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∼
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assuming there are quantum fluctuations
of gravity associated to the Planck scale
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Even far below       :
Effect of non local operators 

MPl
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G(t) ⋅ Λ(t) =
G0

1 + ξa(t)
⋅ Λ0[ 1 + 2ξa(t)

1 + ξa(t) ]

G0 = Λ0 = 1

ξ = 0

ξ = 0.1 ξ = 0.001

Looks good,
conditions?
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CCP conditions on parameters

• Initial a

• Initial CCP 

• Final G 

• Final CCP

• Flatness

a(ti) = 1

Λ(ti) ⋅ G(ti) = 1

G(tf ) = GN

G(tf ) ⋅ Λ(tf ) = 10−(120±5)

Ne ≥ 60; tf − ti = Ne Λ0/3
46



Deflation During 
Inflation

CCP conditions on parameters

47



ξ = eξV

ref [0]

Deflation During 
Inflation

CCP conditions on parameters

47



ξ = eξV

ref [0]

Deflation During 
Inflation

CCP conditions on parameters

flatness
excluded

47



ξ = eξV

ref [0]

Deflation During 
Inflation

CCP conditions on parameters

flatness
excluded

solves CCP

47



ξ = eξV

ref [0]

Deflation During 
Inflation

CCP conditions on parameters

flatness
excluded

solves CCP

Nice, link to Asymptotic Safety?47



Link to AS?

48



Link to AS?
Similar thoughts

In the late Universe

48



Link to AS?
Similar thoughts

In the late Universe

48

arXiv:1704.08040v2



Link to AS?
Similar thoughts

In the late Universe

48

arXiv:1704.08040v2

Now our idea coming from the UV:
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̂g( ̂t ) ̂λ( ̂t ) ≡ G(t) ⋅ Λ(t)
g*λ* → G0Λ0

g0 → G0/(aiξ)
̂t → − t/(2τ)

AS RG SD & NEC

• Non trivial “coincidence”
• Works for many flow truncations 
• UV FP @ inflation makes sense
• Separatrix special flow trajectory
• scale setting makes sense k

k0
= e−t/(2τ)
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G(t) ⋅ Λ(t)

⇐
⇒
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More couplings, more complicated

Simplifying assumption:

Matter couplings don’t run (so much)
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H2
0ΩΛ(t) + H2

0Ωrad,0a−4g(t) + H2
0Ωmat,0a−3g(t) = H2(t) − H(t)

·g
g

,

−
H2

0Ωrad,0g
a4

+ 3H2
0ΩΛ(t) − H2 +

2H ·g
g

−
2 ·g2

g2
+

··g
g

= 2
··a
a

·g(g ·a + 2a ·g) = ag··g
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H2
0ΩΛ(t) + H2

0Ωrad,0a−4g(t) + H2
0Ωmat,0a−3g(t) = H2(t) − H(t)

·g
g

,

−
H2

0Ωrad,0g
a4

+ 3H2
0ΩΛ(t) − H2 +

2H ·g
g

−
2 ·g2

g2
+

··g
g

= 2
··a
a

·g(g ·a + 2a ·g) = ag··g

Solve Numerically and compare to
NON-SD
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CDM interpretation of CMBΛ−

Cepheids …
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