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This is a short summary of some aspects of out-of-equilibrium statistical physics and
quantum field theory. Specifically, I will focus on the Langevin description.

1 Introduction

Solving the microscopic equations in many-
body physics is considered practically impossi-
ble. Thus, one has to use some sort of effec-
tive description to describe macroscopic quanti-
ties of interest. Remarkably, these often obey
approximately simple deterministic equations.
The approximate nature enters in the form
of fluctuation terms. Thus, one has stochas-
tic equations, i.e. the macroscopic quantities
are functions of random variables. In (out-of-
equilibrium) statistical physics there are roughly
speaking two approaches: The Boltzmann equa-
tion and the Langevin description, or equiva-
lently the Fokker–Planck equation.1 The lat-
ter is an example of a stochastic differential
equation. These can be used to create phe-
nomenological models for a variety of processes
in physics, chemistry, biology and finance, see
e.g. [1]. As an example the velocity distribution
P for a Brownian particle of mass m is deter-
mined by a Fokker–Planck equation of the form

∂P

∂t
=

1

m

∂

∂~v
·
(
γP~v +

Dγ2

m

∂P

∂~v

)
, (1)

where γ is a friction constant and D is a spatial
diffusion constant. The amplitude of the ran-
dom white noise is given by 2Dγ2. Solving (1)
we get

P (~v, t) = N exp

(
− m

(
~v − ~v0e−γt/m

)2
2kBT

(
1− e−2γt/m

)) ,
(2)

where N = N (t) is determined by the normal-
ization. For t → ∞ we recover the Maxwell–
Boltzmann distribution. Furthermore, (2) tells

1 The exact equations in quantum-field theory are the
Kadanoff–Baym equations.
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Fig. 1: Plot of (2) for different times, with inital
values v0 = kBT = m = 1. For t = 0 the dis-
tribution is a delta function and for large t we ap-
proach the Maxwell–Boltzmann distribution centered
around v = 0.

us exactly how we approach equilibrium. This is
plotted in figure 1. In the following we shall dis-
cuss some ways to derive Fokker-Planck equa-
tions from fundamental microscopic dynamics
on various levels of sophistication.

2 Relativistic phase-space
distribution

The one-particle distribution of a gas of N par-
ticles is defined such that an observer at time t
finds Nf(~r, ~p, t)d3rd3p particles in the volume
element d3r with momentum ~p within a range
d3p. It was shown by van Kampen only in 1969
that f is indeed a Lorentz scalar in the (t, ~x, ~p)
space [2].We can define a momentum distribu-
tion F (~p, t) =

∫
f(~r, ~p, t)d3r. For a gas of free,

non-interacting particles E~pF (~p, t) is invariant,
whereas for an ideal gas in equilibrium contained
in a Volume V only F

V is invariant. Thus, the
average momentum 〈pα〉 =

∫
pαF (~p, t)d3p is a-

four vector only in the former case. Generically,
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it is a non-local quantity and thus observer de-
pendent. Nevertheless, upon fixing a spacelike
hyperplane in Minkowski space, the average mo-
mentum does transform like a four vector [3].
This has to be taken into account in simulations
involving relativistic particles.

2.1 The Boltzmann equation

The dynamics of f is governed by the
Boltzmann-equation

uµ∂µf +
∂

∂pµ
(Kµf) = C[f ], (3)

where uµ = dxµ/dτ is the four-velocity, Kµ =
dpµ/dτ is an external force, and C[f ] is the
collision integral. It can be written (non-
relativistically) as∫

[w(p+ q, q)f(p+ q)− w(p, q)f(p)] d3q,

where w(p, q) is the rate of change from ~p to
~p − ~q. If the collisions are dominated by low
momentum (soft) scattering, we can expand

w(p+ q, q)f(p+ q) ≈w(p, q)f(p) + q · ∂
∂p

(wf)

+
1

2
qiqj

∂2

∂pi∂pj
(wf).

Then the collision term can be approximated as

C[f ] =
∂

∂pi

[
Ai(p)f +

∂

∂pj
[Bij(p)f ]

]
,

where

Ai =

∫
d3kw(p, k)ki,

Bij =
1

2

∫
d3kw(p, k)kikj .

Using this in (3) we have found a Fokker-Planck
equation for the phase-space distribution func-
tion as an approximation to the Boltzmann
equation.

3 Stochastic Dynamics

3.1 Langevin Description

The Langevin equation is a phenomenological
model for stochastic processes such as Brownian
motion. The equations read

ẋi = pi/p0 (4a)

ṗi = −aijpj + F i + cijξj , (4b)

where the dot indicates proper-time deriva-
tives and ξi is white noise. It is completely
determined by its moments 〈ξi〉 = 0 and
〈ξi(t1)ξj(t2)〉 = δijδ(t1 − t2). Due to the δ-
function there is an ambiguity in the equations.
To calculate expressions like

B =

∫ t+δt

t

b(x(t))ξ(t)dt

one needs to employ some discretisation rule.
The three common ones are

• Ito: B → b(x(t))
∫ t+δt
t

ξ(t)dt

• Stratonovich:

B → (b(x(t)) + b(x(t+ δt))/2
∫ t+δt
t

ξ(t)dt

• Post-Ito: B → b(x(t+ δt))
∫ t+δt
t

ξ(t)dt

Upon expansion in δt this can be summarized
as

B → (b(x(t)) + λḃ(x(t))δt)

∫ t+δt

t

ξ(t)dt,

for λ ∈ {0, 1/2, 1}. The right choice depends
on the physical context, see [1] for a discussion.
Keeping this in mind, we can determine the av-
erage displacement and correlations in phase-
space. We have

〈δxi〉 =

∫ t+δt

t

ẋidt =
pi

p0
δt,

assuming that the velocity is constant for small
δt. Obviously then 〈δxiδxj〉 = O(δt2). The mo-
mentum integration is slightly tricky. We have

〈δpi〉 =

∫ t+δt

t

ṗidt

= (−aijpj + F i)pi +

〈∫ t+δt

t

cijξjdt

〉
.

The relevant part of the last equation is upon
discretesation

· · ·+ λ

(
∂

∂pl
cij

)
ṗlδt

∫ t+δt

t

ξjdt

= · · ·+ λ

(
∂

∂pl
cij

)
clkξkδt

∫ t+δt

t

ξjdt.

Taking the average and using 〈ξi(t1)ξj(t2)〉 =
δijδ(t1 − t2) we find

1

δt
〈δpi〉 = (−aijpj + F i)pi + λ

(
∂

∂pl
cik

)
clk.
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Similarly we have

〈δpiδpj〉 = cikcjkδt.

Given these results one can derive a probability
distribution P (~x, ~p, t). The expectation value
of any phase space function g(~x, ~p) is given by

〈g〉(t) =
∫
g(~x, ~p)P (~x, ~p, t)d3xd3p. Thus, d〈g〉

dt =∫
g dPdt . On the other hand

d〈g〉
dt

= lim
δt→0

〈g〉(t+ δt)− 〈g〉(t)
δt

=
〈δg〉
δt

.

To calculate 〈δg〉 we expand up to second order,
which will be justified further below. We get

δg = g(x+ δx, p+ δp)− g(x, p)

= δxi
∂g

∂xi
+ δpi

∂g

∂pi
+ δpiδpj

∂2g

∂pi∂pj
.

As we have shown above, these are indeed all
terms of order O(δt). Thus,

d〈g〉
dt

=

∫
g

dP

dt

= lim
δt→0

1

δt

∫
P
(
δxi

∂g

∂xi
+ δpi

∂g

∂pi

+ δpiδpj
∂2g

∂pi∂pj

)
(5)

After partial integration in (5) and inserting the
results for the 〈δxi〉 etc., we get the Fokker–
Planck equation

(
∂

∂t
+
pi

p0
∂

∂xi

)
P =

∂

∂pi

(
AiP +

∂

∂pj
DijP

)
,

(6)
where we defined

Ai = aijpj − F i − λ
(
∂

∂pl
cik

)
clk, (7)

Dij = cikcjk. (8)

The right hand side in (6) represents flow in mo-
mentum space. In equilibrium this must vanish,
which, together with the known equilibrium dis-
tribution (Maxwell, Jüttner, etc.), gives rise to
relations between the Ai and Dij , known as fluc-
tuation dissipation theorems (FDT). For Brow-
nian motion (1) one obtains D = kBT

γ .

3.2 Microscopic origin

Consider a density matrix ρ[φ+, φ−] in a quan-
tum field theory, i.e. instead of the position the

field variables φ(~x) are the degrees of freedom.
The time evolution is something like

ρt2 [φ2+, φ2−]

=

∫
Dφ1+Dφ1−Ut2,t1ρt1 [φ1+, φ1−]U†t1t2 , (9)

where the time evolution operator U depends on
φ1+, φ2+ and U† is a functional of the other two
fields. We can express the time evolution as a
functional integral

U =

∫
DφeiS[φ], U† =

∫
Dφe−iS

∗[φ]. (10)

Note that −iS∗[φ(t, x)] = iS∗[φ(−t, x)]. Thus,
inserting (10) into (9) one gets a functional in-
tegral with an action with a forward and back-
ward path in time. This is known as Schwinger–
Keldysh double time path. Following [4] for the
rest of this section, consider now an harmonic
oscillator H = ω0a

†a. One obtains up to nor-
malization

Z = trρt=∞ =

∫
DφDφ̄eiS ,

where φ are coherent states and the action is
given by

S =

∫
C

dtφ̄(i∂t − ω0)φ. (11)

Here C denotes the contour going from +∞ →
−∞→ +∞. Let

φ(t) =
1√
2ω0

(P (t)− iω0X(t)) .

The action (11) then reads

S =

∫
C

dt

[
1

2
Ẋ2 − V (X)

]
, (12)

with the potential V (X) = ω2
0X

2/2. Let us now
decompose the field into a part X+ propagating
forward in time, and X− propagating on the
backward path. Furthermore, we define classical
and quantum parts via

Xcl = (X+ +X−)/2, Xq = (X+ −X−)/2.

Then (12) becomes∫ +∞

−∞
dt
[
−2XqẌcl − V (Xq +Xcl) + V (Xcl −Xq)

]
.

After expanding up to first order in Xq we get

S =

∫
−2Xq

[
Ẍcl + V ′(Xcl)

]
.
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The functional integral over Xq gives a δ-
functional, thus the only configuration con-
tributing to Z satisfies

Ẍcl = −V ′(Xcl).

Thus the name classical field. Now consider the
particle in a bath of harmonic oscillators, where
the interaction is taken as product of the coor-
dinates. Doing the same expansion one obtains

Ẍcl = −V ′(Xcl)− γẊcl.

Obtaining the friction force would not be pos-
sible with one field, as it would be a boundary
term. Keeping also the thermal fluctuations one
gets

S =

∫ +∞

−∞
dt
{
− 2Xq

[
Ẍcl+γẊcl + V ′

(
Xcl
) ]

+ 4iγT (Xq)
2
}
.

Using the identity

exp
(
− 4γT

∫
dt (Xq(t))

2 )
=

∫
Dξe−

∫
dt[ 1

4γT ξ
2(t)−2iξ(t)Xq(t)] (13)

one finally obtains the Langevin equation

Ẍcl = −γẊcl − V ′
(
Xcl
)

+ ξ(t).

From (13) we see that ξ is indeed white noise
since

〈ξ(t)ξ(t′)〉 =

∫
Dξ ξ(t)ξ(t′)e−

∫
dt 1

4γT ξ
2(t)

= 2γTδ(t− t′).

This is consistent with the FDT we obtained for
Brownian motion.

3.3 Langevin equation with memory

The Langevin equation (4) gives rise to Marko-
vian processes, which is certainly only an ap-
proximation in most physical processes. The
generalized Langevin equation is given by

ẋi = pi/p0 (14a)

ṗi =

∫ t

t0

Γ(t− t′)pi(t′)dt′ + F i + cijξj , (14b)

where Γ is a memory kernel and ξ is specified by
〈ξ〉 = 0, and 〈ξ(t1)ξ(t2)〉 = K(t1 − t2), i.e. col-
ored noise. K is the autocorrelation function

and usually assumed to vanish for |t1− t2| > τc,
for some τc > 0, e.g. the scattering time. In
principal, ξ may also have higher non-vanishing
moments. The general fluctuation dissipation
theorem [5] relates K to Γ. Note that (14) is no
longer a well defined initial value problem due to
the finite correlation time τc. Instead, one has
to consider a time t0 at which the noise is turned
on. The generalized Langevin equation (14) is a
nonlinear stochastic differential equation of the
form

u̇i = Fi(u, t; ξ),

where u is the collection of variables. For a sin-
gle realization ξ̄ of the random functional ξ we
can get a linear equation by passing to the Li-
ouville equation

∂tρ(u, t) = −
∑
i

∂i
(
Fi(u, t; ξ̄)ρ

)
. (15)

For such a linear equation, one can then
solve perturbatively in τc. Taking the average
〈p(u, t)〉 = P (u, t) we get a rather complicated
Fokker–Planck equation for the probability dis-
tribution [1], which could be used as a starting
point for numerical simulations.
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