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© INTRODUCTION

© BULK THERMODYNAMICS OF THE QGP
@ Experimental quests and theoretical challenges
@ Correlations and fluctuations of conserved charges

@ FiNiTE-p QCD EOS VIA RESUMMED PT
@ Low order cumulants
@ Pressure at finite baryon chemical potential

e GEOMETRIC CONFINEMENT AND FINITE VOLUME
@ Introduction for a single free scalar field
@ Results for the thermodynamics of the free scalar field
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Why thermodynamics of the Quark-Gluon Plasma (QGP)?

@ Structure (T, ) of phase diagram; location of Critical End Point (CEP)
@ Hydrodynamic description of the plasma in expansion

Why Resummed Perturbation Theory (RPT)?
@ Poor convergence = bare PT useless at moderate energies T and p
@ No sign problem; connects with lattice results toward lower energies

@ Qualitative understanding of plasma properties at moderate energies

Why then would we need new ideas (geometric confinement)?
@ Why not? Could get nice insights, possible new screening effects...
@ More realistic description, properly accounting for the finite size!

@ ...Input for a more quantitative description of jet quenching
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Figure from [Heng-Tong Ding et al., Int.J.Mod.Phys. E24 (2015)]
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THERMAL QCD ON A LATTICE

Lattice discretization of the theory
= Hypercubic lattice N3 x N, with spacing a # 0

Monte Carlo simulations possible
= Probing the bulk thermodynamics in a full non perturbative way!

Bielefeld's GPU (Germany)
500 Teraflops ~ 10 000 PCs
(And ~ EUR 1.1 x 10°)
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THERMAL QCD ON A LATTICE

Dirac operator, at nonzero g, is not hermitian:
The fermion determinant is complex

= Problem with average phase factor, highly oscillatory integrals

= Simulations (still) not (yet) feasible!
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T, o [—ﬁ [as (7{ oy ug)]
F

/D¢(X) exp [—/ dr /ddx (Lese(, iaqﬁ/@T))]
¢ Cp
Perturbative evaluation (§¢, = 5S4,/ interacting part of the action):

e z=tog 20— A{(Su)}+ 3 {(8)-(8)} o)

Thermodynamic quantities obtained from various derivatives of the partition
function Zqcp. In the infinite volume/non compactified limit 'V — oo

Z(T {ur}: V)

DRr. SYLVAIN MocLiacct (UCT) THERMODYNAMICS & GEOMETRIC CONFINEMENT) JANUARY 12, 2017

6 /37



BULK THERMODYNAMICS OF THE QGP EXPERIMENTAL QUESTS AND THEORETICAL CHALLENGES

ANALYTIC (PERTURBATIVE) APPROACH

Path integral representation of the partition function (e.g. for scalar fields):

T, o [—ﬁ [as (7{ oy ug)]
F

o) exp |- [ ar [ax(Lanto.io0/on)
¢ Cp
Perturbative evaluation (§¢, = 5S4,/ interacting part of the action):

log Z = log 2y — )\{<§¢,,>}+ A22{<§§,>—<§¢,>2}+0(A3)

Thermodynamic quantities obtained from various derivatives of the partition
function Zqcp. In the infinite volume/non compactified limit 'V — oo

Z(T {ur}: V)

-
paco =y, log Zqcp
d pqcp d pqcp
S= : =
oT N s
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CUMULANTS

Correlations and fluctuations of conserved charges via such thermal averages,
trivially realized via derivatives of the pressure respect to chemical potentials, as:
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trivially realized via derivatives of the pressure respect to chemical potentials, as:
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Zqco = Trexp —5/ddx <7'AlQCD
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For allowing comparisons with lattice, we deal with cumulants at vanishing g,:
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Correlations and fluctuations of conserved charges via such thermal averages,
trivially realized via derivatives of the pressure respect to chemical potentials, as:

L zf:uféf>

Zqco = Trexp —5/ddx (ﬁQCD

Hf

For allowing comparisons with lattice, we deal with cumulants at vanishing g,:

(ry = 2 p(TAnd)

Xuj dj sy -

Optt, Oty Opik ...

{ne}=0

DR. SYLVAIN MocLiacclt (UCT) THERMODYNAMICS & GEOMETRIC CONFINEMENT) JANUARY 12, 2017 7/ 37



BULK THERMODYN OF THE QGP CORRELATIONS AND FLUCTUATIONS OF CONSERVED CHARGES

CUMULANTS

Correlations and fluctuations of conserved charges via such thermal averages,
trivially realized via derivatives of the pressure respect to chemical potentials, as:

L zf:uféf>

Zqco = Trexp —5/ddx (ﬁQCD

Hf

For allowing comparisons with lattice, we deal with cumulants at vanishing g,:

6i+j+k+m p T, U
Xorgop (T) = — fa( k {u})
i, Oty Opt ...

{ne}=0

... But first, what about bare (not resummed) and conventional (infinite volume;
no spatial compactification) perturbation theory...?
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LOW ORDER CUMULANTS
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FINITE- QCD EOS VIA RESUMMED PT

XBa = (Xu4 + Xda + Xsa + 4 Xu3d T 4 Xu3s + 4 Xd3u + 4 Xd3s + 4 Xs3u + 4 Xs3d
+6 Xu2d2 + 6 Xd2s2 + 6 Xu2s2 + 12 Xu2ds + 12 Xa2us + 12 Xs2 ud) /81

Massless quarks = xus = Xd4 = Xsa4
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LoOw ORDER CUMULANTS

FINITE-p QCD EOS VIA RE:

XB4 = (Xu4 +Xd4 +Xs4 +4Xu3d +4Xu3s +4Xd3u +4Xd3s +4Xs3u +4Xs3d
+6 Xu2d2 + 6 Xd2s2 + 6 Xu2s2 + 12 Xu2ds + 12 Xa2us + 12X52ud)/81

Massless quarks = xus = Xd4 = Xsa4
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T (MeV) T (MeV)
JANUARY 12, 2017 10 / 37

THERMODYNAMICS & GEOMETRIC CONFINEMENT)

LVAIN MocLiacct (UCT)



FINITE- 1

PRESSURE AT FINITE up

THERMODY



FINITE-p QCD EOS VIA RE; v PRESSURE AT FINITE BARYON CHEMICAL POTENTIAL

PRESSURE AT FINITE up

The finite density part of the pressure is “simply” defined as:

Ap(T)=p(T,{p} #0) —p(T,{p} =0)
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FINITE-p QCD EO0OS VIA RESUMMED PT PRESSURE AT FINITE BARYON CHEMICAL POTENTIAL

PRESSURE AT FINITE up

The finite density part of the pressure is “simply” defined as:

Ap(T)=p(T,{p} #0) —p(T,{p} =0)

Which is nothing but a Taylor series containing all order cumulantss:

0o ai+j+k+... T o i ko
Ap( T) = P(’ ,j{,ufuak/J'daM ) }) % i.l;u/itld,l;:'
ijk,...=1 OplOprgOpk... (1r}=0 Pyl kL.
_ i sl
T2 Xedses Mg
ij,k,...=1
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PRESSURE AT FINITE BARYON CHEMICAL POTENTIAL

FINITE-p QCD EO0OS VIA RESUMMED PT

PRESSURE AT FINITE up
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GLIMPSE OF GEOMETRIC CONFINEMENT

@ How to think of a more realistic finite volume in a HIC context?
(and from an analytic point of view)
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= Whatever way to implement this, it must have some sort of boundary!
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© What if we implement a (perturbative) geometric confinement?
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© What if we implement a (perturbative) geometric confinement?

o Disappearance of all of the infrared divergences,
o Confinement of the particles inside the QGP region,

DR. SYLVAIN MocLiacct (UCT) THERMODYNAMICS & GEOMETRIC CONFINEMENT) JANUARY 12, 2017

13 / 37



[@207e) V0o yid (elelo)N I Vi S NN D IR S 1N b ¥ MY ANYIM INTRODUCTION FOR A SINGLE FREE SCALAR FIELD

GLIMPSE OF GEOMETRIC CONFINEMENT

@ How to think of a more realistic finite volume in a HIC context?
(and from an analytic point of view)

= Whatever way to implement this, it must have some sort of boundary!

© What if we implement a (perturbative) geometric confinement?
o Disappearance of all of the infrared divergences,
o Confinement of the particles inside the QGP region,
o Loss of translation invariance in some of the directions,
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@ How to think of a more realistic finite volume in a HIC context?
(and from an analytic point of view)

= Whatever way to implement this, it must have some sort of boundary!

o What if we implement a (perturbative) geometric confinement?

Disappearance of all of the infrared divergences,

Confinement of the particles inside the QGP region,

Loss of translation invariance in some of the directions,
Presence of new thermal & geometric (Casimir type of) effects.

About the thermodynamics then (f(T,{L;}) = f(T,{L:}) — f(T =0,{L;})):
© p(T,{Li})=—F(T.{L}) -3 lLi x T ALD)

Q s(T,{L}) = —LOALD . (T {1;}) = (T, {L;}) - TZTLLLD

@ (T,L) = - L7 [L,- x W]
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GEOMETRIC CONFINEMENT AND FINITE VOLUME

GEOMETRIC CONFINEMENT FOR A SINGLE FREE SCALAR FIELD

@ Typical one-loop master sum-integral:
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GEOMETRIC CONFINEMENT FOR A SINGLE FREE SCALAR FIELD

@ Typical one-loop master sum-integral:

142 A2 2

o E 2

T X (/\ e ) X
2 If 1 (L,)

dD—l—c 1

[
inezl ZkeNc J(QW)D_I_C [(u§+27 wfi+p2+m2>a

i=1
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GEOMETRIC CONFINEMENT FOR A SINGLE FREE SCALAR FIELD

@ Typical one-loop master sum-integral:
s « (/_\Ze—YE) 2—gx
2112, (L) T
D—-1-c
rd p 1
X c 3
Z”ezl ZkeN J(ZW)D_I_C [(wﬁ-‘er_l wfi+p2+m2>
@ Analytically continuing the above, say for ¢ = 3 and m # 0, gives such a (out
of many different possible) representation(s) for the proper free-energy:
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INTRODUCTION FOR A SINGLE FREE SCALAR FIELD
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X
8mLs (s.01)€72\(0} Ly \/s2+ (2T L,)%s3 Ly \/s2+ (2TL,)%s3

73 1 [ BRI (1 [T T L) L)) |
i X
3/2
STL1 4 o1 srezo\(0) (52 + (T L2)283 + (2T Lo)2s3)
T3 ' [~ VRIS T T L3 (1+WTR s2+(2TL1)QS§+(2TL3)ZS§)-
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2T / K. (mn Vet (@TL)%s% + QTL 258 + (2TL3)ZS§) -
A ;
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(1) TRACE ANOMALY FOR M/T =0 (L1 =L, =L3=1L)

0.02

-0.12




GEOMETRIC CONFINEMENT AND FINITE VOLUME
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GEOMETRIC CONFINEMENT AND FINITE VOLUME

(1) HEAT CAPACITY FOR M/T =0 (L1 =Ly =L3=1L)
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GEOMETRIC CONFINEMENT AND FINITE VOLUME

(1) GEOMETRIC SUSCEP. FOR M/T =0 (L1 =L =L3=1L)
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(2) PRESSURE FOR M =0 MEV (L =L, =L3=1)
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GEOMETRIC CONFINEMENT AND FINITE VOLUME

(2) ENERGY DENSITY FOR M =0 MEV (L, =L, =L3=1L)
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(2) TRACE ANOMALY FOR M =0 MEV (L; =L, =L3=1L)
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(3A) ASSYMMETRIC FREE-ENERGY DENSITY FOR M/T =0

f(T, L)

f(L=o)

Planes
Tube (1x3)
Tube

DR. SYLVAIN MOGLIA (UuCT) THERMODYNAM & CEOMETRIC CONFINEMENT] JANUARY 12, 2017 30 / 37



(€763 V04 i3 (Sl ZINI I Vi AN\ ID IR I N Gu I AN YIM RESULTS FOR THE THERMODYNAMICS OF THE FREE SCALAR FIELD

(3B) ASSYMMETRIC FREE-ENERGY DENSITY FOR M/T =0
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CONCLUSION

CONCLUSION

o DR/HTLpt shows good agreement at all displayed temperatures
= Consistence of the (DR/HTLpt) resummed perturbative frameworks!

But not ideal...

@ ... Perhaps geometric confinement can help?
= To be followed!

Q@ arXiv:1701.XXXXX (PRD?)

@ Higher order; effects of interactions;
@ Application to QCD;

@ New (finite volume) screening effects;

THANKS A LOT FOR YOUR ATTENTION!
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BACKUP: SOME NOTATION

At one-loop, contributions coming from, e.g., the quarks read:

pCIf (T7IJ’) = 2¢
{K}

log [AZ(in + e, k) = AF(in + s, k)]
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BACKUP: SOME NOTATION

At one-loop, contributions coming from, e.g., the quarks read:

po, (T, 1) = 2# log [ 2150 + e, K) — A (i + i, K)|

{K}
With As and Ag:
m? ~
Ao(iwn + pir k) = iwn + pr — ﬁ Te(iwn + pr, k)
m2
As(iGn+ e k) = k+ ; [1 — T(i@n + k)]
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BACKUP: SOME NOTATION

At one-loop, contributions coming from, e.g., the quarks read:

pr(Tvl'l’):2i

log [AZ(in + e, k) = AF(in + s, k)]

{K}
With As and Ag:
m? ~
AO(ian =+ pr, k) = Wy + pr — ﬁ TK("@n + pr, k)
m? ~
AS(iGon + s k) = k= [1 — Tu(i@n + pur, k)]

Where the HTL function 7~’K can be represented as:

TaliGn+ s k) = o1 (2,13 i
1 = —_ f—- — € —m——
KUWn T fif, 2 5 = (i@n + pir )2
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BAcKuP: BRANCH CUTS

By contour integral representations, sum-integrals carried out using non trivial
branch cuts from both the logarithm and the »f; (HTL) functions
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BAcKuP: BRANCH CUTS

By contour integral representations, sum-integrals carried out using non trivial

branch cuts from both the logarithm and the oy (HTL) functions
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@ Running of the coupling: HTLpt/DR — 1/2-loop perturbative running
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Backup: HTLPT/DR PARAMETERS AND LATTICE DATA

@ Running of the coupling: HTLpt/DR — 1/2-loop perturbative running

@ mp, mq, mass parameters: Mainly their weak coupling values at 1/2-loop
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Backup: HTLPT/DR PARAMETERS AND LATTICE DATA

@ Running of the coupling: HTLpt/DR — 1/2-loop perturbative running

@ mp, mq, mass parameters: Mainly their weak coupling values at 1/2-loop

@ QCD scale: Matching the running to lattice value at a reference scale

HTLpt/DR
MS

= Gives A =176/283 £ 30 MeV to be “conservative”
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Backup: HTLPT/DR PARAMETERS AND LATTICE DATA

@ Relevant to nowadays experiments at RHIC [Tannenbaum, arXiv:1201.5900],
LHC [Miiller, ARNPS 62 (2012)], FAIR [Heuser, NPA 904-905 (2013)] and
NICA [Kekelidze et al., NPA 904-905 (2013)]:

Three massless flavors and colors

DRr. SYLVAIN MocLiacclt (UCT) THERMODYNAMICS & GEOMETRIC CONFINEMENT) JANUARY 12, 2017 35 / 37



BAckup: HTLPT/DR PARAMETERS AND LATTICE DATA

@ Relevant to nowadays experiments at RHIC [Tannenbaum, arXiv:1201.5900],
LHC [Miiller, ARNPS 62 (2012)], FAIR [Heuser, NPA 904-905 (2013)] and
NICA [Kekelidze et al., NPA 904-905 (2013)]:

Three massless flavors and colors

o Lattice data from:

BNL-B [Bazavov et al., PRD 88 (2013) and PRL 111 (2013);
Schmidt, JPCS 432 (2013) and NPA 904-905 (2013)]
WB [Borsanyi et al., JHEP 01 (2012), PRL 111 (2013) and JHEP
08 (2012); Borsanyi, NPA 904-905 (2013)]
RBC-B [Petreczky et al., PoS LAT 2009 (2009)]
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BAckup: HTLPT/DR PARAMETERS AND LATTICE DATA

@ Relevant to nowadays experiments at RHIC [Tannenbaum, arXiv:1201.5900],
LHC [Miiller, ARNPS 62 (2012)], FAIR [Heuser, NPA 904-905 (2013)] and
NICA [Kekelidze et al., NPA 904-905 (2013)]:

Three massless flavors and colors

o Lattice data from:
BNL-B [Bazavov et al., PRD 88 (2013) and PRL 111 (2013);
Schmidt, JPCS 432 (2013) and NPA 904-905 (2013)]
WB [Borsanyi et al., JHEP 01 (2012), PRL 111 (2013) and JHEP
08 (2012); Borsanyi, NPA 904-905 (2013)]
RBC-B [Petreczky et al., PoS LAT 2009 (2009)]

@ Truncated 3-loop HTLpt results from:
[Haque et al., PRD 89 (2014)]
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BACKUP: HTLPT/DR HIGHER ORDER CUMULANT

0.3
= RBC-B, N.=4
0.2 HTLpt 1-loop exact
- DR
Ol
R
X 0.0 ' I I
-0.1 l
-0.2
-0.3
- 250 200 500 600
T (MeV)
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DR. SYLVAIN MOGCLIACC THERMODYNAMICS & GEOMETRIC CONFINEMENT]



BAckup: HTLPT/DR RATIOS OF CUMULANTS

Recall that:

XB4 = (Xu4 + Xd4 + Xsa + 4 Xu3d T 4 Xu3s + 4 Xd3u + 4 Xd3s 4 Xs3u + 4 Xs3d
+6 Xu2d2 + 6 Xd2s2 + 6 Xu2s2 + 12 Xu2ds + 12 Xd2us + 12X52ud)/81

XB2 = (xuz + Xd2 + Xs2 + 2 Xud + 2 Xds + 2xus) /9

0.8 4
©| i 0.14 Iﬂ
0.12 ‘ }{
e 0.10) Nﬂ[
T2 X 72 Xeq 0.08
Yo Yo 0.06F ————]
0.2 g = BNL-B, N,=8 0.04 - \Il?ll\éL-B, N,=8
' = WB HTLpt 3-loop truncated
HTLpt 1-loop exact 0.02 HTLpt 1-loop exact
= DR - DR
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