

European Research Council Established by the European Commission

Does η/s depend on the EoS?

Pasi Huovinen Institute of Physics Belgrade

Nuclear Physics seminar

December 12, 2019, Institut für Theoretische Physik, Frankfurt

reporting work done by Jussi Auvinen and Harri Niemi

in collaboration with Kari J. Eskola, Risto Paatelainen, and Peter Petreczky

Does η/s extracted from the data depend on the EoS used in the calculations?

Lattice EoS at 2009

• Good at large T, not at low T

s95p

- HRG below $T \approx 170\text{--}190 \text{ MeV}$
- lattice above T = 250 MeV
- interpolate between

Budapest-Wuppertal trace anomaly

Effect on distributions

- ideal fluid
- Au+Au collision at RHIC, $\sqrt{s} = 200$ GeV, b=7 fm
- $T_{\text{dec}} = 124$ MeV; all EoSs!

Effect on η/s

- Alba et al., arXiv:1711.05207
 - s95p: $\eta/s = 0.025$
 - B-W: $\eta/s = 0.047$
- Schenke et al., arXiv:1901.04378
 - s95p: $\eta/s = 0.095$
 - B-W: $\eta/s = 0.12$

Lattice EoS at 2018

• s95p: PDG 2005, hotQCD 2008

- s87r: PDG 2005, latest hotQCD data
- s95p: PDG 2005, hotQCD 2008

- s87r: PDG 2005, latest hotQCD data
- s88s: PDG 2017, latest hotQCD data
- s95p: PDG 2005, hotQCD 2008

- s83z: PDG 2017, latest B-W data
- s87r: PDG 2005, latest hotQCD data
- s88s: PDG 2017, latest hotQCD data
- s95p: PDG 2005, hotQCD 2008

- s83z: PDG 2017, latest B-W data
- s87r: PDG 2005, latest hotQCD data
- s88s: PDG 2017, latest hotQCD data
- s95p: PDG 2005, hotQCD 2008

Effect on η/s

- Alba et al., arXiv:1711.05207
 - s95p: $\eta/s = 0.025$
 - B-W: $\eta/s = 0.047$
- Schenke et al., arXiv:1901.04378
 - s95p: $\eta/s = 0.095$
 - B-W: $\eta/s = 0.12$

Modeling problem

Model parameters (input): $\vec{x} = (x_1, ..., x_n)$ $(\tau_0, \epsilon_{\text{init}}, \eta/s, T_{\text{dec}}, T_{\text{chem}}, ...)$ $\downarrow \downarrow$ Model output $\vec{y} = (y_1, ..., y_m) \Leftrightarrow$ Experimental values \vec{y}^{\exp} $(dN/dy, \langle p_T \rangle, v_n, ...)$

- Which values of input parameters \vec{x} give the best reproduction of experimental output \vec{y}^{exp} ?
- What is the level of uncertainty of these values?

Model parameters (input): $\vec{x} = (x_1, ..., x_n)$ $(\tau_0, \epsilon_{\text{init}}, \eta/s, T_{\text{dec}}, T_{\text{chem}}, ...)$ $\downarrow \downarrow$ Model output $\vec{y} = (y_1, ..., y_m) \Leftrightarrow$ Experimental values \vec{y}^{exp} $(dN/dy, \langle p_T \rangle, v_n, ...)$

Bayes' theorem:

Posterior probability \propto Likelihood \cdot Prior knowledge

Bayes' theorem:

Posterior probability \propto Likelihood \cdot Prior knowledge

• **Prior knowledge**: Range of parameter values

Bayes' theorem:

Posterior probability \propto Likelihood \cdot Prior knowledge

• Likelihood: $\mathcal{L}(\vec{x}) \propto \exp\left(-\frac{1}{2}(\vec{y}(\vec{x}) - \vec{y}^{\exp})\Sigma^{-1}(\vec{y}(\vec{x}) - \vec{y}^{\exp})^T\right)$, where Σ is the covariance matrix

Bayes' theorem:

Posterior probability \propto Likelihood \cdot Prior knowledge

- Likelihood: $\mathcal{L}(\vec{x}) \propto \exp\left(-\frac{1}{2}(\vec{y}(\vec{x}) \vec{y}^{\exp})\Sigma^{-1}(\vec{y}(\vec{x}) \vec{y}^{\exp})^T\right)$, where Σ is the covariance matrix
- \bullet evaluation of the likelihood function $\mathcal{O}(10^8)$ runs. . .
- use Gaussian emulator instead
 stochastic, non-parametric interpolation of the model

Bayes' theorem:

Posterior probability \propto Likelihood \cdot Prior knowledge

- Likelihood: $\mathcal{L}(\vec{x}) \propto \exp\left(-\frac{1}{2}(\vec{y}(\vec{x}) \vec{y}^{\exp})\Sigma^{-1}(\vec{y}(\vec{x}) \vec{y}^{\exp})^T\right)$, where Σ is the covariance matrix
- \bullet evaluation of the likelihood function $\mathcal{O}(10^8)$ runs. . .
- use Gaussian emulator instead
 stochastic, non-parametric interpolation of the model
- Sample the likelihood function using Markov chain Monte Carlo = random walk in parameter space constrained to favour high likelihood

 \rightarrow distribution of Markov chain steps \equiv probability distribution P. Huovinen @ ITP, Dec 12, 2019

The model

- 2+1D viscous hydro with shear viscosity only
 - event averaged EKRT initialisation, normalisation parameter $K_{\rm sat}$
 - $\tau_0 = 0.2$ fm fixed
 - initial $v_r = 0$ and $\pi^{\mu\nu} = 0$
- $T_{\rm dec}$ and $T_{\rm chem}$ free parameters
- $(\eta/s)(T)$ of the form

 $\begin{aligned} (\eta/s)(T) &= S_{\mathrm{HG}}(T_{\mathrm{min}} - T) + (\eta/s)_{\mathrm{min}}, & T < T_{\mathrm{min}} \\ (\eta/s)(T) &= (\eta/s)_{\mathrm{min}}, & T_{\mathrm{min}} < T < T_{\mathrm{min}} + W \\ (\eta/s)(T) &= S_{\mathrm{QGP}}(T - T_{\mathrm{min}} - W) + (\eta/s)_{\mathrm{min}}, & T > T_{\mathrm{min}} + W \end{aligned}$

The model

- 2+1D viscous hydro with shear viscosity only
 - event averaged EKRT initialisation, normalisation parameter $K_{\rm sat}$
 - $\tau_0 = 0.2$ fm fixed
 - initial $v_r = 0$ and $\pi^{\mu\nu} = 0$
- $T_{\rm dec}$ and $T_{\rm chem}$ free parameters
- $(\eta/s)(T)$ of the form

$$\begin{aligned} (\eta/s)(T) &= S_{\mathrm{HG}}(T_{\mathrm{min}} - T) + (\eta/s)_{\mathrm{min}}, & T < T_{\mathrm{min}} \\ (\eta/s)(T) &= (\eta/s)_{\mathrm{min}}, & T_{\mathrm{min}} < T < T_{\mathrm{min}} + W \\ (\eta/s)(T) &= S_{\mathrm{QGP}}(T - T_{\mathrm{min}} - W) + (\eta/s)_{\mathrm{min}}, & T > T_{\mathrm{min}} + W \end{aligned}$$

• Free parameters $K_{\rm sat}$, $T_{\rm min}$, $(\eta/s)_{\rm min}$, $S_{\rm HG}$, $S_{\rm QGP}$, W, $T_{\rm dec}$, $T_{\rm chem}$

• $\frac{\mathrm{d}N_{ch}}{\mathrm{d}\eta}$, $\frac{\mathrm{d}N_{\pi}}{\mathrm{d}y}$, $\frac{\mathrm{d}N_{K}}{\mathrm{d}y}$ and $\frac{\mathrm{d}N_{p}}{\mathrm{d}\eta}$

- $\frac{\mathrm{d}N_{ch}}{\mathrm{d}\eta}$, $\frac{\mathrm{d}N_{\pi}}{\mathrm{d}y}$, $\frac{\mathrm{d}N_{K}}{\mathrm{d}y}$ and $\frac{\mathrm{d}N_{p}}{\mathrm{d}\eta}$
- $\langle p_T
 angle_\pi$, $\langle p_T
 angle_K$ and $\langle p_T
 angle_p$

- $\frac{\mathrm{d}N_{ch}}{\mathrm{d}\eta}$, $\frac{\mathrm{d}N_{\pi}}{\mathrm{d}y}$, $\frac{\mathrm{d}N_K}{\mathrm{d}y}$ and $\frac{\mathrm{d}N_p}{\mathrm{d}\eta}$
- $\langle p_T
 angle_\pi$, $\langle p_T
 angle_K$ and $\langle p_T
 angle_p$
- $v_2^{ch}\{4\}$

- $\frac{\mathrm{d}N_{ch}}{\mathrm{d}\eta}$, $\frac{\mathrm{d}N_{\pi}}{\mathrm{d}y}$, $\frac{\mathrm{d}N_K}{\mathrm{d}y}$ and $\frac{\mathrm{d}N_p}{\mathrm{d}\eta}$
- $\langle p_T
 angle_\pi$, $\langle p_T
 angle_K$ and $\langle p_T
 angle_p$
- $v_2^{ch}\{4\}$

- $\frac{\mathrm{d}N_{ch}}{\mathrm{d}\eta}$, $\frac{\mathrm{d}N_{\pi}}{\mathrm{d}y}$, $\frac{\mathrm{d}N_K}{\mathrm{d}y}$ and $\frac{\mathrm{d}N_p}{\mathrm{d}\eta}$
- $\langle p_T
 angle_\pi$, $\langle p_T
 angle_K$ and $\langle p_T
 angle_p$
- $v_2^{ch}\{4\}$

	Au+Au	Pb+Pb	Pb+Pb
	$\sqrt{s_{ m NN}} = 200~{ m GeV}$	$\sqrt{s_{ m NN}} = 2.76~{ m TeV}$	$\sqrt{s_{\mathrm{NN}}} = 5.02 ~\mathrm{TeV}$
10-20%		••••	• •
20-30%	•••	••••	• •
30-40%	•••	••••	• •
40-50%	•••	••••	• •
50-60%	•••	••••	• •

- RHIC data by STAR
- LHC data by ALICE

 $T_{
m chem}$

 $T_{\rm dec}$

 $(\eta/s)_{\min}$

- peak affected by EoS
- widths overlap

0.30

P. Huovinen @ ITP, Dec 12, 2019

• $\eta/s = 0.18^{+0.05}_{-0.05}$ when $150 \lesssim T/{
m MeV} \lesssim 250$

- $\eta/s = 0.18^{+0.05}_{-0.05}$ when $150 \leq T/\text{MeV} \leq 250$
- Bernhard et al., PRD94, 024907 (2016): $\eta/s = 0.07^{+0.05}_{-0.04}$ at $T = 154 \,\mathrm{MeV}$

- $\eta/s = 0.18^{+0.05}_{-0.05}$ when $150 \leq T/{
 m MeV} \leq 250$
- Bernhard et al., PRD94, 024907 (2016): $\eta/s = 0.07^{+0.05}_{-0.04}$ at $T = 154 \,\mathrm{MeV}$

effect of $(\eta/s)(T)$ parametrisation

effect of $(\eta/s)(T)$ parametrisation

• only very weakly, effect within the credibility limits

- only very weakly, effect within the credibility limits
- $\eta/s = 0.18^{+0.05}_{-0.05}$ when $150 \leq T/\text{MeV} \leq 250$

- only very weakly, effect within the credibility limits
- $\eta/s = 0.18^{+0.05}_{-0.05}$ when $150 \leq T/\text{MeV} \leq 250$
- η/s badly constrained when $T \lesssim 160 \,\mathrm{MeV}$ or $T \gtrsim 250 \,\mathrm{MeV}$

- only very weakly, effect within the credibility limits
- $\eta/s = 0.18^{+0.05}_{-0.05}$ when $150 \leq T/\text{MeV} \leq 250$
- η/s badly constrained when $T \lesssim 160 \,\mathrm{MeV}$ or $T \gtrsim 250 \,\mathrm{MeV}$
- minimum value may depend on the parametrization \Rightarrow take credibility limits seriously!

This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 725741)

$\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta$

 $v_2^{\rm ch}\{4\}$

 $\mathrm{d}N/\mathrm{d}y$, $\sqrt{s_{\mathrm{NN}}}=200~\mathrm{GeV}$

 $\mathrm{d}N/\mathrm{d}y$, $\sqrt{s_{\mathrm{NN}}}=2.76~\mathrm{TeV}$

 $\langle p_T \rangle$, $\sqrt{s_{\rm NN}} = 200~{\rm GeV}$

 $\langle p_T
angle$, $\sqrt{s_{
m NN}} = 2.76~{
m TeV}$

