Coordinates

Hendrik van Hees

Texas A\&M University
February 20, 2008

县

Cartesian Coordinates

- Cartesian Coordinates, x, y, z : Given are three arbitrary unit vectors $\vec{i}_{x}, \vec{i}_{y}, \vec{i}_{z}$, which are pairwise perpendicular to each other and oriented in this order by the "right-hand rule"
- each point in space is determined uniquely by its position vector, pointing from the origin of the coordinate system to the point: $\vec{r}=x \vec{i}_{x}+y \vec{i}_{y}+z \vec{i}_{z}$
- dot product: $\vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$
- cross product

$$
\begin{aligned}
\vec{a} \times \vec{b}= & \left(a_{y} b_{z}-a_{z} b_{y}\right) \overrightarrow{i_{x}} \\
& +\left(a_{z} b_{x}-a_{x} b_{z}\right) \vec{i}_{y} \\
& +\left(a_{x} b_{y}-a_{y} b_{x}\right) \vec{i}_{z}
\end{aligned}
$$

- Gradient: $\vec{E}=-\operatorname{grad} V$

$$
\vec{E}=-\nabla V=-\left(\frac{\partial V}{\partial x} \vec{i}_{x}+\frac{\partial V}{\partial y} \vec{i}_{y}+\frac{\partial V}{\partial z} \vec{i}_{z}\right)
$$

Spherical Coordinates (Definition)

- spherical coordinates, r, θ, ϕ
- determines any point uniquely, not located on the z axis
- Relation to Cartesian Coordinates (read them off from the figure!):

$$
\vec{r}(r, \theta, \phi)=r\left(\sin \theta \cos \phi \vec{i}_{x}+\sin \theta \sin \phi \vec{i}_{y}+\cos \theta \vec{i}_{z}\right)
$$

- coordinate ranges: $r>0, \theta \in(0, \pi), \phi \in[0,2 \pi)$

Spherical Coordinates (important formulae)

$$
\begin{aligned}
& \vec{i}_{r}=\sin \theta \cos \phi \vec{i}_{x}+\sin \theta \sin \phi \vec{i}_{y}+\cos \theta \vec{i}_{z}, \\
& \vec{i}_{\theta}=\cos \theta \cos \phi \vec{i}_{x}+\cos \theta \sin \phi \vec{i}_{y}-\sin \theta \vec{i}_{z}, \\
& \vec{i}_{\phi}=-\sin \phi \vec{i}_{x}+\cos \phi \vec{i}_{y} .
\end{aligned}
$$

- each vector, not pointing into the z-direction, is then uniquely determined by its components with respect to these unit vectors: $\vec{E}=E_{r} \overrightarrow{i_{r}}+E_{\theta} \overrightarrow{i_{\theta}}+E_{\phi} \overrightarrow{i_{\phi}}$.
- these basis vectors depend on θ and ϕ !
- surface element for sphere of radius $r: \mathrm{d} \vec{S}=r^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \overrightarrow{i_{r}}$.
- Gradient:

$$
\vec{E}=-\nabla V=-\left(\frac{\partial V}{\partial r} \vec{i}_{r}+\frac{1}{r} \frac{\partial V}{\partial \theta} \vec{i}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \vec{i}_{\phi}\right)
$$

- vector products: $\vec{i}_{r} \times \vec{i}_{\theta}=\vec{i}_{\phi}, \vec{i}_{\theta} \times \vec{i}_{\phi}=\vec{i}_{r}, \vec{i}_{\phi} \times \vec{i}_{r}=\vec{i}_{\theta}$.

Cylinder Coordinates (Definition)

- cylinder coordinates, ρ, ϕ, z
- determines any point uniquely, not located on the z axis
- Relation to Cartesian Coordinates (read them off from the figure!):

$$
\vec{r}(\rho, \phi z)=\rho \cos \phi \vec{i}_{x}+\rho \sin \phi \vec{i}_{y}+z \vec{i}_{z}
$$

- coordinate ranges: $\rho>0, \phi \in[0,2 \pi), z \in \mathbb{R}$

Cylinder Coordinates (important formulae I)

$$
\begin{aligned}
& \vec{i}_{\rho}=\cos \phi \vec{i}_{x}+\sin \phi \vec{i}_{y}, \\
& \vec{i}_{\phi}=-\sin \phi \vec{i}_{x}+\cos \phi \vec{i}_{y}, \\
& \vec{i}_{z}=\vec{i}_{z}
\end{aligned}
$$

- each vector, not pointing into the z-direction, is then uniquely determined by its components with respect to these unit vectors: $\vec{E}=E_{\rho} \vec{i}_{\rho}+E_{\phi} \vec{i}_{\phi}+E_{z} \vec{i}_{z}$.
- \vec{i}_{ρ} and \vec{i}_{ϕ} depend on ϕ !
- surface element for cylinder envelope $\rho=$ const: $\mathrm{d} \vec{S}=\rho \mathrm{d} \phi \mathrm{d} z \vec{i}_{\rho}$.
- surface element for upper cylinder cap: $\mathrm{d} \vec{S}=\rho \mathrm{d} \rho \mathrm{d} \phi \vec{i}_{z}$.

Cylinder Coordinates (important formulae II)

$$
\begin{aligned}
& \vec{i}_{\rho}=\cos \phi \vec{i}_{x}+\sin \phi \vec{i}_{y}, \\
& \vec{i}_{\phi}=-\sin \phi \vec{i}_{x}+\cos \phi \vec{i}_{y}, \\
& \vec{i}_{z}=\vec{i}_{z}
\end{aligned}
$$

- Gradient:

$$
\vec{E}=-\nabla V=-\left(\frac{\partial V}{\partial \rho} \vec{i}_{\rho}+\frac{1}{\rho} \frac{\partial V}{\partial \phi} \vec{i}_{\phi}+\frac{\partial V}{\partial z} \vec{i}_{z}\right)
$$

- vector products: $\vec{i}_{\rho} \times \vec{i}_{\phi}=\vec{i}_{z}, \vec{i}_{\phi} \times \vec{i}_{z}=\vec{i}_{\rho}, \vec{i}_{z} \times \vec{i}_{\rho}=\vec{i}_{\phi}$.

