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Introduction

When Casimir meets Linde! ... What are you talking about?
Why thermodynamics of the Quark-Gluon Plasma (QGP)?

Structure (T ,µ) of phase diagram; location of Critical End Point (CEP)
Hydrodynamic description of the plasma in expansion

Why Resummed Perturbation Theory (RPT)?
Poor convergence ⇒ bare PT useless at moderate energies T and µ

No sign problem; connects with lattice results toward lower energies
Qualitative understanding of plasma properties at moderate energies

Why then would we need new ideas (geometric confinement)?
Why not? Could get nice insights, possible new screening effects...
More realistic description, properly accounting for the finite size!
...Input for a more quantitative description of jet quenching
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Bulk thermodynamics of the QGP Experimental quests and theoretical challenges

Phase diagram and critical end point

Figure from [Heng-Tong Ding et al., Int.J.Mod.Phys. E24 (2015)]
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Bulk thermodynamics of the QGP Experimental quests and theoretical challenges

Thermal QCD on a lattice

Lattice discretization of the theory
⇒ Hypercubic lattice N3

s × Nτ with spacing a 6= 0

Monte Carlo simulations possible
⇒ Probing the bulk thermodynamics in a full non perturbative way!

Bielefeld’s GPU (Germany)
500 Teraflops ∼ 10 000 PCs
(And ≈ EUR 1.1× 106)
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Bulk thermodynamics of the QGP Experimental quests and theoretical challenges

Thermal QCD on a lattice

However
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Bulk thermodynamics of the QGP Experimental quests and theoretical challenges

Thermal QCD on a lattice

Dirac operator, at nonzero µB, is not hermitian:
The fermion determinant is complex

⇒ Problem with average phase factor, highly oscillatory integrals

⇒ Simulations (still) not (yet) feasible!
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Bulk thermodynamics of the QGP Experimental quests and theoretical challenges

Analytic (perturbative) approach

Path integral representation of the partition function (e.g. for scalar fields):

Z (T , {µf } ;V ) ≡ TrP exp

[
−β
∫

ddx

(
Ĥ −

∑
f

µf Q̂f

)]

=

∫
φ

Dφ(x) exp

[
−
∫
Cβ

dτ
∫

ddx (Leff(φ, i∂φ/∂τ))

]

Perturbative evaluation (S̃φI ≡ SφI/λ, interacting part of the action):

log Z = log Z0 − λ
{〈

S̃φI

〉}
+

λ2

2

{〈
S̃2
φI

〉
−
〈
S̃φI

〉2}
+O

(
λ3
)

Thermodynamic quantities obtained from various derivatives of the partition
function ZQCD. In the infinite volume/non compactified limit ‘V →∞’:

pQCD ≡ T

V
logZQCD

S ≡ ∂ pQCD
∂T

; Nf ≡
∂ pQCD
∂µf
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Bulk thermodynamics of the QGP Correlations and fluctuations of conserved charges

Cumulants

Correlations and fluctuations of conserved charges via such thermal averages,
trivially realized via derivatives of the pressure respect to chemical potentials, as:

ZQCD = Tr exp

[
−β
∫

ddx
(
ĤQCD

∣∣∣
µf =0

−
∑
f

µf Q̂f

)]

For allowing comparisons with lattice, we deal with cumulants at vanishing µf :

χui dj sk ...
(T ) ≡ ∂ i + j + k + ... p (T , {µf })

∂µi
u ∂µ

j
d ∂µk

s ...

∣∣∣∣
{µf }=0

... But first, what about bare (not resummed) and conventional (infinite volume;
no spatial compactification) perturbation theory...?
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∂µi
u ∂µ

j
d ∂µk

s ...

∣∣∣∣
{µf }=0

... But first, what about bare (not resummed) and conventional (infinite volume;
no spatial compactification) perturbation theory...?
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Bulk thermodynamics of the QGP Correlations and fluctuations of conserved charges

(massless) QCD with Nf = 3 and µ = 0:
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Finite density QCD Equation of State via
resummed PT



Finite-µ QCD EoS via resummed PT Low order cumulants

Low order cumulants
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Finite-µ QCD EoS via resummed PT Low order cumulants
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Finite-µ QCD EoS via resummed PT Pressure at finite baryon chemical potential

Pressure at finite µB

The finite density part of the pressure is “simply” defined as:

∆p(T ) ≡ p(T , {µf } 6= 0)− p(T , {µf } = 0)

Which is nothing but a Taylor series containing all order cumulantss:

∆p(T ) =
∞∑

i,j,k,...=1

∂ i+j+k+...p(T , {µu, µd , µs , ...})
∂µi

u∂µ
j
d∂µk

s ...

∣∣∣∣∣
{µf }=0

×µ
i
uµ

j
dµ

k
s ...

i ! j! k!...

=
∞∑

i,j,k,...=1

χui dj sk ...
×µ

i
uµ

j
dµ

k
s ...

i ! j! k!...
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Finite-µ QCD EoS via resummed PT Pressure at finite baryon chemical potential

Pressure at finite µB
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Geometric confinement and finite volume



Geometric confinement and finite volume Introduction for a single free scalar field

Glimpse of geometric confinement

How to think of a more realistic finite volume in a HIC context?
(and from an analytic point of view)

⇒ Whatever way to implement this, it must have some sort of boundary!

What if we implement a (perturbative) geometric confinement?
Disappearance of all of the infrared divergences,
Confinement of the particles inside the QGP region,
Loss of translation invariance in some of the directions,
Presence of new thermal & geometric (Casimir type of) effects.

About the thermodynamics then (f (T , {Li}) ≡ f (T , {Li})− f (T = 0, {Li})):

1 p(T , {Li}) = −f (T , {Li})−
∑D−1

i=1

[
Li × ∂f (T ,{Li})

∂Li

]
2 s(T , {Li}) = −∂f (T ,{Li})

∂T ; ε(T , {Li}) = f (T , {Li})− T ∂f (T ,{Li})
∂T

3 X v (T , Li ) = −
∑D−1

i=1

[
Li × ∂f (T ,{Li})

∂Li

]
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Geometric confinement and finite volume Introduction for a single free scalar field

Geometric confinement for a single free scalar field

Typical one-loop master sum-integral:

− T1+2α

2
∏c

i=1

(
Li

) × ( Λ̄2eγE
4π

) 2− D
2×

×
∑

n∈Z1

∑
k∈Nc

∫ dD−1−cp
(2π)D−1−c

[
1(

ω2
n +
∑c

i=1 ω
2
ki

+p2+m2
)α
]

Analytically continuing the above, say for c = 3 and m 6= 0, gives such a (out
of many different possible) representation(s) for the proper free-energy:

Dr. Sylvain Mogliacci (UCT) Thermodynamics & geometric confinement January 12, 2017 14 / 37



Geometric confinement and finite volume Introduction for a single free scalar field

Geometric confinement for a single free scalar field

Typical one-loop master sum-integral:

− T1+2α

2
∏c

i=1

(
Li

) × ( Λ̄2eγE
4π

) 2− D
2×

×
∑

n∈Z1

∑
k∈Nc

∫ dD−1−cp
(2π)D−1−c

[
1(

ω2
n +
∑c

i=1 ω
2
ki

+p2+m2
)α
]

Analytically continuing the above, say for c = 3 and m 6= 0, gives such a (out
of many different possible) representation(s) for the proper free-energy:

Dr. Sylvain Mogliacci (UCT) Thermodynamics & geometric confinement January 12, 2017 14 / 37



Geometric confinement and finite volume Introduction for a single free scalar field

Geometric confinement for a single free scalar field

Typical one-loop master sum-integral:

− T1+2α

2
∏c

i=1

(
Li

) × ( Λ̄2eγE
4π

) 2− D
2×

×
∑

n∈Z1

∑
k∈Nc

∫ dD−1−cp
(2π)D−1−c

[
1(

ω2
n +
∑c

i=1 ω
2
ki

+p2+m2
)α
]

Analytically continuing the above, say for c = 3 and m 6= 0, gives such a (out
of many different possible) representation(s) for the proper free-energy:

Dr. Sylvain Mogliacci (UCT) Thermodynamics & geometric confinement January 12, 2017 14 / 37



Geometric confinement and finite volume Introduction for a single free scalar field

Geometric confinement for a single free scalar field

Typical one-loop master sum-integral:

− T1+2α

2
∏c

i=1

(
Li

) × ( Λ̄2eγE
4π

) 2− D
2×

×
∑

n∈Z1

∑
k∈Nc

∫ dD−1−cp
(2π)D−1−c

[
1(

ω2
n +
∑c

i=1 ω
2
ki

+p2+m2
)α
]

Analytically continuing the above, say for c = 3 and m 6= 0, gives such a (out
of many different possible) representation(s) for the proper free-energy:

Dr. Sylvain Mogliacci (UCT) Thermodynamics & geometric confinement January 12, 2017 14 / 37



Geometric confinement and finite volume Introduction for a single free scalar field

Dr. Sylvain Mogliacci (UCT) Thermodynamics & geometric confinement January 12, 2017 15 / 37



Now, finally, some new plots!



Scaling of the Li-symmetric functions



Geometric confinement and finite volume Results for the thermodynamics of the free scalar field

(1) Free-Energy density for M/T = 0 (L1 = L2 = L3 ≡ L)
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Geometric confinement and finite volume Results for the thermodynamics of the free scalar field

(1) Pressure for M/T = 0 (L1 = L2 = L3 ≡ L)
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Geometric confinement and finite volume Results for the thermodynamics of the free scalar field

(1) Energy density for M/T = 0 (L1 = L2 = L3 ≡ L)
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Geometric confinement and finite volume Results for the thermodynamics of the free scalar field

(1) Entropy density for M/T = 0 (L1 = L2 = L3 ≡ L)
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Geometric confinement and finite volume Results for the thermodynamics of the free scalar field

(1) Trace anomaly for M/T = 0 (L1 = L2 = L3 ≡ L)
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Geometric confinement and finite volume Results for the thermodynamics of the free scalar field

(1) Trace anomaly for M/T = 5 (L1 = L2 = L3 ≡ L)
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Geometric confinement and finite volume Results for the thermodynamics of the free scalar field

(1) Heat capacity for M/T = 0 (L1 = L2 = L3 ≡ L)
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Geometric confinement and finite volume Results for the thermodynamics of the free scalar field

(1) Geometric suscep. for M/T = 0 (L1 = L2 = L3 ≡ L)
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Li-symmetric functions versus
temperature



Geometric confinement and finite volume Results for the thermodynamics of the free scalar field

(2) Pressure for M = 0 MeV (L1 = L2 = L3 ≡ L)
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Geometric confinement and finite volume Results for the thermodynamics of the free scalar field

(2) Pressure for M = 250 MeV (L1 = L2 = L3 ≡ L)
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Geometric confinement and finite volume Results for the thermodynamics of the free scalar field

(2) Energy density for M = 0 MeV (L1 = L2 = L3 ≡ L)
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Geometric confinement and finite volume Results for the thermodynamics of the free scalar field

(2) Entropy density for M = 0 MeV (L1 = L2 = L3 ≡ L)
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Geometric confinement and finite volume Results for the thermodynamics of the free scalar field

(2) Trace anomaly for M = 0 MeV (L1 = L2 = L3 ≡ L)
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Geometric confinement and finite volume Results for the thermodynamics of the free scalar field

(2) Trace anomaly for M = 250 MeV (L1 = L2 = L3 ≡ L)
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Scaling of the Li-asymmetric functions



Geometric confinement and finite volume Results for the thermodynamics of the free scalar field

(3a) Assymmetric Free-Energy density for M/T = 0
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Geometric confinement and finite volume Results for the thermodynamics of the free scalar field

(3b) Assymmetric Free-Energy density for M/T = 0
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Conclusion



Conclusion

Conclusion

DR/HTLpt shows good agreement at all displayed temperatures
⇒ Consistence of the (DR/HTLpt) resummed perturbative frameworks!

But not ideal...

... Perhaps geometric confinement can help?
⇒ To be followed!

1 arXiv:1701.XXXXX (PRD?)
2 Higher order; effects of interactions;
3 Application to QCD;
4 New (finite volume) screening effects;
5 ...

THANKS A LOT FOR YOUR ATTENTION!
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Backup slides



Backup

Backup: Some notation

At one-loop, contributions coming from, e.g., the quarks read:

pqf (T ,µ) = 2
∑∫
{K}

log
[
A2
S(i ω̃n + µf , k)− A2

0(i ω̃n + µf , k)
]

With AS and A0:

A0(i ω̃n + µf , k) ≡ i ω̃n + µf −
m2

qf

i ω̃n + µf
T̃K(i ω̃n + µf , k)

AS(i ω̃n + µf , k) ≡ k +
m2

qf

k

[
1− T̃K(i ω̃n + µf , k)

]

Where the HTL function T̃K can be represented as:

T̃K(i ω̃n + µf , k) = 2F1

(
1
2
, 1;

3
2
− ε; k2

(i ω̃n + µf )2

)
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Backup

Backup: Branch cuts

By contour integral representations, sum-integrals carried out using non trivial
branch cuts from both the logarithm and the 2F1 (HTL) functions
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Backup

Backup: HTLpt/DR parameters and lattice data

Running of the coupling: HTLpt/DR → 1/2-loop perturbative running

mD, mqf mass parameters: Mainly their weak coupling values at 1/2-loop

QCD scale: Matching the running to lattice value at a reference scale

⇒ Gives Λ
HTLpt/DR
MS

=176/283 ± 30 MeV to be “conservative”

Renormalization scale: Central value by optimizing the 3d gauge coupling.
Then Λ̄ is varied by a factor of 2 around this central value

⇒ For example, Λ̄opt(µf = 0) ≈ 1.44×2πT
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Backup

Backup: HTLpt/DR parameters and lattice data

Relevant to nowadays experiments at RHIC [Tannenbaum, arXiv:1201.5900],
LHC [Müller, ARNPS 62 (2012)], FAIR [Heuser, NPA 904-905 (2013)] and
NICA [Kekelidze et al., NPA 904-905 (2013)]:

Three massless flavors and colors

Lattice data from:
BNL-B [Bazavov et al., PRD 88 (2013) and PRL 111 (2013);

Schmidt, JPCS 432 (2013) and NPA 904-905 (2013)]
WB [Borsányi et al., JHEP 01 (2012), PRL 111 (2013) and JHEP

08 (2012); Borsányi, NPA 904-905 (2013)]
RBC-B [Petreczky et al., PoS LAT 2009 (2009)]

Truncated 3-loop HTLpt results from:
[Haque et al., PRD 89 (2014)]
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Backup

Backup: HTLpt/DR higher order cumulant
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Backup

Backup: HTLpt/DR ratios of cumulants
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Recall that:

χB4 =
(
χu4 + χd4 + χs4 + 4χu3 d + 4χu3 s + 4χd3 u + 4χd3 s + 4χs3 u + 4χs3 d
+6χu2 d2 + 6χd2 s2 + 6χu2 s2 + 12χu2 ds + 12χd2 us + 12χs2 ud

)
/81

χB2 =
(
χu2 + χd2 + χs2 + 2χud + 2χds + 2χus

)
/9
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