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Physics 208 Quiz 7

Solutions

Problem 1 (20 Points)

Take the magnetic field of an infinitely long current-carrying wire, which reads in our standard
cylinder coordinates

~B =
µ0i

2πρ
~iϕ(ϕ). (1)

(a) Express the field in terms of Cartesian coordinates.

(b) Express the field in terms of spherical coordinates.

(c) Show that the ~B field fulfills the condition

∮

SR

d~S · ~B = 0, (2)

where SR is the sphere (surface) with radius R around the origin of the coordinate system.

Note: As explained in the lecture, Eq. (2) expresses the fact that there are no magnetic monopoles
found in nature. This is one of the fundamental laws of electromagnetism which is always valid,
not only for time-independent fields. It is one of Maxwell’s equations (in integral form)!

Solution

(a) In Cartesian coordinates

~B =
µ0i

2π
√

x2 + y2

(

−y~ix + x~iy
√

x2 + y2

)

(3)

(b) In spherical coordinates we also have ~iϕ which is of course the same as for cylinder coordinates,
because it is the same angle in both cases. Since ρ = r sinϑ, we find

~B =
µ0i

2πr sinϑ
~iϕ(ϕ). (4)

(c) In spherical coordinates the surface-element vector for the sphere with radius R around the
origin is

d~S = R2 sinϑ dϑ dϕ~ir(ϕ). (5)

Since ~ir(ϕ) ·~iϕ(ϕ) = 0 for all ϕ, because the vectors are always perpendicular to each other, the

surface integral over ~B vanishes, as it must be.



Problem 2 (40 Points)

A wire is wrapped N times around a torus (“donut”) as shown in the figures, and a current is made
running through the coil as indicated.
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Use Ampère’s Circuital Law to calculate the magnetic field, ~B, everywhere!

Solution

First we assign a coordinate system as shown:

i

x y

z

We use the usual cylinder coordinates coordinates (ρ, φ, z). Due to the symmetry of the problem
we can assume that

~B(~r) = Bφ(ρ, z)~iφ(φ). (6)

According to this symmetry, in Ampère’s Circuital Law, we use circles parallel to the xy-plane
(dashed line of the right drawing in the next figure). We orient them in the usual sense (counter-
clockwise), so that d~r is pointing in direction of ~iφ everywhere.



b

a

i
i

~B

ρmin

z a

y

z

x

y

∂S

i

i

i

i

i

i

d~S

ρmax

ρmin

It is clear that we can intersect the torus with a plane parallel to the xy-plane only if −a < z < a
(see left figure). In such a case this plane is drawn in the right figure. From the left figure we also
read that for such a z a point ~r(ρ, ϕ, z) is inside the torus for ρmin < ρ < ρmax, and we read off from
this figure that

ρmin =
b

2
−
√

a2 − z2,

ρmax =
b

2
+
√

a2 − z2.

(7)

If now our dashed line is in the whole of the torus (i.e., ρ < ρmin), then we encircle no currents and
thus, according to Ampère’s circuital Law,

∫

∂S
d~r · ~B(~r) = 2πρBϕ(ρ) = µ0iinside, (8)

we have Bϕ = 0.

If our dashed line runs outside the torus (i.e., ρ > ρmax) there are N currents of magnitude i going
in and also N currents going out. Thus, the total current inside the line vanishes again, and thus
also there Bϕ = 0.

Finally, for a path inside the torus, we encircle N currents, running into the plane. According to the
right-hand-rule convention to orient the boundary ∂S to its encircled surface, the surface-normal
vector comes out of the plane, and thus iinside = −Ni. So the complete solution is

Bϕ(ρ) =

{

−µ0Ni
2πρ for ρmin < ρ < ρmax and − a < z < a

0 everywhere else.
, (9)

where ρmin and ρmax are given in Eq. (7).

Note that the − sign in Eq. (9) corresponds to the directions of ~B as indicated in the first figure
above!



Problem 3 (40 Points)

Use the Biot-Savart Law to calculate the magnetic field, ~B(z), along the axis of a tightly wound
cylindrical coil of radius, R, and finite length, L, carrying a current, i. Discuss the limiting cases
L ≫ R and L ≪ R.

For extra credit: Can you find the magnetic dipole moment by taking z ≫ L?

Hints: If A is the cross-sectional area of the wire, the current-density vector per unit cylinder
length (in standard-cylinder coordinates) is given by

~j ′ =
Ni

LA
~iϕ, (10)

where N is the total number of loops. In the Biot-Savart Law, at each point along the cylinder
axis you have to integrate over the volume of the wire looping around the cylinder there, but the
volume element simplifies to d3~r ′ = ARdϕ′. Finally you have to integrate along the cylinder axis
to sum up all loops. Thus, here the Biot-Savart Law takes the form

~B(~r) =
µ0

4π

∫ L/2

−L/2

dz′
∫

2π

0

dϕ′AR
~j ′(~r ′) × (~r − ~r ′)

|~r − ~r ′|3 , (11)

where I have written ~r ′ in terms of cylinder coordinates ρ′, ϕ′, z′.

You can use the integrals
∫

dϕ′~iρ(ϕ
′) = 0,

∫

dx
1

(a2 + x2)3/2
=

x

a2
√

a2 + x2
. (12)

Note also that you can solve this problem only along the symmetry axis of the coil, i.e., for ~r = z~iz.
So do not struggle to calculate the field elsewhere!

~ix

z

i

i

i

i

i

i

i

i

i

i

i

i

R

L
y



Solution

According to the above described parameterization of the source point ~r ′ we have ~r ′ = R~iρ(ϕ
′)+z′~iz.

Further ~r = z~iz since we want the ~B field on the z axis only. Now we have

~j ′(~r ′) × (~r − ~r ′) =
Ni

LA
~iϕ(ϕ′) × [(z − z′)~iz − R~iρ(ϕ

′)] =
Ni

LA
[(z − z′)~iρ(ϕ

′) + R~iz]. (13)

The first term vanishes upon integration over ϕ′ in the integral (11). Thus we are left with

~B(z~iz) =
µ0Ni

4πLA
2π

∫ L/2

−L/2

dz′
AR2~iz

[(z − z′)2 + R2]3/2
, (14)

where we have done the trivial integral over ϕ′, giving a factor 2π, because the integrand is indepen-
dent of ϕ′ (as to be expected from the symmetry of the problem with respect to rotations around
the z axis).

The remaining integral is given in the hint, Eq. (12), leading to the final result:

~B(z~iz) =
µ0Ni

2L

[

z + L/2
√

R2 + (z + L/2)2
− z − L/2
√

R2 + (z − L/2)2

]

~iz. (15)

We plot (15) for different ratios of R/L. This clearly shows that the simplified derivation for a long
solenoidal coil, given in the lecture is indeed approximately valid, if z is not too close to the ends
of the coil, provided that L ≫ R, i.e., “long” is to be understood in comparison to R.
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Finally we look at three limiting cases:

1. L ≫ R and |z| ≪ L.

Then we can take the limit L → ∞ in the bracket, giving

~B(z~iz) =
µ0Ni

L
~iz, (16)

which coincides with the result for a long coil, we have obtained in the lecture.



2. |z| ≫ L/2 and |z| ≫ R.

Then we can use an expansion of (15) with respect to 1/z, giving in leading order

~B =
µ0Ni

2

R2

z3
~iz, (17)

which is the field of a magnetic dipole with ~r pointing in direction of the dipole moment
(compare our discussion in the lecture, when we calculated the ~B-field of a single loop along
the symmetry axis). Comparing the pertinent formula (see, e.g., Quiz 6!) with (17) gives

~pm = µ0πNiR2~iz. (18)

3. L ≪ R and L ≪ |z|.
Then we can expand (15) around z = 0, leading to

~B =
µ0NiR2

2(R2 + z2)3/2

~iz. (19)

For N = 1 this is the result we obtained for a single loop along the symmetry axis.


