Exercises for Higher Quantum Mechanics

Deadline: Oct/29/2008

Sheet 1

Question 1 (Spin 1/2)

The spin matrices for spin, $s=1 / 2$, in the standard representation, where \mathbf{s}_{3} is diagonal, read

$$
\mathbf{s}_{1}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \tag{1}\\
1 & 0
\end{array}\right), \quad \mathbf{s}_{2}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \quad \mathbf{s}_{3}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

(a) Show that these spin matrices fulfill the commutator relations for angular momenta,

$$
\begin{equation*}
\left[\mathbf{s}_{a}, \mathbf{s}_{b}\right]=\mathrm{i} \hbar \epsilon_{a b c} \mathbf{s}_{c} . \tag{2}
\end{equation*}
$$

Herein $\epsilon_{a b c}$ denotes the Levi-Civita symbol which is completely anti-symmetric under interchanges of its indices, a, b, and c with $\epsilon_{123}=1$. In (2), summation over the repeated index, c, is understood (Einstein's summation convention). Check that in this basis also the squared modulus of the spin, $\overrightarrow{\mathbf{s}}^{2}$ is diagonal simultaneously. What are the corresponding eigenvalues of this operator?
(b) Calculate the eigenvalues and eigenvectors of the operator, \mathbf{s}_{1}.
(c) Suppose an electron is prepared with a Stern-Gerlach apparatus such that the s_{3} component of its spin has the value $\sigma_{3}=+\hbar / 2$. What is the probability to find the value $\sigma_{1}=-\hbar / 2$ for the s_{1}-spin component?
(d) Calculate the unitary operator

$$
\begin{equation*}
\mathbf{U}_{3}(\varphi)=\exp \left(-\frac{\mathrm{i}}{\hbar} \varphi \mathbf{s}_{3}\right) \tag{3}
\end{equation*}
$$

(e) Let $\vec{n} \in \mathbb{R}^{3}$ denote an arbitrary unit vector $(|\vec{n}|=1)$ and

$$
\begin{equation*}
\overrightarrow{\boldsymbol{\sigma}}=\frac{2}{\hbar} \overrightarrow{\mathrm{~s}} \tag{4}
\end{equation*}
$$

Pauli's spin matrices.
Show that

$$
\begin{equation*}
\mathbf{U}_{\vec{n}}(\varphi):=\exp \left(-\mathrm{i} \frac{\varphi}{2} \vec{n} \overrightarrow{\boldsymbol{\sigma}}\right)=\mathbf{1} \cos \left(\frac{\varphi}{2}\right)-\mathrm{i} \vec{n} \overrightarrow{\boldsymbol{\sigma}} \sin \left(\frac{\varphi}{2}\right) \tag{5}
\end{equation*}
$$

and that this is a unitary operator.

Hints for part (e): To calculate the operator exponential one has to use the series expansion in powers of the operator (see lecture notes). First show the relation,

$$
\begin{equation*}
(\vec{n} \overrightarrow{\boldsymbol{\sigma}})^{2}=\mathbf{1} \tag{6}
\end{equation*}
$$

Then one needs the power expansion for \cos and sin:

$$
\begin{align*}
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k} \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1} \tag{7}
\end{align*}
$$

Remark: $\mathbf{U}_{\vec{n}}(\varphi)$ corresponds to rotations in \mathbb{R}^{3} in the following sense. If one defines for an arbitrary $\vec{x} \in \mathbb{R}^{3}$ the operator Operator

$$
\begin{equation*}
\tilde{\mathbf{x}}=\vec{x} \overrightarrow{\boldsymbol{\sigma}} \tag{8}
\end{equation*}
$$

one can show with help of Eq. (5) that

$$
\begin{equation*}
\mathbf{U}_{\vec{n}}(\varphi) \tilde{\mathbf{x}} \mathbf{U}_{\vec{n}}^{\dagger}(\varphi)=\tilde{\mathbf{x}^{\prime}}=\vec{x}^{\prime} \overrightarrow{\boldsymbol{\sigma}} \tag{9}
\end{equation*}
$$

with

$$
\begin{equation*}
\vec{x}^{\prime}=(\vec{n} \vec{x}) \vec{n}+[\vec{x}-(\vec{n} \vec{x}) \vec{n}] \cos \varphi+(\vec{n} \times \vec{x}) \sin \varphi \tag{10}
\end{equation*}
$$

holds, i.e., \vec{x}^{\prime} results from a rotation of the vector, \vec{x}, by an rotation angle φ around the axis, \vec{n} (in the sense of the right-hand rule).

Suggested reading:

J. J. Sakurai, Modern Quantum Mechanics, Addison Wesley
E. Fick, Einführung in die Grundlagen der Quantentheorie, Aula-Verlag
L. D. Landau, E. M. Lifschitz, Quantum Mechanics, Pergamon Press

