\qquad

Physics 208 Quiz 2

January 25, 2008 (due: February 1, 2008)
Problem 1 (50 points)

A circle (radius, R) is located in the center of a Cartesian coordinate system (see figure). The upper half is uniformly charged with charge, Q, the lower half with charge, $-Q$
(a) Calculate the electric field, \vec{E}, at the center of the circle!
(b) What is the force on a test charge, q_{0}, located in the center?

Problem 2 (50 points)
A particle with mass, m, and charge, $q<0$, moves in the field of a point charge, $Q>0$, which is fixed in the origin of a Cartesian coordinate system. The particle starts at rest in a distance, R, on the x axis of a Cartesian coordinate system: $\vec{r}_{0}=R \vec{i}_{x}, \vec{v}_{0}=0$.
(a) What is the force, acting on the particle with charge, q. Write down its equation of motion:

$$
m \vec{a}=m \frac{\mathrm{~d}^{2} \vec{r}}{\mathrm{~d} t^{2}}=\vec{F}(\vec{r})
$$

(b) Show that the particle moves in a straight line along the x axis!
(c) Prove the energy-conservation law:

$$
\begin{equation*}
\frac{m}{2}\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}+\frac{q Q}{4 \pi \epsilon_{0}|x|}=E=\text { const. } \tag{1}
\end{equation*}
$$

What is E (in terms of m, q, Q, and R)?
Hint: Take the time derivative of the expression above and use the equation of motion for x to show that it vanishes, i.e., $\mathrm{d} E / \mathrm{d} t=0$. To find E, plug the initial condition into Eq. (1). For simplification, you can assume that $x>0$.
(d) (for extra credit): How long does it take for the particle to reach the center (where the charge, Q, sits).

Hint: use the energy-conservation law from part (c)! You can use the following integral:

$$
\int_{0}^{R} \mathrm{~d} x \sqrt{\frac{x}{R-x}}=\frac{\pi R}{2}
$$

