\qquad
\qquad

Physics 208 Quiz 1

$$
\text { January 16, } 2008 \text { (due: January 23, 2008) }
$$

Problem 1 (30 points)

(a) In the figure above, add the vectors \vec{r}_{1} and \vec{r}_{2} geometrically.
(b) What are the components of these vectors, $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, and the sum $\vec{r}_{1}+\vec{r}_{2}$.
(c) If at the end points of the vectors are particles with masses m_{1} and m_{2}, what is the gravitational force, \vec{F}_{12}, exerted by particle 1 on particle 2? [You do not need to give numbers, just the expression in terms of \vec{r}_{1} and \vec{r}_{2}, the masses etc.]

Problem 2 (70 points)
(a) A particle with mass, m, moves along the trajectory

$$
\begin{equation*}
\vec{r}(t)=R \cos (\omega t) \vec{i}_{x}+R \sin (\omega t) \vec{i}_{y}, \tag{1}
\end{equation*}
$$

where \vec{i}_{x} and \vec{i}_{y} are unit vectors, perpendicular to each other (giving a Cartesian coordinate system); t is time and $\omega=$ const the angular velocity. Show that the particle moves along a circle with the center in the origin of the coordinate system. What is the radius of this circle? Hint: Calculate the distance of the particle from the origin to show that it is constant with time!
(b) Calculate the velocity, $\vec{v}(t)$, and the acceleration, $\vec{a}(t)$, of the particle. Determine the magnitude of these quantities.
(c) What is the force $\vec{F}(t)$ exerted on the particle?
(d) Can you express the force in terms of \vec{r} ? What is its direction and magnitude?

