New Horizons in Ab Initio Nuclear Structure Theory

Robert Roth

TECHNISCHE UNIVERSITÄT DARMSTADT

New Era of Low-Energy Nuclear Physics

Experiment

new facilities and experiments to produce nuclei far-off stability and study a range of observables

Quantum Chromodynamics

chiral effective field theory and lattice simulations access low-energy QCD and nuclear interactions

Nuclear Many-Body Theory

novel theoretical and computational methods allow for ab initio description of many more nuclei

Nuclear Structure Observables

Low-Energy Quantum Chromodynamics

Nature of the Nuclear Interaction

 $\rho_0^{-1/3} = 1.8 \text{fm}$

NN-interaction is not fundamental

- analogous to van der Waals interaction between neutral atoms
- induced via mutual polarization of quark & gluon distributions
- acts only if the nucleons overlap, i.e. at short ranges
- genuine **3N-interaction** is important

Nuclear Interaction from Lattice QCD

- first steps towards construction of a nuclear interaction through lattice QCD simulations
- compute relative two-nucleon
 wavefunction on the lattice
- invert Schrödinger equation to obtain local 'effective' twonucleon potential
- schematic results so far (unphysical quark masses, S-wave interactions only,...)

Nuclear Interactions from Chiral EFT

- low-energy effective field theory for relevant degrees of freedom (π,N) based on symmetries of QCD
- long-range **pion dynamics** explicitly
- short-range physics absorbed in contact terms, low-energy constants fitted to experiment (NN, πN,...)
- hierarchy of consistent NN, 3N,... interactions (plus currents)
- many ongoing developments
 - 3N interaction at N³LO
 - explicit inclusion of Δ -resonance
 - formal issues: power counting, renormalization, cutoff choice,...

Robert Roth – TU Darmstadt – 07/2012

Why Similarity Transformations?

Why Similarity Transformations?

Similarity Renormalization Group

$$\eta_{\alpha} = (2\mu)^2 [T_{\text{int}}, \widetilde{H}_{\alpha}]$$

SRG Evolution in Two-Body Space

SRG Evolution in Two-Body Space

SRG Evolution in Three-Body Space

Robert Roth – TU Darmstadt – 07/2012

SRG Evolution in Three-Body Space

Calculations in A-Body Space

• evolution induces *n*-body contributions $\widetilde{H}_{\alpha}^{[n]}$ to Hamiltonian

$$\widetilde{\mathsf{H}}_{\alpha} = \widetilde{\mathsf{H}}_{\alpha}^{[1]} + \widetilde{\mathsf{H}}_{\alpha}^{[2]} + \widetilde{\mathsf{H}}_{\alpha}^{[3]} + \widetilde{\mathsf{H}}_{\alpha}^{[4]} + \dots$$

• truncation of cluster series inevitable — formally destroys unitarity and invariance of energy eigenvalues (independence of α)

Three SRG-Evolved Hamiltonians

- NN only: start with NN initial Hamiltonian and keep two-body terms only
- NN+3N-induced: start with NN initial Hamiltan induced three-body terms α-variation provides a
- NN+3N-full: start with NN+3 and all three-body terms

 α-variation provides a
 diagnostic tool to assess
 the contributions of omitted many-body interactions

Low-Energy Quantum Chromodynamics

No-Core Shell Model — Basics

many-body basis: Slater determinants $|\Phi_{\nu}\rangle$ composed of harmonic oscillator single-particle states (m-scheme)

$$\left|\Psi\right\rangle = \sum_{\nu} C_{\nu} \left|\Phi_{\nu}\right\rangle$$

- model space: spanned by basis states $|\Phi_{\nu}\rangle$ with unperturbed excitation energies of up to $N_{\max}\hbar\Omega$
- numerical solution of matrix eigenvalue problem for the intrinsic Hamiltonian H within truncated model space

$$\begin{array}{ccc} \mathsf{H} \left| \Psi \right\rangle = E \left| \Psi \right\rangle & \rightarrow & \left(\begin{array}{ccc} \vdots \\ \ldots & \left\langle \Phi_{\mathcal{V}} \right| \mathsf{H} \left| \Phi_{\mu} \right\rangle & \ldots \\ \vdots \end{array} \right) \left(\begin{array}{c} \vdots \\ C_{\mu} \\ \vdots \end{array} \right) = E \left(\begin{array}{c} \vdots \\ C_{\mathcal{V}} \\ \vdots \end{array} \right) \end{array}$$

model spaces of up to 10⁹ basis states are used routinely

Importance Truncated NCSM

- converged NCSM calculations essentially restricted to lower/mid p-shell
- full 10ħΩ calculation for ¹⁶O getting very difficult (basis dimension > 10¹⁰)

Importance Truncation

reduce model space to the relevant basis states using an **a priori importance measure** derived from MBPT

Importance Truncation: General Idea

- given an initial approximation $|\Psi_{ref}^{(m)}\rangle$ for the **target states**
- **measure the importance** of individual basis state $|\Phi_{\nu}\rangle$ via first-order multiconfigurational perturbation theory

$$\kappa_{\nu}^{(m)} = -\frac{\left\langle \Phi_{\nu} \right| \mathsf{H} \left| \Psi_{\mathrm{ref}}^{(m)} \right\rangle}{\Delta \epsilon_{\nu}}$$

- construct **importance truncated space** spanned by basis states with $|\kappa_{\nu}^{(m)}| \ge \kappa_{\min}$ and solve eigenvalue problem
- sequential scheme: construnext N_{max} using previous eigen

for $\kappa_{\min} \rightarrow 0$ the full NCSM model space and thus the **exact solution is recovered**

a posteriori threshold extrapolation and perturbative correction used to recover contributions from discarded basis states

Low-Energy Quantum Chromodynamics

⁴He: Ground-State Energies

⁶Li: Ground-State Energies

¹²C: Ground-State Energies

¹⁶O: Ground-State Energies

Spectroscopy of ¹²C

Spectroscopy of ¹²C

The Bottom Line...

- beyond the lightest nuclei, SRG-induced 4N contributions affect the absolute energies (but not the excitation energies)
- with the inclusion of the leading 3N interaction we already obtain a good description of spectra (and ground states)
- breakthrough in computation, transformation and management of 3N matrix-elements
- next-generation SRG: can we find new SRG-generators that do not induce as much 4N but still give good convergence?
- next-generation chiral 3N: how will N3LO or Δ-full chiral 3N interactions affect the picture?
- applications: which experiment-related applications are in reach with the present framework?

Outlook: Sensitivity on Initial 3N

Outlook: Carbon Isotopic Chain

Outlook: Carbon Isotopic Chain

Low-Energy Quantum Chromodynamics

Heavy Nuclei with 3N Interactions

'ab initio' calculations for heavier nuclei require alternative many-body tools and approximate treatment of 3N interactions

coupled-cluster method for ground states of closed-shell nuclei

 exponential ansatz for many-body states using singles and doubles excitations (CCSD)

normal-ordering approximation of the 3N interaction truncated at the two-body level

- summation over reference state converts part of 3N interaction to zero-, one- and two-body terms
- both approximations are controlled and systematically improvable

¹⁶O: Coupled-Cluster with 3N_{NO2B}

²⁴O: Coupled-Cluster with 3N_{NO2B}

⁴⁰Ca: Coupled-Cluster with $3N_{NO2B}$

⁴⁸Ca: Coupled-Cluster with 3N_{NO2B}

Outlook: Chiral 3N for Heavy Nuclei

- first ab initio calculations with chiral NN+3N Hamiltonians for heavy nuclei
- realistic mass systematics without phenomenological adjustments — α-dependence might hold surprises...

Conclusions

Conclusions

- new era of ab-initio nuclear structure and reaction theory connected to QCD via chiral EFT
 - chiral EFT as universal starting point... some issues remain
- consistent inclusion of 3N interactions in similarity transformations & many-body calculations
 - breakthrough in computation & handling of 3N matrix elements
- innovations in many-body theory: extended reach of exact methods & improved control over approximations
 - versatile toolbox for different observables & mass ranges
- many exciting applications ahead...

Epilogue

thanks to my group & my collaborators

- S. Binder, A. Calci, B. Erler, E. Gebrerufael, A. Günther, H. Krutsch, J. Langhammer, S. Reinhardt, C. Stumpf, R. Trippel, K. Vobig, R. Wirth Institut für Kernphysik, TU Darmstadt
- P. Navrátil TRIUMF Vancouver, Canada
- J. Vary, P. Maris Iowa State University, USA
- S. Quaglioni LLNL Livermore, USA
- P. Piecuch Michigan State University, USA

- H. Hergert, K. Hebeler Ohio State University, USA
- P. Papakonstantinou IPN Orsay, F
- C. Forssén Chalmers University, Sweden
- H. Feldmeier, T. Neff GSI Helmholtzzentrum

Deutsche Forschungsgemeinschaft

DFG

Exzellente Forschung für Hessens Zukunft

Bundesministerium für Bildung und Forschung

COMPUTING TIME

Robert Roth – TU Darmstadt – 07/2012