• Virtual photon rate can be determined from measured dilepton rate

$$q_0 \frac{dN_{\gamma^*}}{d^3q} = \frac{3\pi}{2\alpha} M q_0 \frac{dN_{ll}}{d^3q dM} \quad M \times dN_{II}/dM \text{ gives virtual photon yield}$$

• Real photon rate $n_{\gamma} \leftarrow n_{\gamma^*}$ for $M \rightarrow 0$

Theory Prediction of Dilepton Emission

Theory calculation by R. Rapp

- Usually the dilepton emission is measured and compared as dN/dp_TdM
- The mass spectrum at low p_T is distorted by the virtual photon→e⁺e⁻ decay factor 1/M, which causes a steep rise near M=0
- q q annihilation contribution is negligible in the low mass region due to the M² factor of the EM correlator
- In the calculation, partonic photon emission process q g→q γ*→q e⁺e⁻ is not included