

The charming side of ALICE

Kai Schweda Physikalisches Institut Universität Heidelberg / GSI Darmstadt

Building Blocks of Matter

12 Jul 2012

nuclear physics colloquium, FIAS

Quark Gluon Plasma

Source: Michael Turner, National Geographic (1996)

12 Jul 2012

nuclear physics colloquium, FIAS

Collisions of atomic nuclei

Time Scales

- **QGP life time** 10 fm/c \approx 3•10⁻²³ s
- thermalization time 0.2 fm/c \approx 7•10⁻²⁵ s
- formation time

 (e.g. charm quark):
 1/2m_c = 0.08 fm/c
 ≈ 3•10⁻²⁵ s

• collision time $2R/\gamma = 0.005 \text{ fm/c}$ $\approx 2 \cdot 10^{-26} \text{ s}$

Outline

- Introduction
- LHC and ALICE
- Charm-quark production in pp
- Charm-quark production in Pb-Pb
- Summary / Outlook

Der Large Hadron Collider am CERN

ALICE: >1300 members, 120 institutes, 35 countries

3 x 2 Layers Silicon Technology

ITS Russian Dolls - Sliding the SSD/SDD over the SPD

Erste Bleikollisionen in ALICE !

ALICE is designed for

- Highest multiplicities $dN/d\eta$ up to 6000
- Excellent tracking & particle identification down to lowest momentum ~ 100 MeV/c

6 ATeV

BBE693

Particle Identification – dE/dx

- dE/dx:5% resolution
- Time-of flight, resolution: 120 ps (Pb-Pb) 160 ps (p-p)

- TPC dE/dx: separate p from K up to 1.1 GeV
- Time of flight: separate K from π up to ~ 1.5 GeV

nuclear physics colloquium, FIAS

Exotica

4 anti-⁴He
candidates
anti-³_AH
observed

(anti-)helium trigger: J. Klein, PhD thesis; F. Muecke, bachelor thesis, Univ. Heidelberg, in preparation.

12 Jul 2012

nuclear physics colloquium, FIAS

Heavy - flavor: a unique probe

 $m_{c,b} \gg \Lambda_{QCD}$: new scale $m_{c,b} \approx const., m_{u,d,s} \neq const.$ initial conditions: $\sigma_{c\overline{c}},\sigma_{b\overline{b}}$ test pQCD, μ_R , μ_F probe gluon distribution early partonic stage: diffusion (γ), drag (α) flow, jets, correlations probe thermalization hadronization: chiral symmetry restoration confinement statistical coalescence time J/ψ enhancement / suppression nuclear physics colloquium, FIAS 16/36

12 Jul 2012

Where does all the charm go ?

- Total charm cross section: open-charmed hadrons,
 e.g. D⁰, D⁺, D^{*+}, Λ_c, ... and c,b → e(μ) + X
- Quarkonia, e.g. J/ψ carries $\approx 1\%$ of total charm

nuclear physics colloquium, FIAS

Heavy-quark detection

Open-charm reco. in ALICE

 $\begin{array}{l} \mathsf{D}^{0} \rightarrow \mathsf{K}\pi\\ \mathsf{D}^{+} \rightarrow \mathsf{K}\pi\pi\\ \mathsf{D}^{*} \rightarrow \mathsf{D}^{0}\pi\\ \mathsf{D}_{s} \rightarrow \mathsf{K}\mathsf{K}\pi\end{array}$

Under study: $D^0 \rightarrow K\pi\rho$ $\Lambda_c \rightarrow pK\pi$ $\Lambda_c \rightarrow \Lambda\pi$ $\Lambda_c \rightarrow K^0_S\pi$ plot: courtesy of D. Tlusty.

- e.g., $D^0 \rightarrow K^- + \pi^+$, $c\tau = 123 \ \mu m$
- displaced decay vertex is signature of heavy-quark decay
 12 Jul 2012 nuclear physics colloquium, FIAS 18/36

Open-charm spectra from pp @ 7 TeV

ALICE, JHEP 1201 (2012) 128; arXiv:1111.1553 [hep-ex]; D* analysis: Y. Wang, PhD thesis, Univ. Heidelberg, in preparation; F. Schaefer, bachelor thesis, Univ. Heidelberg, in preparation.

covers spectrum from 1 up to 24 GeV/c

12 Jul 2012

nuclear physics colloquium, FIAS

Open-charm cross section

ALICE, arXiv:1205.4007 [hep-ex];

J. Wilkinson, bachelor thesis, Univ. Heidelberg (2011);

S. Stiefelmaier, bachelor thesis, Univ. Heidelberg, in preparation.

LHC: First collider
 measurements at TeV
 scale

- ATLAS & LHCb agree
 with ALICE
- upper band of theory describes experimental data

nuclear physics colloquium, FIAS

12 Jul 2012

Charm hadronization

ALICE, arXiv:1205.4007 [hep-ex];

- J. Wilkinson, bachelor thesis, Univ. Heidelberg (2011);
- S. Stiefelmaier, bachelor thesis, Univ. Heidelberg, in preparation.

 P_{v} : fraction of D-mesons in • vector state (V) to all mesons (V+S), $P_v = V / (V+S)$ World average: \bullet $P_v = 0.60 \pm 0.01$ Stat. model, T=164 \pm 10 • MeV: $P_v = 0.58 \pm 0.13$, agrees with data **HQET** predicts •

 $P_v = 3/(3+1) = 0.75$ FIAS 21/36

12 Jul 2012

nuclear physics colloquium, FIAS

Energy loss in the medium

J.D. Bjorken, PRD 27 (1983) 140.

 $z = p()/p_{partor}$

quark-gluon plasma

Fast parton (i.e. charm quark) propagates in the medium Loses energy due to gluon bremsstrahlung + elastic collisions Appears as D-meson at lower momentum wrt pp collisions → probe QGP 12 Jul 2012 nuclear physics colloquium, FIAS 22/36

Nuclear Modification Factor - R_{AA} $R_{AA}(p_T) = \frac{1}{\langle N_{coll} \rangle} \cdot \frac{dN_{AA}/dp_T}{dN_{pp}/dp_T}$

 define R_{AA}, expect unity in the absence of nuclear effects (for hard processes)

• N_{coll} = number of binary nucleonnucleon collisions

- at RHIC, suppression of factor ~5
- at LHC, suppression of factor ~6
- strong medium effects !
- 12 Jul 2012

nuclear physics colloquium, FIAS

AdS/CFT correspondence

- Maldacena conjecture: string theory and conformal QFT mathematically equivalent
- heavy-quark energy loss modeled by embedding a string in AdS space
- Prediction: strong suppression for charm, small for beauty
 12 Jul 2012
 nuclear physics colloquium, FIAS
 24/36

Charm nuclear modification factor

ALICE, arXiv:1203.2160 [nucl-ex].

• In Pb-Pb collisions: Charmed hadrons are suppressed by

factor ~3-4 when compared to

simple binary collision scaling from pp12 Jul 2012nuclear physics colloquium, FIAS

Shadowing, ...

ALICE, arXiv:1203.2160 [nucl-ex].

 Initial state: gluon distribution in p different from Pb,
 e.g. shadowing, gluon saturation, ... ?

• Observed suppression not an initial state effect

• need p-Pb data to check !

Comparison to other hadrons

nuclear physics colloquium, FIAS

27/36

12 Jul 2012

R_{AA} - model calculations

D mesons

charged hadrons

nuclear physics colloquium, FIAS

12 Jul 2012

Anisotropy Parameter v₂

coordinate-space-anisotropy \Leftrightarrow momentum-space-anisotropy

Initial/final conditions, EoS, degrees of freedom

2nd Fourier Coefficient – v₂

D-meson v2 analysis: R. Grajcarek, PhD thesis, Univ. Heidelberg, in preparation.

• In Pb-Pb collisions: Charmed hadrons are suppressed by

factor ~5 when compared to simple binary scaling

12 Jul 2012

nuclear physics colloquium, FIAS

v₂ - Model calculations

Boltzmann approach (BAMPS): C. Greiner, J. Uphoff et al., arXiv:1207.0755 [hep-ph];

See also: H. van Hees et al., arXiv:1102.1114 [hep-ph].

Need to scale collisional part up by factor of 4

Indication for large radiative energy loss

Dead cone dead ?

12 Jul 2012

nuclear physics colloquium, FIAS

Next steps

- Extract power spectrum of v_n, like WMAP*
- Compare pp high multiplicity vs Pb+Pb
- Mach cone vs medium response for heavy-quarks (well defined probes)
- η/s

*WMAP data: The NASA/WMAP Science team; <u>http://map.gsfc.nasa.gov/media/080997/index.html.</u> QGP plot: B. Schenke, S. Jeon, and C. Gale, arXiV:1109.6289.

12 Jul 2012

nuclear physics colloquium, FIAS

Heavy – quark Correlations

- Charm and anti-charm quarks created in pairs and thus correlated
- Look for modifications in Pb+Pb collisions
- Study transport properties / thermalization

X. Zhu, M. Bleicher, S.L. Huang, K.S., H. Stöcker, N. Xu, and P. Zhuang, PLB 647 (2007) 366. G. Tsildeakis, H. Appelshäuser, K.S., J. Stachel, NPA 858 (2011) 86; arXiv: 0908.0427 [nucl-ex].

12 Jul 2012

nuclear physics colloquium, FIAS

Heavy – quark Correlations*

CMS trigger: inspected
200 x 10⁹ p+p collisions
B-Bbar,
establish correlations
exist in p+p !
Look out for

modifications in Pb+Pb

*CMS collaboration:JHEP 1102 (2011) 136; arXiv:1192.3194v2 [hep-ex].

12 Jul 2012

nuclear physics colloquium, FIAS

Upgrading the Inner Detector

- upgrade Concept recently approved by the ALICE Collaboration
- targeted for 2017-2018 LHC shutdown
- Conceptual Design Report CERN-LHCC-2012-005
- 12 Jul 2012

nuclear physics colloquium, FIAS

LHC: Tentative Schedule

2010/11:	long run with pp collisions at 7 TeV
	1 month of Pb+Pb collisions each year
2012:	long run with pp at 8 TeV
2013:	p+Pb control measurement
2013/14:	Machine consolidation and training
2014:	pp and Pb+Pb at full energy
2017/18:	long shutdown, luminosity + detector upgrades
2019:	pp and Pb+Pb at high luminosity

ALICE - Jetzt geht's los !

