\qquad Section: \qquad

Physics 208 Quiz 4

February 13, 2008 (due: February 20, 2008)

Problem 1 (20 points)
A circular loop with a diameter $d=40 \mathrm{~cm}$ is rotated in a uniform electric field until the position of maximal electric flux is found. The flux in this position is $\Phi=5.2 \cdot 10^{5} \mathrm{Nm}^{2} / \mathrm{C}$. What is the magnitude of the electric field?

Problem 2 (20 points)
A pyramid with horizontal square base, $a=6 \mathrm{~m}$ on each side, and a height, $h=4 \mathrm{~m}$ is placed in an upward vertical electric field of magnitude $E=52 \mathrm{~N} / \mathrm{C}$. Calculate the electric flux through the pyramids four slanted surfaces.

Hint: Think about the total flux through the pyramid first, before you do a lot of unnecessary work!
Problem 3 (30 points)
Consider a closed triangular box resting within a horizontal electric field $\vec{E}=7.8 \cdot 10^{4} \mathrm{~N} / \mathrm{C} \vec{i}_{y}$ (see figure). Calculate the electric flux, Φ, through
(a) the vertical rectangular surface,
(b) the slanted surface,
(c) the entire surface of the box.

See next page!

Problem 4 (30 Points)
A charge, q, is located in the center of a coordinate system. What is the total electric flux of its electric field through the entire surface of a cylinder with its axis along the z-axis (reaching from $z=-h / 2$ to $z=+h / 2$ and radius $\rho=R$ (see figure)?
(a) Use Gauss's Law to find the answer!
(b) Do the integrals to verify it!

Hint: Use cylinder coordinates, (ρ, φ, z) ! The following integrals are needed to solve the problem:

$$
\begin{aligned}
& \int \mathrm{d} \rho \frac{\rho}{\left(\rho^{2}+z^{2}\right)^{3 / 2}}=-\frac{1}{\sqrt{\rho^{2}+z^{2}}} \\
& \int \mathrm{~d} z \frac{1}{\left(\rho^{2}+z^{2}\right)^{3 / 2}}=\frac{z}{\rho^{2} \sqrt{\rho^{2}+z^{2}}} .
\end{aligned}
$$

