Vovikers mathematik, Blatt 5

$$
\begin{aligned}
& \text { (1) }(x) \int_{0}^{\pi} d x \sin x \cos ^{2} x=-\int_{1}^{-1} d x x^{2}=\int_{-1}^{1} d x x^{-2}=2 \int_{0}^{1} d s x^{-2}=\left.2 \frac{x^{-3}}{3}\right|_{0} ^{1} \\
& \dot{v}^{\prime}=\cos x ; \quad \vec{d}=-\sin x d x \\
& =\frac{2}{3}
\end{aligned}
$$

$$
\begin{aligned}
&(l) I=\int_{\sqrt{2}}^{b} d x \frac{3 x}{\sqrt{x^{2}-2}}=\int_{0}^{b^{2}-2} d x \frac{3}{2} a^{-1 / 2} \\
& k=x^{2}-2 ; d x=2 x \\
& I=\left.\frac{3}{2} \frac{1}{\frac{1}{2}} \hbar^{1 / 2}\right|_{0} ^{b^{2}-2}=3 \sqrt{b^{2}-2} \\
&\left(2 \left\lvert\,(a) I=\int_{0}^{t} d x \frac{x}{\sqrt{1-x^{2}}}\right. ; x=1-x^{2} ; d x=-2 x d x\right. \\
& \Rightarrow I=-\int_{1}^{\sqrt{1-b^{2}}} \frac{d x}{2} \hbar^{-\frac{1}{2}}=\int_{\sqrt{1-b^{2}}}^{1} d x \frac{1}{2} a^{-1 / 2} \\
&=\left.\sqrt{b-}\right|_{\sqrt{1-b^{2}}} ^{1}=1-\sqrt{1-b^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } \int_{-\pi / 2}^{0} d x \frac{\cos x}{2-\sin x}=I ; v=2-\sin x ; d s=-\cos x d x \\
& =-\int_{3}^{2} \frac{d r}{\omega^{5}}=\int_{2}^{3} \frac{d s}{N^{2}}=\left.\ln r\right|_{2} ^{3}=\ln \frac{3}{2}
\end{aligned}
$$

$$
\begin{align*}
& \text { (c) } \int_{0}^{b} d x \frac{x^{4}}{1-a x^{5}}=I ; u=1-a x^{5} ; d x=-5 a x^{4} \tag{2}\\
& I=-\int_{i}^{1-a b^{5}} \frac{d s}{5 a} \frac{1}{m^{5}}=\int_{1-a b^{5}}^{1} d v \frac{1}{5 a k}=\left.\frac{1}{5 a} \ln k\right|_{1-a s^{5} 5} ^{1} \\
& =-\frac{1}{4 a} \ln \left(1-a b^{5}\right) \\
& \text { (d) } \int_{0}^{d} d x \frac{\sin x \cos x}{1+\cos ^{2} x}=I \\
& v_{s}=\cos x ; d s=-\sin x d x \\
& \Rightarrow I=-\int_{1}^{\cos t} d u \frac{i}{1+m^{2}}=\int_{\cos t}^{1} d x \frac{\varepsilon}{1+\dot{x}^{2}} \\
& v=1+a^{2} ; d v=2 u d w \\
& \Rightarrow I=\int_{1+\cos ^{2} v}^{2} d v \frac{1}{2 v}=\left.\frac{1}{2} \ln x\right|_{1+\cos ^{2} t} ^{2}=\frac{1}{2} \ln \left(\frac{2}{1+\cos ^{2} v}\right) \\
& \text { (e) } \int_{0}^{\pi((2)} d x \text { a } \sin (a x) \cos ^{h}(a x)=I \\
& s_{0}=\cos (a x) ; d x=-d x \cdot a \sin (a x) \\
& I=\int_{0}^{1} d e r_{i}^{n}=\frac{1}{M+1} c^{m+1}=\frac{1}{m+1}
\end{align*}
$$

$$
\begin{aligned}
& (f) \quad I=\int_{0}^{b} d x x^{2} \operatorname{aps}\left(-x^{3}\right) \\
& a_{r}=x^{3} ; d x=d x 3 x^{2} \\
& \Rightarrow I=\frac{1}{3} \int_{0}^{b^{3}} d x \operatorname{uxp}\left(-v^{2}\right)=-\left.\frac{1}{3} \operatorname{xan}\left(-x^{2}\right)\right|_{0} ^{b^{3}}=\frac{1}{3}\left[\left[-\operatorname{xap}\left(-b^{3}\right)\right]\right. \\
& (g) \int_{0}^{(\pi / 4-1)^{1 / 3}} d x \frac{x^{2}}{\cos ^{2}\left(x^{3}-1\right)}=I \\
& v=x^{3}-1 ; d u=d x 3 x^{2} \\
& I=\frac{1}{3} \int_{-1}^{\pi / 4} \frac{d v}{\cos ^{2} v}=\left.\frac{1}{3} \tan \pi\right|_{0} ^{\pi / 4}=\frac{1}{3}(1+\tan 1)
\end{aligned}
$$

