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Introduction

The following manuscript aims at an introduction to modern methods in relativistic quantum many-
body theory. In the recent years the interest in this topic has been triggered by the developments in
heavy-ion physics, where the creation of strongly interacting matter in collisions of nuclei and its
properties are studied (mostly at the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven Na-
tional Lab (BNL) and the Large Hadron Collider (LHC) at CERN). There are many indications for
the creation of a deconfined state of matter, the Quark-Gluon Plasma (QGP), which quickly thermal-
izes and can be described with (ideal and viscous) hydrodynamical models, describing the collective
motion of the particles in the sense of a perfect or nearly perfect fluid. Here, the question of the
off-equilibrium properties of the very early phases and the microscopic mechanisms behind the very
quick thermalization are of particular interest. In any case, the fireball is a rapidly expanding system,
and the medium is undergoing a transition from the deconfined “partonic” state to a hadronic many-
body system, and observable are only the asymptotically free hadrons, photons, and leptons hitting
the detectors. Other interesting questions involve the chiral phase transition in the light-quark sector
of QCD and the implications for heavy-ion observables, particularly electromagnetic probes (lepton-
antilepton pairs, aka. dileptons, photons) and the properties of hadrons in dense and hot hadronic
matter. Another important topic is the identification of observables indicating a possible first-order
chiral and or deconfinement phase transition in compressed baryonic matter which may be achiev-
able in heavy-ion collisions at lower collision energies (beam-energy scan at RHIC, upcoming FAIR
and NICA experiments).
In this manuscript we introduce many-body techniques, using relativistic quantum field theory, empha-
sizing the socalled real-time formulation, which allows the investigation of dynamical properties of
quantum systems. We start with a thorough discussion of thermal equilibrium, where the closed real
time-path formalism of Schwinger and Keldysh is extended by an imaginary-time path, leading to
a unification of the real-time methods with the older imaginary-time (Matsubara) formalism via ana-
lytic continuition. Later, we shall consider more generall off-equilibrium situations, concentrating
on the derivation of semiclassical transport equations from the underlying microscopic quantum-field
theoretical models. Despite its great practical applicability to the analysis of many-body systems off
thermal equilibrium, it also helps to answer the fundamental question, how the classical description of
matter and fields (mostly the electromagnetic field) emerges from the underlying fundamental quantum
theory.
This manuscript is organized as follows: After a brief reminder about the description of free scalar
and spin-1/2 (Dirac) particles in the first chapter, in the second chapter we investigate many-body
systems of interacting particles in thermal equilibrium within the operator formalism of relativis-
tic quantum field theory, using canonical quantization. The main goal is to establish the thermal
Feynman-diagram rules for the evaluation of Green’s functions in the Schwinger-Keldysh real-time
formlism. To achieve this goal we work from the very beginning with generating functionals with
simple field theoretical models like φ4 theory or the linear σ model. We shall also introduce the path-
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integral methods, which are equivalent to the operator formalism for the simple models studied be-
fore, but are of great advantage in the treatment of gauge theories, which underly the standard model
of elementary particles and are thus of particular interest. Here we shall also begin with quantum
electrodynamics and then generalize to non-abelian gauge theories on the example of QCD.
In chapter 3 we shall generalize all these qft techniques to the off-equilibrium case, starting from the
Baym Φ functional to derive the Kadanoff-Baym equations, which are the “master equations” for
quantum transport. Since today they are only (numerically) treatable for the most simple qft models
like φ4 theory. For this practical reason, but also the above mentioned fundamental questions, we
further derive semiclassical transport equations, using the gradient-expansion method for “coarse
graining” over the microscopic degrees of freedom to achieve an effective description of the “slow”
macroscopic collective quantities of interest. As we shall then see, the connection with the equilib-
rium methods of chapter 2 is given by linear response theory, leading to a microscopic foundation of
transport coefficients like viscosity, drag- and diffusion coefficients, and heat conductivity.
Despite the many references in the text, here I mention some more general textbooks and review pa-
pers, which of course I also used in preparing this manuscript: Among the many texts on many-body
quantum field theory, using both the real- and the imaginary-time formalism in the equilibrium case, I
recommend [KB61, Mil69, CSHY85, Lv87, LeB96, KG06, Kam11]. An excellent source to learn about
the Schwinger-Keldysh formalism is [Dan84], where the methods are used in nonrelativistic qft. For the
non-equilibrium methods I used [BM90, KV96, IKV99, GL98, IKV00, KIV01, Ber02, CH08, Cas09].
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Chapter 1

Introduction to quantum-field theory: Free fields

In this chapter, we shall briefly summarize the basic concepts of relativistic quantum field theory
within the canonical operator quantization formalism. We begin with the basic concept of Poincaré
invariance and introduce the three types of fields needed in elementary-particle physics: bosons with
spin 0 (scalar fields), fermions with spin 1/2 (Dirac fields), and massless bosons with spin 1 (photons).
The we shall remind the reader about basic physical concepts as cross sections in scattering theory,
the notion of asymptotic states, and many-body theory in thermal equilibrium. Here we shall restrict
ourselves to the most simple treatment of ideal gases by calculating the corresponding partition sums
within the operator formalism.

1.1 Poincaré invariance

In this section we introduce the most important basics about the special relativistic structure of space-
time, Minkowski space. We also define our notation and the use of natural units, i.e., we set

ħh = c = 1. (1.1.1)

Usually it is customary to measure masses, energies and momenta in MeV or GeV and lengths and
times in fm. To convert fm in MeV−1 we only need the constant [A+08]

ħhc = 197.3269631(49)MeV fm. (1.1.2)

Special-relativistic spacetime is described as an affine four-dimensional real space, on which a funda-
mental bilinear form (or “pseudo-metric”) with signature (1,3) is defined. Using a orthonormalized
basis at an arbitrary point in spacetime, the components (covariant tensor components of this bilinear
form read

(gµν ) =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (1.1.3)

The pseudo-Euclidean R4 with this fundamental form is called Minkowski space. In the following we
also use column vectors for contravariant vector components,

(xµ) =




x0

x1

x2

x3


=

�
x0

~x

�
. (1.1.4)
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1. Introduction to quantum-field theory: Free fields

The fundamental form defines the Minkowski product for two four-vectors as

x · y = gµν x
µyµ = x0y0− ~x · ~y, (1.1.5)

where over equal indices is summed (Einstein’s summation convention). The usual scalar product in
Euclidean R3 is written as ~x · ~y = x1y1+ x2y2+ x3y3 das "ubliche Skalarprodukt im Euklidischen R3

bezeichnet. The covariant components of a vector are given with help of the covariant components of
the fundamental form,

(xµ) = (gµν x
ν ) = (x0,−x1,−x2,−x3) = (x0,−~x t ), (1.1.6)

where the superscript t denotes transposition of a matrix, i.e., ~x t is the row vector (x1, x2, x3).
Accordingly gµν are the contravariant components of the fundamental form. Since for any four-vector

xµ = gµν xν = gµν gνσ xσ , (1.1.7)

we must have

gµν gνσ = δ
µ
σ =

¨
1 for µ= ν,
0 for µ 6= ν, (1.1.8)

leading to

(gµν ) =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (1.1.9)

The four-vectors x ∈R4 can be classified into three types,

x · x = x2



> 0 time like,
= 0 light like,
< 0 space like.

(1.1.10)

A linear transformation in Minkowski space that leaves the fundamental form between any pair of four-
vectors invariant is a Lorentz transformation. As any linear mapping, a Lorenta transformation can
be described with respect to an arbitrary basis as a matrix (Λµν . Then the contravariant components
behave under Lorentz transformations as

x ′µ =Λµν x
ν . (1.1.11)

Since the Minkowski products stay unchanged under this transformation, we must have

gµν x
′µy ′ν = gµνΛ

µ
µ′Λ

ν
ν ′ x

µ′yν
′
= gµ′ν ′ x

µ′yν
′
. (1.1.12)

Since this should hold true for all x, y ∈R4 we necessarily have

gµνΛ
µ
µ′Λ

ν
ν ′ = gµ′ν ′ . (1.1.13)

Using the “index-dragging convention” also for Minkowski matrices, this can be written as

(gµνΛ
µ
µ′ g

µ′σ )Λν ν ′ =Λν
σΛν ν ′ = δ

σ
ν ′ . (1.1.14)
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1.1 · Poincaré invariance

Thus a Lorentz transformation is invertible with the inverse given by

(Λ−1)µν =Λν
µ. (1.1.15)

In matrix-vector notation this means
Λ−1 = gΛt g , (1.1.16)

where we understandΛ as the matrix given in its form with the first index as superscript and the second
as subscript. Obviously describes any matrix Λ which fulfills (1.1.16) a Lorentz transformation.
Obviously the Lorentz transformations build a group with the composition of transformations, i.e.,
matrix multiplications of the corresponding Lorentz matrices, as the group product. Indeed, if Λ1
and Λ2 leave the Lorentz products of any pair of four-vectors invariant so does the composition Λ1Λ2.
Obviously for this transformation also (1.1.16) is valid, since because of g 2 = 1 we have

g (Λ1Λ2)
t g = gΛt

2Λ
t
1 g = (gΛt

2 g )(gΛt
1 g ) =Λ−1

2 Λ
−1
1 = (Λ1Λ2)

−1, (1.1.17)

which means that Λ1Λ2 obeys the condition (1.1.16) for representing a Lorentz transformation.
The physical meaning of the Lorentz transformations becomes clear, when we consider the two most
significant spacial cases, i.e.,

(i) rotations of the basis for the spatial part of four-vectors,

(ii) uniform rectilinear motion of one reference frame with respect to another one, called a rotation
free Lorentz boost.

An example for spatial rotations is given by the matrix for the rotation around the 3-axis with an angle
φ ∈ [0,2π):

D3(φ) =




1 0 0 0
0 cosφ sinφ 0
0 − sinφ cosφ 0
0 0 0 1


 . (1.1.18)

A rotation free Lorentz boost has the parametrization

B3(η) =




coshη 0 0 − sinhη
0 1 0 0
0 0 1 0

− sinhη 0 0 coshη


 (1.1.19)

with the parameter, η ∈ R. To under stand the physical meaning of this quantity, called rapidity, we
use (1.1.19) for the transformation of contravariant four-vector components,

x ′ = B3(η)x =




x0 coshη− x3 sinhη
x1

x2

−x0 sinhη+ x3 coshη


 . (1.1.20)

Consider now the spatial origin of the reference frame Σ′ by setting x ′1 = x ′2 = x ′3 = 0 we find that
this point moves in Σ according to

x1 = x2 = 0, x3 = x0 tanhη= t tanhη. (1.1.21)
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1. Introduction to quantum-field theory: Free fields

This means that Σ′ with respect to Σ along of its 3-axis with velocity v = tanhη. We see immediately
that |v |= | tanhη|< 1, i.e., one inertial reference frame can more only with a velocity smaller than the
speed of light with respect to any other inertial frame.
We can also express the boost (1.1.19) directly in terms of the velocity, using the properties of hyperbolic
functions,

coshη=
1p

1− v2
:= γ (v), sinhη=

vp
1− v2

= vγ (v). (1.1.22)

Analogously to (1.1.18) and (1.1.19) we can also write down rotations around or a boost along an arbi-
trary spatial axis. The latter is given by

B( ~v) =
�
γ − ~v tγ
− ~vγ 1+(γ − 1) ~v ⊗ ~v/ ~v 2

�
. (1.1.23)

Here ~a⊗ ~b denodes the dyadic product between two three-vectors, i.e., a matrix with the elements

(~a⊗ ~b )i j = a i b j , (1.1.24)

and the matrix multiplication of this object with a column vector from the left has the meaning

(~a⊗ ~b ~c)i = a i b j c j = a1
~b · ~c . (1.1.25)

The action of a boost (1.1.23) on the components of an arbitrary four-vector is thus given by

B( ~v)x =
�

γ (x0− ~v · ~x)
~x − (γ − 1) ~v ( ~v · ~x)/ ~v2+ γ ~v x0

�
. (1.1.26)

Finally we note that rotations around an arbitrary fixed axis or boosts along an arbitrary direction
are one-parameter subgroups of the Lorentz group, because according to the rules for the addition
of arguments of trigonometric or hyperbolic functions one immediately sees (using the three axis as
rotation axis or boost direction, respectively) we find

D3(φ1)D3(φ2) =D3(φ1+φ2), B3(η1)B3(η2) = B3(η1+η2). (1.1.27)

In addition to the Lorentz group which describes transformations of space time for which one point
(here chosen as the origin of the reference frame) is held fixed. In addition the choice of this origin is
physically irrelevant since no space-time point is special compared to any other (homogeneity of space
and time). Thus also the translations, x → x ′ = x − a with an arbitrary fixed four-vector, a, are sym-
metries of space-time. The composition of these space-time translations with Lorentz transformations
generate the full symmetry group of Minkowski space-time, the Poincaré group, which in this way is
defined as the corresponding semidirect product of the translation and the Lorentz groups.
A relativistic description of nature should respect these fundamental symmetries of nature, at least
those that can be continuously deformed from the identity transformation (the Poincaré group’s unit
element). Without prove we note that the socalled proper orthochronous Lorentz transformations
are connected continously with the group identity. A proper orthochronous Lorentz transformation is
represented by Lorentz matrices with determinant 1 and the component Λ0

0 ≥ 1. The latter condition
means that the order of time is not changed with such Lorentz transformations, i.e., the sign of the
time-component of any time-like vector does not change under such Lorentz transformations. The
proper orthochronous Lorentz group is denoted as SO(1,3)↑.

14



1.2 · Free scalar bosons

Any Lorentz transformation can be composed of a proper orthochronous one and either a spatical
reflection (“parity transformation”) P = diag(1,−1,−1,−1), which keeps the time ordering intact but
has determinant −1, a time reflection, T = diag(−1,1,1,1) which has determinant −1, or both (a
full reflection) diag(−1,−1,−1,−1) which has determinant 1 but changes the sign of time order. The
subgroup of the full Lorentz group O(1,3)which keeps the time direction of any timelike four vector is
called the orthochronous Lorentz group O(1,3)↑. The subgroup of O(1,3) which consists of Lorentz
matrices with determinant 1 (but do not keep necessarily the direction of time) is called SO(1,3). Any
of these subgroups together with the translations of space and time build the corresponding subgroup of
the Poincaré group. It turns out that in nature only the proper orthochrounous Poincaré group, which
is connected continuously to the group unity, is a symmetry group. The weak inter action breaks the
symmetry under both parity and time reversal.
We shall also need the “infinitesimal transformations”. Writing

Λµν = δ
µ
ν +δωµ

ν , (1.1.28)

we can expand the condition (1.1.13) for Λ beiing a Lorentz matrix up to O (δω2),

gµρΛ
µ
νΛ
ρ
σ = gνσ +δωρσ +δωσρ+O (δω2) != gρσ . (1.1.29)

This means that
δωρσ =−δωσρ. (1.1.30)

An infinitesimal proper orthochronous Lorentz tranformation is thus generated by antisymmetric
δωµν = gµρδω

ρ
ν . Since there are six linearly independent antisymmetric 4× 4 matrices, the proper

orthochronous Lorentz group is a six-dimensional Lie group. Natural generators are those for rotation-
free boosts δω0ν and spatial rotations δωmn with m, n ∈ {1,2,3}.

1.2 Free scalar bosons

Now we come to the most simple case of a relativistic quantum field theory. We start with a classical
scalar field φ ∈C, which behaves under Poincaré transformations as

xµ→ x ′µ =Λµν x − a, φ′(x ′) =φ(x) =φ[Λ−1(x ′+ a)] with Λ ∈ SO(1,3)↑, a ∈R4. (1.2.1)

The most simple method to develop dynamical field equations that obey given symmetries is to use
Hamilton’s least-action principle. As we shall see in a moment that has also great heuristical advan-
tages compared to guessing directly such field equations.
Hamilton’s principle in its Lagrangian form derives the equations of motion as the stationary points
of the action functional

S[φ] =
∫
R4

d4x L (φ,∂µφ) with ∂µφ=
∂ φ

∂ xµ
. (1.2.2)

If we use a Lagrangian density,L , that is a Lorentz scalar, we will get Poincaré covariant field equations
by the stationarity condition

δS[φ] =
∫
R4

d4x

�
δφ

∂L
∂ φ
+δ(∂µφ)

∂L
∂ φ̇

�
!= 0. (1.2.3)
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1. Introduction to quantum-field theory: Free fields

By definition, in the variation only the fields are varied, while the space-time coordinates are kept fixed.
Thus we have

δ(∂µφ) = ∂µδφ, (1.2.4)

and thus we can integrate the second expression in (1.2.3) by parts to obtain

∆S[φ] =
∫
R4

d4x δφ

�
∂L
∂ φ
− ∂µ

∂L
∂ (∂µφ)

�
!= 0. (1.2.5)

Since this stationarity condition must hold for any δφ, we can conclude that necessarily the field φ
must obey the Lagrange equations of motion

∂L
∂ φ
− ∂µ

∂L
∂ (∂µφ)

= 0. (1.2.6)

We should note that in principle we have two real field-degrees of freedom, namely Reφ and Imφ, and
we could vary these two components, or equivalently φ and its conjugate complex φ∗, independently
of each other. However, as long as we choose L to be real, which we essentially have to fulfill in
order to get a unitary Hamilton operator in the later derivation of a quantum field theory1. Then the
variation with respect to φ∗ will only give the conjugate complex of the equation of motion (1.2.6)
(why?).
Here we consider free or non-interacting fields, which are defined as derived from a Lagrange density
that is of second order in the fields only. With the fieldφ and its derivative ∂µφwe can essentially only
build one Poincaré invariant real Lagrangian, namely

L = (∂µφ∗)(∂ µφ)−m2φ∗φ. (1.2.7)

The choice of the sign of the terms in this expression will become clear in a moment. The equations
of motion (1.2.6) for this Lagrangian reads

−m2φ∗−�φ∗ = 0, −m2φ−�φ= 0 with � := ∂µ∂
µ = ∂ 2

t −∆. (1.2.8)

Here, the first equation is given by the variation of the action functional wrt. φ and the second one by
variation wrt. φ∗. As expected both equations are conjugate complex to each other, and thus we have
to deal only with the latter equation, which is the Klein-Gordon equation.
We will not go into the issue of whether one can interpret this Klein-Gordon equation in the sense
of a single-particle wave equation as with the Schrödinger equation in the non-relativistic case. For
a discussion of this see, e.g., [PS95]. Here we will immediately quantize this classical field theory
canonically. The corresponding quantum field theory is a many-body theory including the possibility
of particle creation and destruction processes as is common for reactions at relativistic energies and
momenta2.
The canonical formalism is derived in close analogy to the case of classical mechanics. First we define the
conjugate field momenta, one for each real field-degree of freedom. In our case we use the formalism

1One should note that this is not a necessary condition since a given set of equations of motion for a set of fields can be
derived from different Lagrangians,L . Indeed, it is easy to show that any Lagrangian densityL ′ which differs fromL only
by a total four-divergence of a vector function Ωµ(φ) of the fields φ only (exercise!).

2A reaction with a “relativistic energy” is by definition one, where the total kinetic energy of the reacting particles become
at the order of the mass of at least one of the particle species involved in the model.
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1.2 · Free scalar bosons

to vary φ and φ∗ as independent fields, which is somewhat more convenient than to work with real
and imaginary part of φ. Thus we define

Π=
∂L
∂ φ̇

= φ̇∗, Π∗ = ∂L
∂ φ̇∗

= φ̇. (1.2.9)

One should note that at this point we leave the manifest covariant formalism since the canonical de-
scription treats the time derivatives of the fields differently from the spatial derivatives. The Hamilton
density is then given by

H (φ,Π, ~∇φ) = φ̇Π+ φ̇∗Π∗−L = 2|φ̇|2−
h���φ̇

���2− ( ~∇φ∗) · (∇φ)−m2|φ|2
i

= |Π|2+( ~∇φ∗) · (∇φ)+m2|φ|2.
(1.2.10)

Now we “quantize” the system by taking the fields as operators on a Hilbert space, fulfilling the canon-
ical equal-time commutation relations

[φ(t , ~x),φ(t , ~y)] = [Π(t , ~x),Π(t , ~y)] = 0, [φ(t , ~x),Π(t , ~y)] = iδ (3)(~x − ~y),
�
φ†(t , ~x),φ(t , ~y)

�
=
�
Π†(t , ~x),Π(t , ~y)

�
=
�
φ†(t , ~x),Π(t , ~y)

�
= 0.

(1.2.11)

Furthermore, for the following it is convenient to consider the fields on a finite spatial volume, which
we chose as the cube CL = [0, L]×[0, L]×[0, L]with the edge of length L. Since we are finally interested
in the limit L→∞, the choice of the boundary conditions at the edges of the cube is irrelevant for the
final results. Thus we choose periodic boundary conditions, i.e., for all fields we assume

φ(t , ~x) =φ(t , ~x + L~e j ) for j ∈ {1,2,3}. (1.2.12)

The equations of motion for the field operators in the Heisenberg picture of time evolution follows
from

φ̇=
1
i
[φ,H] =

δH
δΠ
=Π†, Π̇=

1
i
[Π,H] =−δH

δφ
=∆φ†−m2φ†, (1.2.13)

where the Hamilton operator is given by

H =
∫

CL

d3~xH . (1.2.14)

Here, we do not care about the problem of operator ordering in field-operator products at the same
space-time point. As we shall see soon, such products are not well definied a priori since because of the
equal-time commutation relations (1.2.11) the field operators are distribution valued operators rather
than proper linear operators on Hilbert space.
Taking the conjugate complex of the first equation in (1.2.13) and use it in the second equation, we
find again that φ† (and through hermitean conjutation thus also φ) fulfills the Klein-Gordon equations
(1.2.8), now as equations for the field operators.
In order to solve the equations of motion and come to a many-particle interpretation of the Hilbert
space, we first look for plane-wave solutions of the Klein-Gordon equation, i.e., we set

φ(x) = u~k (t )exp(i~k · ~x). (1.2.15)
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1. Introduction to quantum-field theory: Free fields

The momenta are constrained to the discrete set ~k ∈ 2π/L~n with ~n ∈Z3. We find

(�+m2)φ(x) =
h

ü~k (t )+ω
2
~k

u(t )
i

exp(i~k · ~x) != 0 with ω~k
=+

Æ
m2+ ~k2. (1.2.16)

The general solution of the equation for the mode function u~k is given as the superposition of

u~k (t ) =N~k
exp(−iω~k

t ) and u~k (t )
∗ =N~k

exp(+iω~k
t ), (1.2.17)

where N~k
> 0 is normalization constant to be determined in a moment.

Now we use the corresponding Fourier decomposition for the field operators. The “positive-frequen-
cy solutions” u~k corresponds to a particle-annihilation field operator in non-relativistic many-body
theory. As we shall see also in a moment, we cannot neglect the “negative-frequency solutions” u∗

~k
in

building the field operator since (a) we must have a field with two real degrees of freedom corresponding
to two species of particles, namely the “particle” and its “antiparticle”, and (b) we want to fulfill the
local commutation relations (1.2.11). In addition, as we shall prove later, this is also the only possibility
to (c) have a unitary realization of the Poincaré group which acts locally on the field operators as
on the classical counteraprts cf. Eq. (1.2.1). The time dependence of u∗

~k
however suggests that this

“negative-frequency mode” must be related in the mode decomposition of the field operator with a
creation operator for a particle moving in direction −~k. Thus we write

φ(x) =
∑
~k

1p
V

h
a(~k)u~k (t )+b†(−~k)u∗~k (t )

i
exp(i~k · ~x). (1.2.18)

Here V = L3 denotes the quantization volume. Now we note that

u~k (t )
←→
∂t u~k (t ) = 0, u∗~k (t )

←→
∂t u~k (t ) =−2iω~k

N 2
~k

mit a
←→
∂t b := a∂t b − (∂t a)b . (1.2.19)

Thus we find

a(~k) =
i

2ω~k
N 2
~k

∫
CL

d3~xp
V

exp(−i~k · ~x)u∗~k (t )
←→
∂t φ(x),

b(−~k) = i
2ω~k

N 2
~k

∫
CL

d3~xp
V

exp(−i~k · ~x)u∗~k (t )
←→
∂t φ

†(x),
(1.2.20)

From the canonical equal-time commutation relations (1.2.11) we find
�
a(~k),a†(~k ′)

�
=
�
b(~k),b†(~k)

�
=

1
(2ω~k

)2N 4
~k

δ~k,~k ′ , (1.2.21)

where

δ~k,~k ′ =

(
1 for ~k = ~k ′,

0 for ~k 6= ~k ′
(1.2.22)

denotes the Kronecker symbol for the discrete set of momenta. The similar commutators of all other
combinations of annihilation and destruction operators vanishing. The most convenient commutation
relations are thus given by the choice

N~k
=

1Æ
2ω~k

. (1.2.23)
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1.2 · Free scalar bosons

Thus defining

u~k (x) =
1Æ
2ω~k

u~k (t )exp(i~k · ~x), (1.2.24)

we can write (1.2.18) after substitution of ~k→−~k in the part with the destruction operator and using
u−~k (t ) = u~k (t ) in the more convenient form

φ(x) =
∑
~k

1p
V

h
a(~k)u~k (x)+b†(~k)u∗~k (x)

i
. (1.2.25)

The non-trivial commutation relations for the creation and destruction operators are
�
a(~k),a†(~k ′)

�
=
�
b(~k),b†(~k)

�
= δ~k,~k ′ . (1.2.26)

Since these are the commutation relations of an infinite set of independent harmonic oscillators, the
construction of the Hilbert space is now straight forward. It is spanned by the occupation-number
basis

���
¦

N (~k),N (~k)
©¶

with N (~k),N (~k) ∈ N0 = {0,1,2, . . .}. The occupation-number operator for par-
ticles and antiparticles are given by

N(~k) = a†(~k)a(~k), N(~k) = b†(~k)b(~k), (1.2.27)

and there is one state with all occupation numbers vanishing, the vacuum state |Ω〉, characterized by

∀~k : a(~k) |Ω〉= b(~k) |Ω〉= 0. (1.2.28)

The other normalized (check!) states are given by

���
¦

N (~k),N (~k)
©¶
=
∏
~k

1q
N (~k)!N (~k)!

�
a†(~k)

�N (~k) �
b†(~k)

�N (~k) |Ω〉 . (1.2.29)

The so constructed Hilbert space is called the Fock space and the occupation-number basis also Fock
basis. Since the creation operators obey commutation relations, The Fock states (1.2.29) are sym-
metric under exchange of these operators, corresponding to a reordering of any particles within the
occupation-number state. Thus our formalism with commutation relations for the field operators de-
scribes bosons.
As a final step we have to define observables like energy, momentum, and angular momentum. To
this end we apply Noether’s theorem to the classical field theory (see Appendix A) to the Poincaré
symmetry of the action. We start with the translations, i.e.,

x ′µ = xµ−δaµ = xµ−δaνδµν , φ′(x ′) =φ(x). (1.2.30)

In the notation of (A.1.1) this means

tµν =−δµν , Tν = 0. (1.2.31)

Here we have identified δηa with δaµ. To find the Noether currents, it is most easy to use (A.1.8),
which leads to

∂νΘµ
ν = ∂ν

�
∂L
∂ (∂νφ)

∂µφ−Lδνµ
�

. (1.2.32)
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1. Introduction to quantum-field theory: Free fields

Here in the first term a summation over φ and φ∗ is implied. The Noether currents are thus given by
the energy-momentum tensor of the scalar field (check!),

Θµ
ν =

∂L
∂ (∂νφ)

∂µφ−Lδνµ = ∂ νφ∂µφ∗+ ∂νφ∗∂µφ−
�
∂ρφ

∗∂ ρφ−m2|φ|2
�
δνµ. (1.2.33)

The tensor Θµν is called the canonical energy-momentum tensor. For ν = 0 we get the densities of
energy and momentum,

H =Θ0
0 = |φ̇|2+( ~∇φ∗) · ( ~∇φ)+m2|φ|2, (1.2.34)
~P = ~e jΘ

j 0 =−φ̇∗ ~∇φ− φ̇ ~∇φ∗. (1.2.35)

Now investigate the corresponding quantized quantities and calculate the operators of total energy
(i.e., the Hamilton operator) and momentum in terms of annihilation and creation operators. Without
caring about the issue of operator ordering we first write

H′ =
∫

CV

d3~x
�
|φ̇|2+( ~∇φ∗) · ( ~∇φ)+m2|φ|2

�
. (1.2.36)

Then we plug in the mode decomposition (1.2.25), leading after some simple manipulations with the
integrals

H′ =
∑
~k

ω~k

�
a†(~k)a(~k)+b(~k)b†(~k)

�
=
∑
~k

ω~k

�
N(~k)+N(~k)+1

�
. (1.2.37)

In the last step we have used the commutation relations (1.2.26) and the definition of the occupation-
number operators (1.2.27) . We see that in (1.2.37) the first two terms in the bracket lead to a physically
meaningful interpretation of the quantum-field theoretical formalism in terms of particles: Each parti-

cle or antiparticle with momentum ~k carries a positive energy ofω~k
=
Æ
~k2+m2, and the total energy

is the sum of all these single-particle energies, which is to be expected for non-interacting particles. The
remaining term, however leads to a divergence of the total energy. It is due to the zero-point energy
of each harmonic oscillator of the field modes, leading to an infinite contribution to the total energy.
On the other hand, the absolute value of the total energy has no physical meaning, and thus we can
simply subtract this contribution and renormalize the total energy to vanish for the vacuum state,
i.e., we define the proper Hamilton operator of the many-body system as

H =
∑
~k

ω~k

�
N(~k)+N(~k)

�
. (1.2.38)

This procedure of renormalizing observables can be formalized by defining normal ordering. This
means in the expansion of an operator expression in terms of annihilation and creation operators in
any term one brings all annihilation operators of an expression to the right of all creation operators
without taking into account the contributions∝ 1 from the commutators. This is noted by enclosing
the expression into colons. Thus for the renormalized Hamilton operator instead of (1.2.36) we write

H =
∫

CV

d3~x :
�
|φ̇|2+( ~∇φ∗) · ( ~∇φ)+m2|φ|2

�
: . (1.2.39)

We apply the same procedure for the operator of total momentum. Using normal ordering we find
(check it)

~P=−
∫

CL

d3~x :
�
φ̇
∗ ~∇φ+ φ̇ ~∇φ∗

�
:=
∑
~k

~k
�
N(~k)+N(~k)

�
. (1.2.40)
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1.2 · Free scalar bosons

This is exactly the expected expression: The quantum of each mode carries the corresponding momen-
tum ~k, and the vacuum has vanishing total momentum. Also the fact that both total energy and mo-
mentum are time independent according to (1.2.38) and (1.2.40) is not surprising because of Noether’s
theorem.
Another important aspect is that also the converse of Noether’s theorem is true. In fact, there is another
theorem by Noether, which says that any conserved quantity induces a corresponding symmetry of
the action. Within classical mechanics or field theory this is most naturally seen in the Hamiltonian
canonical formulation. In quantum theory it is thus also a very simple concept: The operators of
energy and momentum should be generators of a representation of the spacetime translation group.
We shall show now that this is indeed the case. The spacetime translation (1.2.30) in the quantized
theory should be represented by the unitary transformation

Utrans(a) = exp(iaµPµ) with (Pµ) =
�

H
~P

�
. (1.2.41)

That this is indeed a unitary transformation follows from the hermiticity of the operators, H and ~P.
For an infinitesimal transformation aµ→ δaµ we find

φ′(x ′) =Utrans(δa)φ(x ′)U†
trans(δa) =φ(x ′)+δaµi

�
Pµ,φ(x ′)

�
+O (δa2). (1.2.42)

Here it is more convenient to use the space-time verion of energy and momentum (1.2.39) and (1.2.40)
instead of the mode decomposition. It is also clear that we can neglect the normal ordering when
calculating the commutator since the normal ordering differs from the naive expression only by a con-
tribution ∝ 1, which cancels in the commutator. We can also evaluate the integrals for Pµ at the
same time t = t ′ as in the argument of the field operator in (1.2.42), because Pµ is time independent.
With help of the equal-time commutation relations for the field operators (1.2.11), using (1.2.9) for the
canonical field momenta, after some manipulations we find (check it!)

φ′(x ′) =φ(x ′)+δaµ∂ ′µφ(x
′)+O (δa2) =φ(x)+O (δa2), (1.2.43)

where in the final step we have used the definition of the spacetime-translation operation x ′ = x −
δa. Eq. (1.2.43) tells us that our formalism indeed defines a unitary representation of the spacetime
translation subgroup of the Poincaré group that acts on the field operators of the quantized theory in
the same local way as the corresponding operation in classical field theory.
Now we turn to proper orthochronous Lorentz transformations. According to (1.1.28) and (1.1.30)
an infinitesimal Lorentz tranformation for a scalar field is given by six independent infinitesimal pa-
rameters δωµν =−δωνµ,

x ′µ = xµ+δωµ
ν x
ν , φ′(x ′) =φ(x). (1.2.44)

In the convention of (A.1.1) this transformation reads

x ′µ = xµ− 1
2
δωρσ tµρσ with tµρσ = xρδ

µ
σ − xσδ

µ
ρ , Tρσ = 0. (1.2.45)

Plugging this into (A.1.8) we find as the six Noether currents, labeled by the Lorentz indices ρ and σ ,
the angular-momentum density tensor ((check it!))

J ρσµ = xρΘσµ− xσΘρµ. (1.2.46)
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1. Introduction to quantum-field theory: Free fields

The generators for boosts in the quantized theory are thus given by

Km =
∫

CL

d3~x : J0m0 := t Pm −
∫

CL

d3~x x mH with m ∈ {1,2,3}. (1.2.47)

The generators of rotations are usually written in terms of angular-momentum operators,

Jm =
1
2
εmab

∫
CL

d3~x : Jab0 :=
∫

CL

d3~x : (~x × ~P )m : with a, b , m ∈ {1,2,3}. (1.2.48)

In (1.2.47) and (1.2.48) we have used the definitions of the energy and momentum density operators
from (1.2.34) and (1.2.35), implying normal ordering.
Parametrizing the infinitesimal Lorentz-transformation matrix in terms of two three-vectors δ~η
(boosts) and δ ~ϕ (rotations) as

(δωµ
ν ) =




0 −δη1 −δη2 −δη3
−δη1 0 δϕ3 −δϕ2
−δη2 −δϕ3 0 δϕ1
−δη3 δϕ2 −δϕ1 0


 (1.2.49)

the unitary operator representing proper orthochronous Lorentz transformations thus should read

UΛ(~η, ~ϕ) = exp
�
−i~η · ~K− i ~ϕ · ~J

�
. (1.2.50)

Using again the canonical equal-time commutation relations (1.2.11) and (1.2.13), indeed we find after
some calculation (check it!)

φ′(x ′) =φ(x ′)+ i
�
φ(x ′),δ~η · ~K+δ ~ϕ · ~J

�
+O (δω2)

=φ(x ′)+δ~η ·
�

t ~∇ ′φ(x ′)+ ~x ′φ̇(x ′)
�
+δ ~ϕ · (~x ′× ~∇ ′)φ(x ′)

=φ(x)+O (δω2),

(1.2.51)

where in the second step we have used (1.2.44) for the transformation of the space-time coordinates.
The UΛ thus provide a unitary representation of the proper orthochronous Lorentz group on the
Hilbert space of the quantized free scalar field. The field operators transform in a local way as the
corresponding classical fields.
All together we have constructed a quantum-field theory with the following properties

(a) The field operators obey equations of motion according to a Hamiltonian that is built by the spa-
tial integral over a local Hamilton-density operator, where locality means that it is a polynomial
of the fields, their conjugate field momenta, and their spatial gradients.

(b) The energy is bounded from below, i.e., the energy eigenvalues are positive semi-definite. The
vacuum state |Ω〉 is an energy eigenvector with eigenvalue 0 and thus the ground state of the
quantum-field theoretical system.

(c) The Hilbert space admits a unitary representation of the proper orthochronous Lorentz group,
under which the field operators transform localy as the analogous classical fields.
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1.2 · Free scalar bosons

(d) Local observables like energy, momentum, and angular momentum densities at a space-time
point x commute with the energy density at any space-time argument y that is spacelike wrt.
x, i.e., which fulfills (x − y)2 < 0.

The latter property can be proved by checking it for the special case of equal time arguments, x0 = y0,
using the equal-time commutation relations (1.2.11) for the field operators. Then the statement must
hold true for any other space-like separated space-time arguments, because one can always find a proper
orthochronous Lorentz transformation such that [Λ(x − y)]0 = 0 (check it!).
Property (d) is known as the microcausality condition and is a sufficient condition for the existance
of a Lorentz-invariant S matrix (for details, see [Wei95]). We note that (b), i.e., the existance of a
stable ground state is compatible with all the other mentioned constraints on a physically meaning full
quantum field theory if we use canonical commutation relations when quantizing the field theory, i.e.,
when we describe bosons with our scalar field theory. Had we used anticommutation relations for
fermions instead of the bosonic commutation relations (1.2.11), the normal-ordering procedure would
have introduced a sign change in the expression for the energy of the antiparticles in (1.2.37), and the
energy would not come out to be positive definite. This is a special case of the spin-statistics theorem,
according to which any local quantum field theory of fields with integer (half-integer) spin necessarily
must be quantized with boson-commutation (fermion-anticommutation) rules.
Finally we consider the symmetry of the Lagrangian (and thus also of the action) under changes of the
phase of the field, directly for the quantized fields

φ′(x) = exp(iα)φ(x), φ′†(x) = exp(−iα)φ(x) mit α ∈R. (1.2.52)

This is the most simple example for global gauge symmetry. The symmetry group is the U(1). In
terms of (A.1.1) the infinitesimal transformation reads

δxµ = 0, δφ= iδαφ, δφ† =−iδαφ†, (1.2.53)

i.e., we have
t (x) = 0, T = iφ, T† =−iφ†. (1.2.54)

To find the corresponding Noether current we use (A.1.9). Again we have to treat the fields φ and φ†

as independent field-degrees of freedom. First we find

∂L
∂ φ

T+
∂L
∂ φ†

T† = iφ†φ− iφφ† = 0, (1.2.55)

where we have used the canonical commutation relations (1.2.11) Further we find (up to singular ex-
pressions that are∝ 1)

−∂ν
∂L
∂ (∂νφ)

T− ∂ν
∂L

∂ (∂νφ
†)

T† =−i(�φ†)φ+ i(�φ)φ† = ∂ν
�
iφ†←→∂ νφ

�
. (1.2.56)

Applying the normal-ordering description we thus obtain the Noether current

jµ = i :φ†←→∂ µφ :, (1.2.57)

which, for the solution of the Klein-Gordon equation is conserved, i.e., it obeys the continuity equation
(check it!)

∂µjµ = 0. (1.2.58)
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1. Introduction to quantum-field theory: Free fields

Using the mode decomposition (1.2.25) For the corresponding Noether charge, we find

Q =
∫

CL

d3~x : j0(t , ~x) :=
∑
~k

[N(~k)−N(~k)]. (1.2.59)

This adds further confirmation of the many-particle interpretation of the canonical field formalism:
Obviously (1.2.59) means that each particle carries a charge-quantum number 1 and each antiparticle a
charge-quantum number 2, because the occupation-number Fock states are obviously also eigenstates
of the charge operator.
Finally we note, how to take the limit L→ 0, i.e., considering the whole space as “quantization vol-
ume”. For any spatial integral we have simply to make the substitution CL → R3. The momentum
sums go into momentum integrals. We have to take care of the corresponding density of single-particle
states. At finite L, a momentum volume ∆3~k contains L3/(2π)3∆3~k states, because ~k ∈ L

2πZ
3. Thus

we have to substitute
∑
~k

→V
∫
R3

d3~k
(2π)3

. (1.2.60)

Of course the volume V = L3 does not make much sense in the limit L →∞. However, since the
larger the volume becomes, the less important the boundary conditions become. This means that we
simply can build density operators out of the number operators,

n(~k) =
N(~k)

V
, n(~k) =

N(~k)
V

. (1.2.61)

Then, e.g., from (1.2.60, we read off that the operator for the total charge density is given by

ρ=
∫
R3

d3~x : j0(t , ~x) :=
∫
R3

d3~k
(2π)3

[n(~k)−n(~k)]. (1.2.62)

Obviously the mode decomposition (1.2.25) now becomes

φ(t , ~x) =
∫
R3

d3~k
(2π)3/2

h
a(~k)u~k (x)+b†(~k)u∗~k (x)

i
, (1.2.63)

while the non-trivial commutation relations (1.2.26) for the become Dirac-δ distributions,

�
a(~k),a†(~k ′)

�
=
�
b(~k),b†(~k ′)

�
= δ (3)(~k − ~k ′). (1.2.64)

1.3 Free Dirac fermions

1.3.1 The classical Dirac field

With the goal to construct a consistent relativistic wave mechanics with a single-particle interpretation
as in the non-relativistic case, Dirac looked for a wave equation that is in first order with respect to
time derivatives like the non-relativistic Schrödinger equation. Due to Lorentz symmetry then also
the spatial derivatives should appear only in first order and for free particles the mass-shell condition,
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1.3 · Free Dirac fermions

−(�+m2)ψ(x) = 0, should follow. As it turned out this property could be reached by using a four-
component spinor field, which we now call a Dirac-spinor field. This admits the first-order field
equation

(i∂µγ
µ−m14)ψ= 0, (1.3.1)

where γµ are complex 4× 4 matrices, the Dirac matrices. As a short-hand notation, later Feynman
introduced his “slash convention”, /∂ := γµ∂µ.

Multiplying the Dirac equation (1.3.1) with i /∂ +m14, we obtain

(− /∂ 2−m2
14)ψ= 0. (1.3.2)

To make this the mass-shell condition for free particles with mass m, we demand

/∂
2 =� (1.3.3)

or, more generally,
{γµ,γ ν}= 2gµν14. (1.3.4)

From (1.3.4) indeed (1.3.3) immediately follows:

/∂
2 = γµγ ν∂µ∂ν =

1
2
{γµ,γ ν}∂µ∂ν = gµν∂µ∂ν14 =�14. (1.3.5)

Writing the Dirac matrices in a 2× 2 block notation, a convenient concrete realization, the socalled
chiral or Weyl representation reads

γ 0 =
�

0 12
12 0

�
, γ j =

�
0 σ i

−σ i 0

�
(1.3.6)

with the Pauli matrices

σ1 =
�

0 1
1 0

�
, σ2 =

�
0 −i
i 0

�
, σ3 =

�
1 0
0 −1

�
. (1.3.7)

The anticommutation relations (1.3.4) immediatly follow from the anticommutation realions for the
Pauli Matrices, ¦

σ j ,σk
©
= 2δ j k

12. (1.3.8)

Further we note the pseudohermitezity of the Dirac matrices,

γ 0γµ†γ 0 = γµ⇔ γµ† = γ 0γµγ 0. (1.3.9)

Now we have to consider the behavior of the Dirac-spinor field under Lorentz transformations. We
come to the transformation rule by assuming that the field transforms linearly under Lorentz transfor-
mations in a local way, i.e., according to

x ′ =Λx, ψ′(x ′) = S(Λ)ψ(x). (1.3.10)

To find S(Λ) we note that

∂ ′µ =
∂

∂ x ′µ
=
∂ xν

∂ x ′µ
∂ν = (Λ

−1)νµ∂ν . (1.3.11)
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1. Introduction to quantum-field theory: Free fields

Using this in the Dirac equation for the transformed field, we obtain

(i /∂ ′−m)ψ′(x ′) =
�
i(Λ−1)νµγ

µ∂ν −m
�

S(Λ)ψ(x). (1.3.12)

Multiplication of this equation from the left with S−1(Λ), we see that the Dirac equation holds for the
new field if

(Λ−1)νµS−1(Λ)γµS(Λ) = γ ν ⇒ S−1(Λ)γµS(Λ) =Λµνγ
ν . (1.3.13)

To determine S(Λ), we first consider infinitesimal Lorentz transformations as defined by (1.1.28-1.1.30),

Λ= 1+δω, Λµν = δ
µ
ν +δω

µ
ν . (1.3.14)

Now, up to O (δω2) we have

S(Λ) = 14+
1
8
δωµνγ

µν , S−1(Λ) = 14−
1
8
δωµνγ

µν , (1.3.15)

where γµν =−γ νµ denotes an apprpriate set of six 4×4 matrices, which acts in Dirac-spinor space. To
find these matrices, we use this ansatz in (1.3.13) and expand up to linear order in δω, leading to

[γµ,γρσ] =4(gµργσ − gµσγρ) = 2({γµ,γρ}γσ − γρ {γµ,γσ})
= 2 [γµ,γργσ] = [γµ, [γρ,γσ]]

(1.3.16)

In the final step, we have used γρσ =−γσρ. Thus we find

γρσ = [γρ,γσ] . (1.3.17)

For finite Lorentz transformations we only need to use matrix exponentiation to get

S(Λ) = exp
�

1
8
ωµνγ

µν
�

. (1.3.18)

Using the pseudohermitezity (1.3.9) and (γ 0)2 = 1, we get

γ 0(γρσ )†γ 0 = γσρ =−γρσ (1.3.19)

and thus
S−1(Λ) = γ 0S†(Λ)γ 0, (1.3.20)

i.e., S(Λ) is pseudounitary. It is important to note that S(Λ) is only pseudounitary but not really uni-
tary. This already gives a hint that a one-particle interpretation also of the Dirac equation as a quantum
mechanical wave equation is inconsistent since for a Lorentz-invariant quantum theory Lorentz trans-
formations should be represented by unitary (ray) representations. To explicitly see that (1.3.18) is
not unitary, we consider a boost in an arbitrary direction ~n with ~n2 = 1. The corresponding Lorentz
matrix is of the form

Λ(~η) =
�

coshη −~n t sinhη
−~n sinhη coshη P‖(~n)+ P⊥(~n)

�
(1.3.21)

with the R3×3 projection matrices,

P‖(~n) = ~n⊗ ~n, P⊥ = 13− ~n⊗ ~n. (1.3.22)
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1.3 · Free Dirac fermions

The boost velocity is v = tanhη. Expanding (1.3.21) for infinitesimal δη to first order we find the
exponential form

ΛB(~η) = exp(i~η · ~K) with ~η= η~n, (1.3.23)

with

K j = i

�
0 ~e t

j
~e j 0

�
. (1.3.24)

Thus for the infinitesimal transformation we find

δx0 =−δ~η · ~x, δx j =−δη j x0 ⇒ωρ0 =−ω0ρ =
¨

0 for ρ= 0,
ηρ for ρ ∈ {1,2,3},

ω00 =ω j k = 0 for j , k ∈ {1,2,3}.
(1.3.25)

For the Dirac representation S(ΛB ) we thus need

γ 0µ = γ 0γµ− γµγ 0 =
¨

0 for µ= 0,
2γ 0γµ for µ ∈ {1,2,3}. (1.3.26)

so we find
1
8
ωµνγ

µν =
1
4
ω0ργ

0ρ =−1
2
γ 0~η · ~γ =:−i~η · ~κ. (1.3.27)

Using the chiral representation (1.3.6) of the Dirac matrices, we have

~κ=
i
2
~γγ 0 =

i
2

�
~σ 0
0 −~σ

�
. (1.3.28)

It is important to note that this matrix is antihermitean, and thus the Dirac representation of the
boosts,

SB[~η] =: S~n(η) = exp(−iη~n · ~κ), (1.3.29)

is not unitary.3 We shall see in the next chapter that the full orthochronous Lorentz group is realized
as a unitary representation within the quantum-field theoretical framework. Now we can evaluate
(1.3.29) explictly since

(i~n · ~κ)2 = 1
4
(γ 0 ~n · ~γ )2 =−1

4
(~n · ~γ )2 = ~n2

4
. (1.3.30)

Summation of the exponential series in (1.3.29) finally leads to

SB(~η) = γ
0
h
cosh

�η
2

�
γ 0− sinh

�η
2

�
~n · ~γ

i
. (1.3.31)

This is more conventiently written in the compact form,

SB(~η) = γ
0 /U with U =

�
cosh(η/2)
sinh(η/2)~n

�
, (1.3.32)

3The full group theoretical analysis of the finite-dimensional linear representations of the proper orthochronous Lorentz
group or its corresponding covring group, SL(2,C), show that only the trivial representation is unitary. Any non-trivial
representation is not equivalent to a unitary representation. The reason for this is that these groups are not compact. Contrary
to this, the rotation group, SO(3), and its covring group SU(2), are compact. As we shall see below, the chiral representation
of the γ matrices lead indeed to a unitary representation of the rotation group as a subgroup of the Lorentz group.
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1. Introduction to quantum-field theory: Free fields

which can be expressed also in terms of the four-velocity components,

u =
�

coshη
~n sinhη

�
=

1p
1− v2

�
1
~v

�
= γ

�
1
~v

�
, (1.3.33)

using simple relations for hyperbolic functions like sinhη= 2sinh(η/2)cosh(η/2), etc.

U =

 q
γ+1

2

~n
q

γ−1
2

!
. (1.3.34)

Now we investigate the Dirac representation of rotations, which transform only the spatial components
of the four vectors, i.e., in (1.3.18) we have to set

ω00 =ω0 j =−ω j 0 = 0, ω j k =−ε j k lϕ
l for j , k ∈ {1,2,3}. (1.3.35)

For infinitesimal rotations we indeed get

x ′0 = x0, x ′ j = x j + ε j k lδϕ l xk = x j − (δ ~ϕ× ~x) j . (1.3.36)

Exponentitation leads to

~x ′ = ~n (~n · ~x)− sinϕ ~n× ~x + cosϕ P⊥(~n)~x with ~n =
~ϕ

ϕ
. (1.3.37)

Further we have

γ j k =−
��
σ j ,σk� 0

0
�
σ j ,σk�

�
=−2iε j k l

�
σ l 0
0 σ l

�
=:−4iε j k lΣl . (1.3.38)

In explicit matrix form this leads to

Σl =
i
8
ε j k lγ j k =

i
4
ε j k lγ jγ k =

1
2

�
σ l 0
0 σ l

�
. (1.3.39)

Using (1.3.35) we find

SD( ~ϕ) = exp
�

1
8
ωµνγ

µν
�
= exp

�
i ~ϕ · ~Σ

�
. (1.3.40)

The chiral representation is convenient for the representation of rotations since the spin matrix is block
diagonal, and the two upper and the two lower components of the Dirac field transform as usual two-
dimensional Weyl spinors. Thus the spinor representation is also called Weyl representation. Since the
~Σ are hermitean matrices, the rotations are indeed represented by unitary transformations according
to (1.3.40). Because of

(~n · ~Σ)2 = 14 with ~n =
~ϕ

ϕ
, ϕ = | ~ϕ| (1.3.41)

we find by using the exponential series for (1.3.40)

SD( ~ϕ) = cos
�ϕ

2

�
14+ i sin

�ϕ
2

�
~n · ~Σ. (1.3.42)
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1.3 · Free Dirac fermions

Usually one defines instead of the γµν

σµν =
i
4
γµν =

i
4
[γµ,γ ν] , (1.3.43)

so that the representation matrix of an arbitrary SO(1,3)↑ transformation reads in terms of the six
covariant parameters

S(ωµν ) = exp
�

1
8
ωµνγ

µν
�
= exp

�
− i

2
ωµνσ

µν
�

. (1.3.44)

The connection with to above introduced generators for boosts (1.3.28) and rotations (1.3.39) is given
by

κa =
i
4

�
γ a ,γ 0�= σa0 =−σ0a , Σa =

i
8
εab cγ b c =

1
2
εab cσ b c . (1.3.45)

Now we come back to the Dirac equation (1.3.1) and the Dirac spinorψ. As already noted above, with
respect to rotations, it is composed in terms of two Weyl spinors according to

ψ=
�
ξL
ξR

�
, (1.3.46)

where ξL,R ∈ C2 are two-component Weyl spinors which transform under rotations accordingly be-
cause of (1.3.40-1.3.46). Thus, a Dirac field always describes two spin-1/2 particles. As we shall see in
the next section, within the QFT formalism this corresponds to a spin-1/2 particle and its antiparticle.
From the structure of the Dirac representation of the Lorentz group, which is generated by arbitrary
products of boost and rotation matrices (1.3.32) and (1.3.40), one sees that we can built Lorentz scalars
from the Dirac fields by multiplication with the Dirac adjoint spinor

ψ(x) =ψ†(x)γ 0. (1.3.47)

Indeed from (1.3.10) and (1.3.20) one finds

ψ
′
(x ′) =ψ′†(x ′)γ 0 =ψ†(x)S†(Λ)γ 0 =ψ(x)γ 0S†(Λ)γ 0 =ψ(x)S−1(Λ). (1.3.48)

From this we immediately conclude

ψ
′
(x ′)ψ(x ′) =ψ(x)ψ(x), (1.3.49)

i.e., ψψ is a scalar field. In the same way, using (1.3.13) we see that

jµ(x) =ψ(x)γµψ(x) (1.3.50)

behaves as a vector field under Lorentz transformations.
We find the equation for the Dirac adjoint by hermitean conjugation of the Dirac equation (1.3.1),

ψ(x)γ 0(−i
←−
/∂ †−m) = 0. (1.3.51)

By multplying this equation from the right with γ 0 we find, using the pseudohermitezity relation
(1.3.9),

ψ(x)(−i
←−
/∂ −m) = 0. (1.3.52)

29



1. Introduction to quantum-field theory: Free fields

By taking the four divergence of (1.3.50) from the Dirac equation (1.3.1) and its adjoint (1.3.52) we find

∂µ jµ = 0, (1.3.53)

i.e., the charge

Q =
∫

d3~x j 0(x) =
∫

d3~x ψ†(x)ψ(x) (1.3.54)

is conserved. In this sense Dirac thought to have found the desired relativistic wave equation for a
single particle of spin 1/2 since this conserved charge is obviously positive definite, and one would
think that a single-particle interpretation in the sense of Born’s probabilisitic interpretation of the
wave function is possible as in the case of the non-relatistic Schrödinger equation. However, as we shall
see soon, for plane waves, describing particles with a certain momentum, one finds always solutions

of the Dirac equation with both positive and negative frequencies, ω = ±E(~k) = ±
Æ
~k2+m2. Also

Dirac found that for any relatistically meaningful interaction scattering solutions with purely positive-
frequency solutions, which could be properly interpreted as particles with positve energy, in the initial
state, always has contributions from negative-frequency solutions in the final state, and these would
correspond to particles with a negative energy. But then the energy spectrum would not be bounded
from below, and the whole system would be instable, since one could produce states of arbitrarily low
energy by just producing an arbitrary number of negative-energy particles.
Dirac’s solution for this dilemma was to give up the single-particle interpretation and consider a many-
body theory, where the “vacuum state” is given by the state, where all negative-energy single-particle
states are occupied and assuming that spin-1/2 particles are fermions (which is the case for electrons,
which where the particles Dirac wanted to describe with his equation anyway). Now by high-energy
collisions, one could also kick out such an electron from this Dirac sea, and this would manifest itself
as this additional negatively charged electron and a hole in the Dirac sea, which behaved in any way
like an electron with the oposite charge of an electron. This lead, after some initial misconceptions,
to the prediction of “antielectrons” (now called a positron), which have the same mass and spin as an
electron but carry one positive elementary charge.
The same conclusion follows also from the more natural quantum-field theoretical treatment, which
we shall present in the next section. As a first step for the canonical quantization program, which
is analogous to the quantization of the Klein-Gordon field in the previous section, we first construct
a Lorentz invariant Lagrangean and then translate it into the (not manifestly covariant) Hamilton
formalism. As we shall see, here the assumption of canonical equal-time commutators does not lead
to a quantum field theory with a Hamiltonian that is bounded from below. However, using equal-
time anticommutation relations, corresponding to fermions leads to a properly interpretable many-
body theory for spin-1/2 particles and their antiparticles. This is another manifestation of the already
mentioned spin-statistics theorem, according to which fields with half-integer spin must be quantized
as fermions.
To find the free-particle Lagrangean, which should be bilinear or sesquilinear in the fields, we note that
it must contain only one derivative in each term since the Dirac equation is a first-order differential
equation. Further it should be a Lorentz scalar. From our analysis of the transformation properties of
the Dirac spinor, we find the ansatz,

L =ψ(i /∂ −m)ψ. (1.3.55)

Sinceψ ∈C4 we can considerψ andψ as independent field-degrees of freedom and vary them indepen-
dently. The Euler-Lagrange equations from varying ψ immediately lead to the Dirac equation (1.3.1).
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1.3 · Free Dirac fermions

Varying with respect to ψ leads to the Dirac-adjoint equation (1.3.51) as expected.
To convert this to the Hamilton formalism, we need the canonically conjugated field momenta, which
results in

Π=
∂L
∂ ψ̇

= iψγ 0 = iψ†, Π=
∂L
∂

˙
ψ
= 0. (1.3.56)

On the first glance this looks bad since the canonical momentum of the adjoint Dirac field vanishes.
However, we can proceed further in the naive way by just calculating the Hamiltonian in the formal
way as usual, i.e., we write

H =Πψ̇−L = iψγ 0∂tψ− iψ( /∂ + im)ψ=ψ(−i~γ · ~∇+m)ψ=−Πγ 0(~γ · ~∇+ im)ψ. (1.3.57)

The canonical Hamiltonian equations of motion then read

ψ̇=
δH
δΠ
=−γ 0(~γ · ~∇+ im)ψ, Π̇=−δH

δψ
=Π

�
−γ 0~γ ·

←−
~∇ + im

�
. (1.3.58)

Multiplication of the first equation from the left with iγ 0 and bringing all terms to one side of the
equations leads to the Dirac equation. Multiplication of the second equation from the right with iγ 0

and again writing all terms to one side of the equation leads to (1.3.51) for Πγ 0. Thus, although we
have no connection between ψ and Π by the canonical field equations, we can simply use the relation
(1.3.56) as a constraint, i.e., we can set

Π= iψγ 0 = iψ† (1.3.59)

without contradiction.

1.3.2 Quantization of the free Dirac field

To quantize the Dirac field we substitute the “classical” c-number field by a field operatorψ. As we shall
see, here we have to use the quantization for fermionic particles, i.e., canonical equal-time anticom-
mutation relations. As we shall see, this does not lead to a contradiction with the general principles
of quantum dyanmics as long as all local physical observables are given by an even number of Dirac-
field operator products. Particularly we shall show that in the here considered case of free fields the
Hamilton operator is given by a sesquilinear form of the Dirac fields. As it will turn out, the quantum
dynamics given by the commutator of the quantities with the Hamiltonian will lead back to the Dirac
equation for the Dirac-field operators. Thus we postulate the equal-time anticommutation relations,

{ψa(t , ~x),ψb (t , ~y)}= 0, {ψa(t , ~x),Πb (t , ~y)}= i
¦
ψa(t , ~x),ψ†

b
(t , ~y)

©
= iδabδ

(3)(~x − ~y). (1.3.60)

Here, a, b ∈ {1,2,3,4} run over the Dirac-spinor components of the quantum fields.
Now we look for a mode decomposition of the field operator with respect to plane waves, correspond-
ing to the momentum representation of the corresponding Fock space. As usual in relativistic quantum
theory, the spin of a particle is defined in the rest frame of the particle4. Let σ = ±1/2 denote the
eigenvalues of the spin matrixΣ3 for a single-particle momentum eigenstate with ~k = 0. Then it is very

4Here we consider massive Dirac particles. We shall come back to the massless case as the limit m→ 0.
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customary to define the other single-particle spinors by a rotation-free Lorentz boost in direction of ~k,
which is given by the condition

ΛB(−η~n)




m
0
0
0


= k mit η= arcosh

 
E(~k)

m

!
, ~n =

~k
K

. (1.3.61)

In the following we shall construct the corresponding mode functions for the Dirac fields. First we
define field modes with positive frequencies by

u~k,+
(x) =

1Æ
(2π)32E(~p)

exp(−ik · x)
������
k0=E(~k)

(1.3.62)

and make an ansatz for the mode decomposition of the Dirac field using the Feynman-Stückelberg
trick as in the analogous case for bosons, i.e., we use an annihilation operator as coeffcient of the
positive-frequency modes and a creation operator for the negative-frequency modes (corresponding to
antiparticles). Since here the Dirac-field components in the classical case are complex, we assume that
particles and antiparticles are distinguishable and thus write

ψ(x) =
∫
R3

d3~k
∑
σ

h
a(~k,σ)u(~k,σ)u~k,+

(x)+b†(~k,σ)v(~k,σ)u∗~k,+
(x)
i

. (1.3.63)

To fulfill the Dirac equation for this ansatz, the spinors u and v must satisfy the equations

(/k −m)u(~k,σ) = 0, (/k +m)v(~k,σ) = 0 mit k0 = E(~k). (1.3.64)

It is clear that both equations are compatible with the on-shell condition k0 = E(~k), because when
multiplying the equations with /k ±m one finds the condition k2 = (k0)2− ~k2 = m2.

For ~k = 0 Eqs. (1.3.64) read

γ 0u(0,σ) = u(0,σ), γ 0v(0,σ) =−v(0,σ). (1.3.65)

Using the above Weyl representation (1.3.6) for γ 0 we find the linearly independent set of solutions

u(0,+1/2) =
p

m




1
0
1
0


=:

p
mu ′(0,+1/2), u(0,−1/2) =

p
m




0
1
0
1


=:

p
mu ′(0,−1/2),

v(0,+1/2) =
p

m




1
0
−1
0


=:

p
mv ′(0,+1/2), v(0,−1/2) =

p
m




0
1
0
−1


=
p

mv ′(0,−1/2).

(1.3.66)

Obviously these spinors are eigenvectors of Σ3 with the denoted eigenvalues, cf. (1.3.39). The some-
what unusual normalization will turn out to be convenient in the following. Now we use (1.3.34) to
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1.3 · Free Dirac fermions

apply the boost (1.3.61) to these solutions. With help of the eigenvector properties (1.3.65) and with
γ = E(~k)/m := E/m we find

u(~k,σ) =

√√√ 1
2(E +m)

(m+ /k)u ′(0,σ),

v(~k,σ) =

√√√ 1
2(E +m)

(m− /k)v ′(0,σ).

(1.3.67)

It is important to note that these usually are not eigenstates of Σ3 since Σ3 is generally not commuting
with the boost-representation matrix SB(~η). Thus, σ labels the spin-three component if observed in
the rest frame of the particle.

We see that (1.3.67) is compatible with the definition (1.3.66) for ~k = 0, and the limit m→ 0 does not
pose any additional problems. In the massless limit we simply have

u(~k,σ) =
s

1
2E
/k u ′(0,σ),

v(~k,σ) =
s

1
2E
(−/k)v ′(0,σ).

(1.3.68)

For particles that travel in z direction, these spinors represent states of definite helicity, which is defined
as the projection of the spin at the direction of momentum. The corresponding operator thus reads

h=
~k · ~Σ
|~k|

. (1.3.69)

It is easy to show that h commutes with γµ. For ~k = k~e3 we have

hu(k3~e3,σ) = σu(k3~e3,σ), hv(k3~e3,σ) = σv(k3~e3,σ). (1.3.70)

For massless particles thus u and v are helicity eigenstates in any refeference frame, where ~k ‖ ~e3, and
the eigenvalue is given by σ ∈ {−1/2,+1/2}.
For the following we shall need the pseudoorthogonality and orthogonality relations,

u(~k,σ)u(~k,σ ′) = 2mδσ ,σ ′ , v(~k,σ)v(~k,σ ′) =−2mδσ ,σ ′ , (1.3.71)

u(~k,σ)v(~k,σ ′) = v(~k,σ)u(~k,σ ′) = 0, (1.3.72)

u(~k,σ)†u(~k,σ ′) = 2Eδσσ ′ , v(~k,σ)†v(~k,σ ′) = 2Eδσσ ′ , (1.3.73)

u(~k,σ)†v(−~k,σ ′) = v(~k,σ)†u(−~k,σ ′) = 0, (1.3.74)

which are easily proven with help of the commutation properties of Dirac matrices using (1.3.68) and
the eigenvalue equations (1.3.65). For the last equation (1.3.74) it is important to note that the momen-
tum arguments are to be taken with opposite sign!
To evaluate the anticommuation relations for the creation and annihilation operators in the mode de-
composition (1.3.63) we try to solve this equation for a(~k,σ) and b†(~k,σ). From the definition (1.3.62)
of the mode functions one immediately finds
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Zur Berechnung der Antikommutatorrelationen for die Erzeugungs"= und Vernichtungsoperatoren
versuchen wir, die Modenentwicklung (1.3.63) nach a(~k,σ) und b†(~k,σ) aufzul"osen.

∫
R3

d3~x u∗~k,+
(x)u~k ′,+(x) =

1

2E(~k)
δ (3)(~k − ~k ′), (1.3.75)

∫
R3

d3~x u∗~k,+
(x)u∗~k ′,+(x) =

1

2E(~k)
exp(2iE t )δ (3)(~k + ~k ′). (1.3.76)

Multiplication of (1.3.63) with u~k,+
(x) or u∗

~k,+
(x) we find, using (1.3.73) and (1.3.74),

a(~k,σ) =
∫
R3

d3~x u†(~k,σ)u∗~k,+
(x)ψ(x),

b(~k,σ) =
∫
R3

d3~x ψ†(x)v(~k,σ)u∗~k,+
(x).

(1.3.77)

With the anticommutation relations for the Dirac fields (1.3.60) and the orthogonality relations (1.3.73-
1.3.74) from this we immediately obtain the anticommutation relations for the creation and annihila-
tion operators,

¦
a(~k,σ),a†(~k ′,σ ′)

©
=
¦
b(~k,σ),b†(~k ′,σ ′)

©
= δ (3)(~k − ~k ′)δσσ ′ ,¦

a(~k,σ),a(~k ′,σ ′)
©
=
¦
b(~k,σ),b(~k ′,σ ′)

©
= 0,

¦
a(~k,σ),b(~k ′,σ ′)

©
=
¦
a(~k,σ),b†(~k ′,σ ′)

©
= 0.

(1.3.78)

To evaluate the Hamilton operator we have to use the normal-ordering prescription as above for the
scalar Klein-Gordon field. It is crucial that now have used anticommutation relations and thus we have
to define

: a(~k,σ)a†(~k ′,σ ′) :=−a†(~k ′,σ ′)a(~k,σ), (1.3.79)

i.e., the normal-ordered expression implies and additional sign of the permutation necessary to bring
the operators from the given order to normal order.
According to (1.3.57) the Hamilton density for the Dirac field thus reads

H =:ψ(−iγ · ~∇+m)ψ :=:ψ(iγ 0∂t − i /∂ +m)ψ(x) :=:ψ†i∂tψ : . (1.3.80)

Using the mode decomposition (1.3.63) and integrating over ~x leads to the positive semidefinite Ha-
milton operator

H =
∫

V
d3~xH =

∫
R3

d3~k
∑
σ

E(~k)
�
na(~k,σ)+nb (~k,σ)

�
. (1.3.81)

That is why the sign change (1.3.79) in the normal-ordering prescription for fermion-field operators is
so important here, and the use of bosonic commutation relations in the canonical formalism would lead
to a Hamilton operator that is not bounded from below and thus there would not exist a stable ground
state (“the vacuum”). This is another manifestation of the general spin-statistics theorem, according to
which fields representing particles with an odd (even) half-integer spin must be fermions (bosons).
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1.3 · Free Dirac fermions

For the charge operator according to (1.3.54) we find

Q =
∫

V
d3~x :ψ†ψ :=

∫
R3

d3~k
∑
σ

�
na(~k,σ)−nb (~k,σ)

�
. (1.3.82)

Here, the anticommutation relations for fermions lead to the fact that Q is not positive definite as the
hermitean expression within the normal-ordering symbol suggests, but the antiparticles (annihilated
by the b operators) carry the opposite charge of the particles (annihilated by the a operators). Thus,
as for charged scalar bosons, only the net-particle number, i.e., the difference between the number of
particles and that of antiparicles is a conserved quantity. The occupation-number operators in (1.3.82)
are defined by

na(~k,σ) = a†(~k,σ)a(~k,σ), nb (~k,σ) = b†(~k,σ)b(~k,σ) (1.3.83)

definiert.
The energy-eigenvalue problem is again solved analogously to the harmonic oscillator. This task is even
simpler than in the bosonic case since a2(~k,σ) = b2(~k,σ) = 0, i.e., the Fock basis is given by

���{na(~k,σ)},{nb (~k,σ)}
¶
=
∏
~k,σ

[a†(~k,σ)]na(~k,σ)[b†(~k,σ)]nb (~k,σ) |Ω〉

with na(~k,σ), nb (~k,σ) ∈ {0,1}.
(1.3.84)

Here |Ω〉 denots the vacuum state, where no particles are present and which is the ground state of the
system. It is defined uniquely by

∀~k,σ : a(~k,σ) |Ω〉= b(~k,σ) |Ω〉= 0. (1.3.85)

According to (1.3.84) in any Fock-basis state each single-particle mode can be occupied at most once.
This proves that the anticommutation relations lead to Pauli’s exclusion principle, as it should be the
case for fermions.

1.3.3 Poincaré symmetry of the quantized Dirac theory

In this subsection we shall analyze the Poincaré-symmetry properties of quantized Dirac theory. As
in Section 1.2 for the quantized Klein-Gordon fields we shall show that also the quantized Dirac field
provides a unitary representation of the proper orthochronous Poincaré group. First we evaluate the
canonical energy-momentum tensor. For the classical Dirac field it reads

Θµν =
∂L

∂ (∂µψa)
∂νψa −Lδµν = iψγµ∂νψ−Lδµν . (1.3.86)

For the energy-momentum operators we find, applying the normal-ordering description

Pν =
∫
R3

d3~x :Θ0
ν :=

∫
R3

d3~x :ψ†(x)i∂νψ(x) :, (1.3.87)

where we have used ψγ 0 =ψ†.
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The corresponding expressions for the rotation and boost generators (i.e., angular-momentum and
center-momentum operators) we have to use the corresponding generators for the Dirac-spinor rep-
resentation (1.3.39) and (1.3.28), respectively, i.e.,

Drehungen: δx0 = 0, δ~x =−δ ~ϕ× ~x, δψ= iδ ~ϕ · ~Σψ, (1.3.88)

Boosts: δx0 =−δη · ~x, δ~x =−δ~ηt , δψ=−iδ~η · ~κψ. (1.3.89)

Using the general formalism in Appendix A, we find after some algebra and applying again the normal-
ordering prescription for the quantized quantities,

~J =
∫
R3

d3~x :ψ†(x)
�
~x × (−i ~∇)+ ~Σ

�
ψ(x), (1.3.90)

~K=
∫
R3

d3~x :ψ†(x)
�
i~x∂0+ it ~∇+ ~κ

�
ψ(x). (1.3.91)

Using (1.3.59) for the canonical field momentum and the equal-time anticommutation rules (1.3.60) we
find that the Dirac-field operators behave under Lorentz transformations as the corresponding classical
fields, i.e., in a local way.
To prove this we first consider spatial and temporal translations, which should be given by the unitary
operator

UT(a) = exp(ia ·P). (1.3.92)

For an infinitesimal transformation we find

ψ′(x ′) =UT(δa)ψ(x ′)U†
T(δa) =ψ(x ′)+ iδaµ

�
Pµ,ψ(x ′)

�
+O (δa2). (1.3.93)

Applying the general equation, valid for any set of three operators A, B, and C,

[AB,C] =A{B,C}− {A,C}B, (1.3.94)

leads with help of (1.3.87) and the equal-time anticommutation relations (1.3.60) to
�
Pµ,ψ(x ′)

�
=−i∂µψ(x

′). (1.3.95)

From the transformation behavior of the unquantized Dirac field we expect that

x ′ = x −δa, ψ(x ′) =ψ(x) =ψ(x ′+δa) =ψ(x ′)+δaµ∂µψ(x
′) (1.3.96)

holds for the field operators too. Indeed, using (1.3.95) in (1.3.93) precisely shows that this is indeed
the case.
The calculation for rotations and boosts works analogously. The unitary transformations read in this
case5

UD( ~ϕ) = exp(−i ~ϕ · ~J), UB(~η) = exp(+i~η · ~K), (1.3.97)

and the commutator relations become (check!)
�
~J,ψ(x ′)

�
=−

�
~x ′× (−i ~∇)+ ~Σ

�
ψ(x ′),�

~K,ψ(x ′)
�
=−

�
i~x ′∂t + it ~∇− ~κ

�
ψ(x ′),

(1.3.98)

5The signs of the exponentials are just conventional.
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which directly leads to the transformation behavior as expected from the classical fields,

δx0 = 0, δ~x =−δ ~ϕ× ~x, ψ′(x ′) =
�
1+δ ~ϕ× ~∇+ iδ ~ϕ · ~Σ

�
ψ(x ′),

δx0 =−δ~η · ~x, δ~x =−δ~ηx0, ψ′(x ′) =
�
1+ ~x ′∂0+ x ′0 ~∇− i~κ

�
ψ(x ′).

(1.3.99)

All this shows that the quantized Dirac-field theory indeed leads to a local unitary representation of
the proper orthochronous Poincaré group. Since thus the field operators precisely behave under the
transformations as their classical counterparts, i.e., they transform locally, we have again constructed a
local quantum field theory as we have shown for Klein-Gordon fields in the last section. As we have
seen above, the quantization as fermions has lead to a positive semidefinite Hamilton operator and thus
to the existence of a stable ground state, the vacuum. Local observables as the energy-momentum tensor
or the conserved current (1.3.50), which are derived as bilinear forms of the Dirac-field operators, com-
mute for space-time arguments that are spacelike separated. This immediately follows from (1.3.94) and
the equal-time commutator relations of these quantities together with the local Lorentz-transformation
properties of these operators. This particularly means that the theory obeys the relativistic constraints
of causality.
To summarize, analogous to the quantized Klein-Gordon theory of the previous section also the quan-
tized Dirac theory yields to a local, microcausal quantum field theory with a positive semidefinite
Hamiltonian and thus allows for a proper physical interpretation in the sense of Born’s probability
interpretation of quantum theory. Also for Dirac fields, this goal is not possible within a naive single-
particle interpretation of the “classical Dirac field”, which thus has no direct physical interpretation.

1.3.4 The discrete symmetry transformations P , C and T

A glance at (1.3.28) and (1.3.39) shows that the Dirac representation of the proper orthochronous
Lorentz group is reducible since the generators for boosts and rotations obviously are given by block-
diagonal matrices, i.e., the two-component Weyl spinors, that build up the four-component Dirac
spinor according to (1.3.46), transform within themselves. The same is true under space-time transla-
tions, and thus even as a representation of the proper orthochronous Poincaré group the representation
is reducible. This is inherited of course by the quantized theory. As we shall see now, the representation
becomes irreducible if extended by discrete symmetry transformations as space reflection and time
reversal, i.e., when looking for representations of larger Poincaré groups. As we shall see, also another
discrete symmetry transformation occurs, where all particles and antiparticles are interchanged, the
socalled charge-conjugation transformation. As we shall see, the time-reversal transformation must
be necessarily realized by antiunitary transformations in quantum-field theory.

Space reflections and parity

According to Wigner’s theorem [Bar64], when looking for representations of discrete symmetry
transformations one first has to check, whether the transformation should be realized as a unitary
or an antiunitary transformation. This is most easily done by using the Heisenberg algebra of posi-
tion and momentum opertors. This is unproblematic in our case of massive or massless Dirac particles,
but one should keep in mind that massless fields with a spin larger or equal to 1 (e.g., for photons) do
not admit the definition of a position operator, fulfilling all Heisenberg-commutation relations.
A space reflection should act on the position and momentum operators as

~x ′ =U(P )~xU†(P ) =−~x, ~p ′ =U(P )~pU†(P ) =−~p. (1.3.100)
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The commutator relations transform according to
�
x′i ,p

′
j

�
=
�
−xi ,−p j

�
=
�
xi ,p j

� != iδi j . (1.3.101)

On the other hand this must also follow from the canonical commutor relation for ~x and ~p by the
direct similarity transformation with U(P ):

�
x′i ,p

′
j

�
=U(P )

�
xi ,p j

�
U†(P ) =U(P )iδi j U

†(P ) =±iδi j , (1.3.102)

where the upper sign is valid for a unitary, the lower for an antiunitary operator. Since the new position
and momentum operators should fulfill the same Heisenberg-algebra properties as the original ones,
we must necessarily assume that the space-reflection symmetry is realized as a unitary operator.
The Dirac-field operator should transform under space reflections as

ψP (t , ~x) =U(P )ψ(t , ~x)U†(P ) = ηP Ŝ(P )ψ(t ,−~x). (1.3.103)

Here Ŝ(P ) is a C4×4-matrix acting in spinor space that fulfills Ŝ2(P ) = 1 and ηP an arbitrary phase
factor. Since U(P ) is unitary, also ψP must obey the Dirac equation, i.e., expressed in terms of the
original field operator

Ŝ−1(P )(i /∂ −M )Ŝ(P )ψ(t ,−~x) = Ŝ−1(P )(iγ 0∂t − i~γ · ~∇−m)Ŝ(P )ψ(t ,−~x) != 0. (1.3.104)

For ψ the Dirac equation holds, i.e.,

(i /∂ −m)ψ= (iγ 0∂t + i~γ · ~∇−m)ψ= 0. (1.3.105)

From this (1.3.104) follows immediately if

Ŝ−1(P )γ 0 Ŝ(P ) = γ 0, Ŝ−1(P )~γ Ŝ(P ) =−~γ or Ŝ−1(P )γµ Ŝ(P ) = Pµνγ
ν (1.3.106)

holds. Here (Pµν ) = diag(1,−1,−1,−1). It is obvious that due to the anticommutator relations of the
Dirac matrices,

{γµ,γ ν}= 2gµν1, (1.3.107)

we can choose
Ŝ(P ) = Ŝ−1(P ) = γ 0. (1.3.108)

It is easy to see by direct calculation that this indeed fulfills (1.3.106).

Charge conjugation

The charge-conjugation transformation C by definition should interchange particles with antiparticles.
Since ψ annihilates particles and creates antiparticles, this means that ψC should do the opposite, i.e.,

annihilate antiparticles and create particles. This obviously holds for the field operator ψ
t
, where the

superscript t means transposition in spinor space.
The charge-conjugation transformation obviously commutes with position and momentum operators
and thus from the Heisenberg commutation relations we can conclude that, analogously as shown
above for the space reflection, it must be realized by a unitary transformation. Thus we have

ψC (t , ~x) =U(C )ψ(t , ~x)U†(C ) = ηC Ŝ(C )ψ
t
(t , ~x). (1.3.109)
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Since U(C ) is unitary also for ψC the Dirac equation must hold as for ψ, which means

Ŝ−1(C )(i /∂ −m)Ŝ(C )ψ
t
(t , ~x) != 0. (1.3.110)

On the other hand for the Dirac-adjoint operator we have the equation

ψ(t , ~x)
←−−−−−
(i /∂ +m) = 0, (1.3.111)

and by transposing this equation in spinor space, we find

(i /∂ t +m)ψ
t
(t , x) = 0. (1.3.112)

Comparing (1.3.110) with (1.3.112) leads to the condition

S−1(C )γµ Ŝ(C ) =−(γµ)t . (1.3.113)

In our realization of the Dirac matrices (1.3.6) we have

(γµ)t = (−1)µγµ, (1.3.114)

and as one easily proves by direct calculation that we can set

Ŝ(C ) = iγ 2γ 0, Ŝ−1(C ) = iγ 0γ 2 =−Ŝ(C ), (1.3.115)

which fulfills the relations (1.3.113).

Time-reversal transformation

The time-reversal transformation should act on the position and momentum operators as

U(T )~xU†(T ) = ~x, U(T )~pU†(T ) =−~p. (1.3.116)

An analogous calculation as performed for the parity operator leads to the conclusion that the time-
reversal transformation must be realized by an antiunitary operator. Since an antiunitary operator
leads to an adjunction of operators when acting on them by the corresponding similarity transforma-
tion, the time-reversal operator must act on the Dirac-field operator according to

ψT (t , ~x) =U(T )ψ(t , ~x)U†(T ) = ηT Ŝ(T )ψ
t
(−t , ~x). (1.3.117)

From the Dirac equation for ψ(t , ~x) and the antiunitarity of U(t ) we find

(−i /∂ ∗−m)ψT (t , ~x) = 0. (1.3.118)

Using this in (1.3.117), leads to the condition

Ŝ−1(T )(i /∂ ∗+m)Ŝ(T )ψ
t
(−t , ~x) = 0. (1.3.119)

Comparing this with (1.3.112) gives

Ŝ−1(T )(γ 0)∗ Ŝ(T ) =−(γ 0)t , Ŝ−1(T )~γ ∗ Ŝ(T ) = ~γ t ⇔ Ŝ−1(T )(γµ)∗ Ŝ(T ) = T µ
ν (γ

µ)t (1.3.120)
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with the time-reflection matrix (T µ
ν ) = diag(−1,1,1,1). In our representation (1.3.6) of the Dirac

matrices γ 0, γ 1, and γ 3 are real and γ 2 purely imaginary. Together with (1.3.114) it follows from
(1.3.120) that

Ŝ−1(T )γµ Ŝ(T ) =−γµ. (1.3.121)

This means that we can choose
Ŝ(T ) = Ŝ−1(T ) = γ 5 (1.3.122)

with
γ 5 = γ5 := iγ 0γ 1γ 2γ 3. (1.3.123)

An alternative realization is found by using the charge-conjugation transformation (1.3.109)

ψT (t , ~x) = ηT η
∗
C Ŝ(T )Ŝ−1(C )ψC (−t , ~x). (1.3.124)

Since ψC is related to ψ by a unitary transformation, we can write the time-reversal transformation
also realize as

ψT (t , ~x) = η′T Ŝ ′(T )ψC (t , ~x). (1.3.125)

Obviously we have, up to an arbitrary phase

Ŝ ′(T ) = ηŜ(T )Ŝ−1(C ) = ηγ5iγ 0γ 2 = ηγ 1γ 3. (1.3.126)

The standard choice for the phase is η= i, i.e.,

Ŝ ′(T ) = iγ 1γ 3 = Ŝ ′−1(T ). (1.3.127)

Plugging (1.3.125) into the equation of motion (1.3.118) of the operator ψT (t , ~x), by comparing with
the Dirac equation we find the conditions

Ŝ ′−1(T )(γ 0)∗ Ŝ ′(T ) = γ 0, Ŝ ′−1(T )~γ ∗ Ŝ ′(T ) =−~γ . (1.3.128)

In the Dirac representation as well as in the here used chiral representation of the Dirac matrices γ 0,
γ 1, and γ 3 are real and γ 2 purely imaginary, and thus we can write (1.3.128) as

Ŝ ′−1(T )γµ Ŝ ′(T ) = (−1)µγµ = (γµ)t . (1.3.129)

By direct calculation one easily proves that (1.3.127) indeed fulfills this requirement. On the other
hand, because of [Ŝ ′(T )]∗ =−Ŝ ′(T ) we find for the conjugate complex of Eq. (1.3.128)

Ŝ ′−1(T )γ 0 Ŝ ′(T ) = (γ 0)∗, Ŝ−1(T )~γ Ŝ ′(T ) =−~γ ∗ ⇒ Ŝ ′−1(T )γµ Ŝ ′(T ) = Pµν (γ
ν )∗ (1.3.130)

with the space-reflection matrix (Pµν ) = diag(1,−1,−1,−1).

1.3.5 Sesquilinear forms of Dirac-field operators

For modelling interactions with Dirac-spinor fields the combinations ψΓψ are important, where Γ are
arbitrary C4×4 matrices in Dirac-spinor space. Such sesquilinear forms can be used in the interaction
part of the Lagrangian to build the coupling of Dirac fields with other particles. For this, also the
relativistic invariance (i.e., invariance under proper orthochronous Poincaré transformations) of the
corresponding action functional is crucial. Thus it is customary to find such matrices, Γ , that lead to
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expressions with simple transformation properties under proper orthochronous Lorentz transforma-
tions.
E.g., choosing Γ = 1, leads to a scalar field operator because of (1.3.13), which shows that

S =ψψ (1.3.131)

is a scalar field. Because of (1.3.108) it is also a scalar field under spatial reflections.
Analogously

Vµ =ψγµψ (1.3.132)

turns out to be a vector field under orthochronos Poincaré transformations and space reflections. To
emphasize the transformation property under space reflections Vµ → PµνV

µ one also calls such a
vector a polar vector.
With the Dirac matrices one can form the

γ 5 = iγ 0γ 1γ 2γ 3 =− i
4!
εµνρσγ

0γ 1γ 2γ 3. (1.3.133)

From the second form of this expression we can imagine that this has the properties of a scalar under or-
thchronous Lorentz transformations but flips its sign under space reflections, because detP =−1, and
the Levi-Civita symbol εµνρσ is a fourth-rank pseudo tensor under improper Lorentz transformations.
Indeed, one can easily show, using (1.3.103) and (1.3.108) that the expression

P=ψγ 5ψ (1.3.134)

is a pseudoscalar field operator.
In the same way one shows that

Aµ =ψγµγ 5ψ (1.3.135)

is an axial-vector field, i.e., it transforms under proper orthochronous Lorentz transformations as a
vector field, but flips its sign under space reflections,

�
A0(t , ~x)
~A(t , ~x)

�
P→
�−A0(t ,−~x)
+~A(t ,−~x)

�
. (1.3.136)

Finally

Sµν =ψσµνψ mit σµν =
i
4
[γµ,γ ν] (1.3.137)

is an antisymmetric second-rank tensor field.
Since the five matrices

14, γ 5, γµ, γµγ 5, σµν (1.3.138)

are linearly independent in the space of C4×4 matrices, and we have together 1+1+4+4+6= 16 ma-
trices, any sesquilinear form of Dirac spinors can be composed of the above introduced field operators
S, Vµ, Aµ, and Tµν which in additaion are also self adjoint.

41



1. Introduction to quantum-field theory: Free fields

42



Chapter 2

The real-time formulation of equilibrium
quantum-field theory

2.1 The general Schwinger-Keldysh contour

In this section we briefly define the Schwinger-Keldysh time contour for the calculation of expectation
values for general non-equilibrium situations as well as the extensions for the special case of thermal
equilibrium in the grand-canonical ensemble. Of course, the general scheme contains also the vacuum
quantum field theory as a special case.

2.1.1 States and observables in the Heisenberg picture

A quantum many-body system is generally described by a space of states, which is the projective space
of a Hilbert spaceH and an operator algebra which is generated by a complete set of local field op-
erators {φk} f

k=1
. In the previous chapter we have seen examples for the construction of the Hilbert

space of such a kind of theory for free scalar (Klein-Gordon) bosons and spin-1/2 (Dirac) fermions. The
Hilbert space is given as the Fock space of a system of non-interacting bosons or fermions of indert-
ermined particle number, and we have constructed an explicit s(generalized) basis of symmetrized or
antisymmetrized tensor products of single-particle momentum-spin eigenstates and the representation
of the local quantum fields in terms of annihilation and creation operators of such states.
In the most general case the state of the system is determined by a positive semidefinite selfadjoint op-
erator R, the Statistical Operator. Observables are represented by selfadjoint operators, expressed
as functions or functionals of the field operators. If O is a selfadjoint operator, representing an observ-
able (in the following we shall simply identify the observables with their operator representatitives) and
|uo〉 ∈H is an eigenvector, that is normalized to unity or a generalized eigenvector that is “normalized
to the δ distribution” of a non-degenerate eigenvalue of the observable O, then the probability (or
probability density) to find this eigenvalue o as result of an (ideal) measurement of the observable is
given by

PR(o) = 〈uo |R| uo〉 . (2.1.1)

A set of observables is called compatible, if the corresponding operators commute with each other
and can thus take determined values if the system is prepared in a common eigenstate of these op-
erators. Such a set of compatible observables is called complete, if all of the then existing common
eigenspaces are one-dimensional. Then a system, being prepared such that all the values of these ob-
servables are determined precisely, is in the corresponding pure state, represented by the statistical op-
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erator Rψ = |ψ〉 〈ψ|, where |ψ〉 is a normalized common eigenvector of the compatible and complete
set of observables. Since then |ψ〉 is unique up to an arbitrary phase factor, the pure state is uniquely
determined. In the following we shall assume that there exists a countable set of basis vectors defined
by such a complete set of compatible observables, i.e., we have an eigenbasis of proper Hilbert-space
vectors at hand. For the case of observables with (partially) continuous spectra, in the following the
sums have to substituted by the corresponding integrals.
Now we consider an observable O which is represented by a selfadjoint operator O with its spectral
decomposition

O =
∫

do |o〉 〈o| . (2.1.2)

The expectation value of the observable O is then given by

〈O〉R =
∫

do oPR(o) =
∫

do o 〈o |R| o〉=
∫

do 〈o |RO| o〉=Tr(RO) =Tr(OR). (2.1.3)

In the last step we have used that within the trace operation the operators in a product can be inter-
changed, as can be shown by the following calculation with a complete orthonormal basis, |uk〉

Tr(AB) =
∑

j

¬
u j

���AB
��� u j

¶
=
∑

j k

¬
u j

���A
��� uk

¶¬
uk

���B
��� u j

¶

=
∑

j k

¬
uk

���B
��� u j

¶¬
u j

���A
��� uk

¶
=
∑

k

〈uk |BA| uk〉=Tr(BA).
(2.1.4)

The dynamics of the system is determined by an observable which is bounded from below, repre-
sented by the Hamilton operator of the system. The time evolution is specified uniquely up to a
time-dependent unitary transformation. By this freedom it is possible to chose the time evolution of
the states and the operators representing observables with great flexibility without changing the phys-
ical content of the theory. Fixing this arbitrariness is called to chose the picture of time evolution.
For general considerations in quantum field theory the most convenient choice of the picture is the
Heisenberg picture that we have already used in the previous chapter for the case of non-interacting
particles (i.e., free fields), where the states are time independent while the observables evolve with the
full Hamilton operator H of the system.
This means that the fundamental field operators φ evolve according to the equation

d
dt
φ=

1
i
[φ,H] . (2.1.5)

A general observable O and the Hamilton operator H are functions or functionals of the field operators
and may depend explicitely on time,

d
dt

O[φ, t ] =
1
i
[O[φ, t ],H]+ ∂t O[φ, t ]. (2.1.6)

Here and in the following the partial time derivatives refer to the explicit time dependence of an
operator expression only. The statistical operator, R = R(φ, t ) does not represent an observable. In
the Heisenberg picture its equation of motion is given by the von Neumann equation,

d
dt

R =
1
i
[H, R]+ ∂t R = 0. (2.1.7)
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2.1 · The general Schwinger-Keldysh contour

From this it follows, that a statistical operator describing thermal equilibrium, which must not be
explicitly time dependent by definition, always must commute with the Hamiltonian H. This of course
holds true not only in the Heisenberg picture but in any picture of time evolution. Thus, it has to be
a function or functional of the conserved quantities of the system.

2.1.2 The interaction picture

The main task of statistical physics is to describe the dynamics of certain collective observables of a
many-body system for a given initial state. For an interacting field theory it is in general not possible
to solve such a problem exactly, but (as in vacuum quantum field theory) one has to use perturbation
theory or appropriate resummations to approximate the problem.
To derive the perturbative series we transform to the interaction picture. In this picture the field
operators evolve with the “undisturbed” Hamiltonian H(0)I

1:

φI(t , ~x) =AI(t , ti )φI(ti , ~x)A
†
I (t , ti ) with AI(t , ti ) =Tc exp

�
i
∫ t

ti

dt ′H(0)I (t
′)
�

(2.1.8)

and the statistical operator by the interaction part of the Hamiltonian

RI[φI(t , ~x), t ] =CI(t , ti )RI[φI(t , ~x), t ]C†
I (t , ti )

with CI(t , ti ) =Tc exp

�
−i
∫ t

ti

dt ′H(i)I (t
′)
�

.
(2.1.9)

The symbol Tc stands for the chronological time ordering of the operators, i.e., if one expands the expo-
nentials with respect to their arguments one has to order the operators with increasing time arguments
from the right to the left. If the fields φ are fermionic it includes a sign change according to the signa-
ture of the permutation, which is necessary to bring the operators from the original time order into
chronological order. The “unperturbed” and the “perturbation” Hamiltonian add necessarily to the
full Hamiltonian in the interaction picture, i.e.,

HI =H(0)I +H(i)I . (2.1.10)

Usually in quantum field theory one chooses H(0)I to be the Hamiltonian for free particles, which is

a quadratic functional of the fields, and H(i)I as the remaining interaction parts which are a functional
of degree 3 and higher. This choice admits the full solution of the field-operator equations of motion
(2.1.8) as shown in the previous chapter for Klein-Gordon and Dirac fields.
Now we consider an arbitrary time-dependent operator OI(t ). Its expectation value can be calculated
with help of the initial state R(0)I = R[φI(ti , ~x)] by making use of (2.1.9) in Eq. (2.1.3),

〈O(t )〉R =Tr[RI(t )OI(t )] =Tr[R(0)I C†
I (t , ti )OI(t )CI (t , ti )]. (2.1.11)

Here we have made use of the rule that we can commute operators within an operator product under
the trace. Using (2.1.9) we can write

〈O(t )〉R =Tr

�
R(0)I Ta

¨
exp

�
i
∫ t

ti

dt ′H(i)I (t
′)
�«

OI (t )Tc

¨
exp

�
−i
∫ t

ti

dt ′H(i)I (t
′)
�«�

. (2.1.12)

1Here and in the following we denote the interaction picture by a subscript I for operators and states. For details of how
to derive these equations see [Hee02].
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2. The real-time formulation of equilibrium quantum-field theory

K2

K1ti t f

t

C =K1+K2

Figure 2.1: The Schwinger-Keldysh contour. The two branches are denoted with K1 (chronological
branch) andK2 (anti-chronological branch). The ordering symbol TC orders the operators with time
arguments on the contour in the sense of the arrows from right to left. In the literature there are
several conventions around. E.g. in the textbook [LL81] one finds the labels − and + instead of 1 and
2, respectively. In many papers the convention is the opposite. So use some care when studying the
literature!

Here Ta is the antichronological time ordering symbol, which orders the operators from left to right
with increasing time arguments (eventually including the usual sign changes for fermions). The change
of order and of the sign in the exponential in the left factor comes from the Hermitean conjugation.
Now (2.1.12) can be compactified easily by introducing the closed time contour first defined by
Schwinger [Sch61] and Keldysh [Kel64]. This contour is running from the initial time ti to an ar-
bitrary finite time t f with ti < t < t f and then back to ti (see Fig. 2.1). Defining a contour ordering
symbol TC such, that operators with time arguments on the contour are ordered from right to left in
the sense of the contour we can write (2.1.12) as

〈O(t )〉R =Tr
�

R(0)I TC
�
exp

�
−i
∫
C

dt ′H(i)I (t
′)
�

OI(t )
��

. (2.1.13)

Since the time evolution of the operators representing observables is due to the unperturbed Hamilto-
nian, the operator OI(t ) is known, and the initial state R(0)I at time ti is given by the preparation of the
physical situation in an experiment or by observation, we only need to calculate approximations for
the contour-ordered exponential function, which can be done, for instance, in an analogous way as in
usual perturbation theory.
One sees immediately, that (2.1.13) is independent of the final time t f since the contributions of the
time interval (t , t f ) from the two branches cancel. Further it is clear, that (2.1.13) can be generalized
to operators with more than one time argument

〈TCφ(x1)φ(x2) · · ·φ(xn)〉R =Tr
�
R(0)I TC

�
exp

�
−i
∫
C

dτH(i)I (τ)
�
φI(x1) · · ·φI (xn)

��
. (2.1.14)

We only must make sure that all time arguments are in the interval, x0
j ∈ [ti , t f ] for j ∈ {1,2, . . . , n}.

2.1.3 The entropy principle

Up to now we did not specify how to choose the statistical operator. To establish rules for that, one
has to add statistical concepts from outside of quantum theory itself. One possible rule has its origins
in statistical signal theory. One defines the entropy as a measure of the missing information relative
to a somehow defined complete knowledge of the system under the constraints of the given generally
incomplete information [Jay57a, Jay57b, Kat67, Hob87]. In its quantum version the entropy of the
system, described by a given statistical operator R, this measure is given by the von Neumann entropy

S =−〈ln(R)〉=−Tr[R ln(R)]. (2.1.15)
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2.1 · The general Schwinger-Keldysh contour

If R describes a pure state, i.e., is given by R = |ψ〉 〈ψ| with a normalized state ket |ψ〉, the entropy
vanishes, as it should be, since in quantum mechanics the knowledge of the pure state of the system is
the most complete knowledge we can have about it. So in this case there is no missing information,
and that is indicated by S = 0.
In physics usually one has a certain incomplete knowledge about the system under consideration. The
standard situation in statistical physics of many-body systems is, that we know the expectation values
Oi of a finite set {Oi} of some macroscopic (collective) observables. Then one defines the statistical
operator R by the demand, that the von Neumann entropy (2.1.15) should be maximal under the
constraint, that the expectation values of the observables are these known values. This is also known
as Jaynes’s principle of least prejudice since with respect to the measure of the incompleteness of
information about the system a maximized entropy guarantees not to pretend more knowledge about
the system in the choice of the statistical operator, than there really exists by knowing the expectation
values of the observables Oi . Thus, we have to maximize

S[R,λi ] =Tr

¨
−R

�
ln(R)−∑

i

λi Oi

�«
, (2.1.16)

where the λi are Lagrange parameters to be adjusted such, that the expectation values of the observables
take the given numbers

〈O1〉=Tr(Oi R) = Oi . (2.1.17)

The solution of the maximization problem reads

R =
1
Z

exp

�
−∑

i

λi Oi

�
with Z =Tr

�
exp

�
−∑

i

λi Oi

��
. (2.1.18)

The partition sum Z appears in this equation in order to normalize the statistical operator to 1, i.e.,

Tr R = 1. (2.1.19)

We could have subsumed this as an additional constraint by choosing one of the Oi to equal the identity
operator 1. As we have already mentioned after Eq. (2.1.7) for a statistical operator describing thermal
equilibrium the Oi have to be conserved quantities.

2.1.4 Thermal equilibrium and thermodynamic potentials

Now we consider the case of thermal equilibrium, i.e., we investigate the stationary state of the
many-body system. This means that the statistical operator is not explicitly time dependent, i.e.,

∂ R
∂ t
= 0. (2.1.20)

Due to the von Neumann equation (2.1.7) this means that R must commute with the Hamiltonian,
i.e., it can only be a function of the conserved quantities of the system. For the simple case of an
interacting gas consisting of charged Klein-Gordon particles, these conserved quantities are the total
energy, total momentum, and total charge (or net-particle number, i.e., the number of particles minus
the number of antiparticles, cf. (1.2.59) . Due to the maximum-entropy principle the only knowledge
we may assume is then about the values of these conserved quantities. The statistical operator then
reads

R =
1
Z

exp(−βu ·P+αQ), (2.1.21)
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2. The real-time formulation of equilibrium quantum-field theory

where the partition sum is given by

Z =Tr [exp(−βu ·P+αQ)] . (2.1.22)

Here we have written a somewhat more general statistical operator for the equilibrium than usually
treated in the literature. We have written the Lagrange multipliers for the four momentum asβu with
a scalar β ∈ R and a four vector u ∈ R4 with u2 = 1. We must take u time like in order to have a
Statistical operator for which the trace in (2.1.22) exists. The mean momentum and charge are then
easily calculated as derivatives of the partition sum:

〈Pµ〉=− 1
β

∂ Ω

∂ uµ
, 〈Q〉= ∂ Ω

∂ α
(2.1.23)

with
Ω= lnZ . (2.1.24)

Since the only vector available in the independent variables α, β, and uµ is the latter quantity uµ we
must have

〈Pµ〉=U uµ, (2.1.25)

where U is the total invariant mass of the system. Since uµ is time-like, we also can make uµ = (1,0,0,0)
by a Lorentz boost with three-velocity ~v = ~u/u0. In this reference frame the many-particle system is
at rest as a whole, since its average three-momentum vanishes. In this rest frame of the heat bath
it has the total energy



P 0
�
, which is known in thermodynamics as the internal energy. That U is

also the total mass of the system is Einstein’s famous energy-mass equivalence in special relativity. By
definition it is a scalar quantity. In the most general frame of reference, it is obviously given by

U = u · 〈P 〉=−∂ Ω
∂ β

. (2.1.26)

To also interpret the other quantities we try to derive the relation of Ω to the usual thermodynamic
quantities. The key to this drivation is the first law of thermodynamics in the form

dU = T dS − pdV +µd 〈Q〉 . (2.1.27)

Here, T is the temperature, S the entropy, p the pressure, V the volume, µ the chemical potential, and
Q some conserved charge, as the average net-particle number

¬
N −N

¶
in our case of charged bosons.

In our quantum-field theoretical formalism the volume enters as an external parameter. This is formally
achieved by considering a finite cubic box within a large volume and assuming some appropriate (e.g.,
periodic) boundary conditions (1.2.12). According to (2.1.21) the entropy is given by

S =−Tr(R ln R) =Ω+βU −α 〈Q〉 . (2.1.28)

Here, all quantities have to be read as functions of the independent parameters, i.e., the Lagrange pa-
rameters of the entropy principle and the external parameters of the system, which in our case is only
the volume V . From this we find

dS =dV
�
∂ Ω

∂ V
+β

∂ U
∂ V
−α∂ 〈Q〉

∂ V

�

+ dβ
�
∂ Ω

∂ β
+U +

∂ U
∂ β

�

+ dα
�
∂ Ω

∂ α
+β

∂ U
∂ α
−〈Q〉−α∂ 〈Q〉

∂ α

�
.

(2.1.29)
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2.1 · The general Schwinger-Keldysh contour

Now using (2.1.23) this simplifies to

dS = dV
∂ Ω

∂ V
+βdU −αd 〈Q〉 . (2.1.30)

Multiplying with T = 1/β and solving for dU we get

dU = T dS − dV
∂ (TΩ)
∂ V

+T αd 〈Q〉 . (2.1.31)

A comparison with the first law (2.1.27) immediately leads to the identifications

T =
1
β

, µ= T α, p =
∂ (TΩ)
∂ V

. (2.1.32)

Now we can as well read all the thermodynamic quantities as functions of V , T = 1/β, and µ= α/β.
Because of (2.1.23) we have

�
∂ Ω

∂ T

�
V ,µ
=− 1

T 2

∂

∂ β
Ω(β,α=µβ) =

1
T 2
(U +µ 〈Q〉), (2.1.33)

and according to (2.1.28) the entropy is given by

S =Ω+
U
T
− µ

T
〈Q〉 . (2.1.34)

With (2.1.33) from this we immediately find

S =
�
∂ [TΩ(T ,µ,V )]

∂ T

�
V ,µ

. (2.1.35)

This leads us to the definition of the Landau grand canonical potential

Φ(T ,µ,V ) =−TΩ(T ,µ,V ). (2.1.36)

From (2.1.34) we have
Φ=−TΩ=U −T S −µQ (2.1.37)

and the total differential gives
dΦ=−SdT + pdV +Qdµ, (2.1.38)

where we have made use of the first law of thermodynamics (2.1.31) again. The natural variables for
the grand canonical potential thus are

Φ= Φ(T ,µ,V )
2.1.38⇔ S =−

�
∂ Φ

∂ T

�
µ,V

, p =−
�
∂ Φ

∂ V

�
T ,µ

, 〈Q〉=−
�
∂ Φ

∂ µ

�

T ,V
. (2.1.39)

As we shall see, the grand canonical potential is the most convenient thermodynamical quantity to
evaluate in the quantum-field theoretical approach to equilibrium many-body theory: It is directly
related with the partion sum via its definition (2.1.36) and Eq. (2.1.24). At the same time it admits a
natural derivation of the physical renormalization conditions that render the quantum-field theoretical
quantities finite. This is necessary since also quantum field theory at finite temperature and chemical
potential is plagued by the same divergences as in the vacuum. The analogous quantity in the vacuum
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2. The real-time formulation of equilibrium quantum-field theory

is the quantum effective action (see, e.g., [Hee02]), and the trace of the partition sum also includes
the vacuum vaccum state. Thus one must have at least the same infinities of the vacuum theory. Even
for free particles one has to subtract the contributions from the vacuum-energy contribution of each
field mode, which diverges when summed over all momenta. For the interacting field theory there are
additional divergences from the loops in Feynman diagrams representing the corrections to the effective
action within perturbation theory. We shall show later in these notes that these divergences from the
vacuum contribution are the only divergences also at finite temperature and chemical potential, i.e., the
theory is rendered finite by renormalizing the divergent vacuum parts of each diagram and subdiagram
using the BPHZ renormalization formalism (for the vacuum case, see again [Hee02]).

2.2 Perturbation theory in thermal equilibrium

We begin our study of quantum many-body systems on hand of the most simple example of an in-
teracting field theory with the goal to derive diagram rules for the perturbative evaluation of expec-
tation values of observables for a system in thermal equilibrium, similar to the Feynman-diagram
technique, used in “vacuum quantum field theory” to evaluate S-matrix elements for scattering cross
sections. We shall study simple φ4 theory as a toy model to establish these diagram rules for thermal
quantum field theory.

2.2.1 The canonical statistical operator

Simple φ4 theory is defined with as a model for self-interacting real scalar fields. In the Heisenberg
picture the Lagrangian reads2

LH =
1
2
(∂µφH)(∂

µφH)−
m2

2
φ2

H−
λ

4!
φ4

H. (2.2.1)

We note that this model is renormalizable in the usual sense, i.e., any divergences coming up in the
perturbative evaluation in higher orders of perturbation theory can be renormalized with counter
terms in the Lagrangian that are of the same form as this original Lagrangian, i.e., with wave-function,
mass, and coupling-constant renormalizations (see [Hee02] for a detailed treatment of perturbation
theory in the vacuum). As we shall see in a later section, there appear no additional divergences in
thermal field theory than in vacuum field theory, i.e., the thermal Feynman diagrams are renormalized
with the same counter terms as vacuum theory, and thus the renormalized Lagrangian (or Hamiltonian)
does not depend on temperature.
The canonical field momentum is

ΠH =
∂LH

∂ φ̇H

= φ̇H, (2.2.2)

and the Hamiltonian reads

HH =ΦHΠH−L =
1
2
Π2

H+( ~∇φH)
2+

m2

2
φ2

H+
λ

4!
φ4

H. (2.2.3)

Since the Lagrangian and thus also the Hamiltonian are not explicitly time dependent, according to
Noether’s theorem the total energy

HH =
∫
R3

d3~xHH (2.2.4)

2To make the use of the different pictures of time evolution more clear in this section we label the operators in the
Heisenberg picture with a subsctipt H and in the interaction picture with I.
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is constant.
In the following we want to evaluate expectation values of arbitrary observables with respect to the
canonical statistical operator

RH =
1
Z

exp(−βHH) with Z =Trexp(−βHH). (2.2.5)

Here, β = 1/T is the inverse temperature which is assumed to be time independent, i.e., we describe
a system in global thermal equilibrium. We also use the restframe of the medium as our frame of
reference, setting u = (1,0,0,0) in (2.1.21).
As explained in Section 2.1.1, in the Heisenberg picture the field operators evolve in time by

φH(t , ~x) =AH(t , ti )φH(ti , ~x)A
†
H(t , ti ), (2.2.6)

where the time-evolution operator obeys the differential equation and initial condition

∂t AH(t , ti ) = iHHAH(t , ti ), AH(ti , ti ) = 1. (2.2.7)

Since the Hamiltonian does not depend on time the solution reads

AH(t , ti ) = exp[i(t − ti )HH]. (2.2.8)

The time evolution operator is unitary as it should be, because HH is selfadjoint.
In the Heisenberg picture the statistical operator is time-independent, if it is not explicitly time de-
pendent. For the following it is crucial that the equilibrium statistical operator (2.2.5) can be formally
written as

RH =
1
Z

A†
H(ti − iβ, ti ) with Z =Trexp(−βHH). (2.2.9)

This corresponds to an inverse time evolution operator along the vertical contour in the complex time
plane, running from ti vertically down to ti − iβ.
The expectation value of an arbitrary observable is thus given by

〈O(x)〉=Tr[RHOH(x)] =
1
Z

Tr[AH(ti − iβ, ti )OH(x)]. (2.2.10)

2.2.2 Thermal perturbation theory

In practice it is impossible to evaluate such expectation values exactly since the full time evolution of
the field operators and thus the observables, built with field operators, cannot be solved explicitly. The
same is true for the trace in (2.2.10).
What can be solved, is the equation of motion for the free field operator, and we can also evaluate
expectation values with respect to the canonical Hamiltonian of the free field, i.e.,

R(0)I =
1

Z0
exp(−βH0

I ). (2.2.11)

Here, the time evolution of field operators and observables, built as functions or functionals of field
operators, is given with respect to the free Hamiltonian

H (0)
I =

1
2
(∂µφI)(∂

µφI)−
m2

2
φ2

I , (2.2.12)
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which leads to the equations of motion for the free fields, treated in chapter 1.2. Here the free Hamilton
operator,

H(0)I =
∫
R3

d3~xH (0)
I (2.2.13)

is time independent and thus the time evolution operator for field and observable operators reads

AI(t , ti ) = exp[i(t − ti )H
(0)
I ]. (2.2.14)

The time evolution of the state, i.e., the statistical operator of the system in the interaction picture is

H(i)I (t ) =
λ

4!

∫
R3

d3~x φ4
I , (2.2.15)

which is time dependent and thus the unitary time-evolution operator for the states, fulfilling the initial-
value problem

∂t CI(t , ti ) =−iH(i)I (t )CI(t , t0), CI(ti , ti ) = 1, (2.2.16)

is given by

CI(t , ti ) =Tc exp

�
−i
∫ t

ti

dt ′H(i)I (t
′)
�

. (2.2.17)

We assume that at the initial time ti the operators in the Heisenberg and the interaction picture coincide.
Especially for the equilibrium statistical operator we have

RH = RI(ti ) =C†
I (t , ti )RI(t )CI(t , ti ). (2.2.18)

Thus the unitary transformation from the interaction to the Heisenberg picture reads

UHI(t , t0) =C†
I (t , ti ). (2.2.19)

On the other hand we find the same transformation by investigating the time evolution of the field
operators:

φH(t , ~x) =AH(t , ti )φI(ti , ~x)A
†
H(t , ti ) =AH(t , ti )A

†
I (t , ti )φI(t , ~x)AI(t , ti )A

†
H(t , ti ). (2.2.20)

From this we get
UHI(t , t0) =AH(t , ti )A

†
I (t , ti ). (2.2.21)

Comparing (2.2.19) and (2.2.21) we see that this implies that

A†
H(t , ti ) =A†

I (t , ti )CI(t , ti ). (2.2.22)

To see that this is indeed true, we take the time derivative of the right-hand side of this equation:

∂t

�
A†

I (t , ti )CI(t , ti )
�
=−iA†

I (t , ti )H
(0)
I (t )CI(t , ti )− iA†

I (t , ti )H
(i)
I (t )CI(t , ti )

=−i[H(0)I (ti )+H(i)I (ti )]A
†
I (t , ti )CI(t , ti ) =−iHHA†

I (t , ti )CI(t , ti ).
(2.2.23)

This means that the unitary operator on the right-hand side of (2.2.22) fulfills the equation of motion
of A†

H(t , ti ). Since it also fulfills the same initial condition, A†
H(ti , ti ) = 1, it must indeed be that same

operator as claimed in (2.2.22).
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t fti
Re t

Im t

Cv

C =C1+C2+Cv

C2

ti − iβ

C1

Figure 2.2: The modified Schwinger-Keldysh contour for diagram rules applicable in thermal equilib-
rium.

Using (2.2.9) we have

RH =
1
Z

A†
I (ti − iβ, ti )CI(ti − iβ, ti ) =

1
Z

exp(−βH(0)I )TV exp

�
−i
∫
Cv

dt ′H(i)I (t
′)
�

. (2.2.24)

Here, we have introduced the vertical addition to the Schwinger-Keldysh contour, cf. Fig. 2.2,
which we shall find very convenient soon.
Thus the equilbrium expectation value of an observable is given by

〈O(t )〉=Tr[RHOH(x)]

=
1
Z

Tr

¨
exp(−βH(0)I )TCv

exp

�
−i
∫
Cv

dt ′H(i)I (t
′)
�

C†
I (t , ti )OI(x)CI(t , ti )

«
.

(2.2.25)

In the last step we have used (2.2.24) and the transformation operator (2.2.19) from the interaction to
the Heisenberg picture.
Now, using the original real part of the Schwinger-Keldysh contour (cf. the blue paths running from
ti to t f (C1) and back (C2) in Fig. 2.2, which together we call CR =C1+C2), we can write

C†
I (t , ti )OI(x)CI(t , ti ) =TCR exp

�
−i
∫
CR

dt ′H(i)I (t
′)
�

OI(t ). (2.2.26)

Here we have assumed ti ≤ t ≤ t f . This is not a real restriction since we always can put ti →−∞ and
t f →∞ because the expectation values do not depend on ti or t f , which is clear from the first line of
(2.2.25). Plugging (2.2.26) into (2.2.25) we can combine the contour ordered exponentials with respect
to the vertical and the real part to the full extended Schwinger-Keldysh contour, leading to

〈O(t )〉= 1
Z

Tr
�

exp(−βH(0)I )TC exp
�
−i
∫
C

dt ′H(i)I (t
′)
�

OI(t )
�

. (2.2.27)

This is, up to a factor Z (0), indeed an expectation value of interaction-picture operators with respect
to the free equilibrium statistical operator. Expansion of the C -ordered exponential shall lead to the
perturbative expansion of expectation values.
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In the next Sect. we shall show that the perturbative evaluation of contour-ordered Green’s functions

iG(n)C (x1, x2, . . . , xn) =
1
Z

Tr{exp(−βHH)TCφH(x1)φH(x2) · · ·φH(xn)} (2.2.28)

for time arguments along the real part of the contour can be evaluated by making use of the real
part of the contour only. In the same way as we have derived (2.2.27) we can write for (2.2.28)

iG(n)C (x1, x2, . . . , xn) =
1
Z

Tr

¨
exp(−βH(0)I )TC exp

�
−i
∫
C

dt ′H(i)I (t
′)
�

×φI(x1)φI(x2) · · ·φI(xn)
« (2.2.29)

2.2.3 The generating functional for Green’s functions

It is a very convenient trick to use a generating functional for these Green’s functions since it facilitates
the derivation of the Feynman rules considerably. A more conventional way to come to the same
rules is to first prove Wick’s theorem which holds true for expectation values with respect to the
free Hamiltonian in the same way as in the vacuum (see [Hee02] for a derivation). More generally it
is true for any statistical operator which is given as the exponential of a one-particle operator, i.e., a
quadratic functional of the field operators [Dan84]. The only difference is that for the contractions of
field-operator pairs we have to use the free one-particle contour Green’s function

i∆C (x1, x2) =
1

Z0
Tr
¦

exp(−βH(0)I )TCφI(x1)φI(x2)
©
=: 〈TCφI(x1)φI(x2)〉(0) . (2.2.30)

We shall derive the Feynman rules by first introducing the generating functional

Z (0)[J ] =
1

Z0
Tr
�

exp(−βH(0)I )TC exp
�
i
∫
C

d4x J (x)φI(x)
��

(2.2.31)

for free Green’s functions. Here we have written
∫
C d4x :=

∫
C dx0

∫
R3 d3~x. It is immediately clear

that we get the n-point contour Green’s function by functional derivatives of this functional,

iG(n)C ,0(x1, x2, . . . , xn) :=Tr
¦

exp(−βH(0)I )TCφ(x1)φ(x2) · · ·φ(xn)
©

=
δ

iδJ (x1)
δ

iδJ (x2)
· · · δ

iδJ (xn)
Z (0)[J ]

�����
J=0

.
(2.2.32)

Obviously, by the same arguments, the generating functional for exact Green’s functions is given by
the analogous expression as (2.2.31) but with the full Hamiltonian and the Heisenberg-field operators,

Z ′[J ] = 1
Z

Tr
�

exp(−βHH)TC exp
�
i
∫
C

d4x J (x)φH(x)
��

. (2.2.33)

Using (2.2.29) we can write this as

Z ′[J ] = 1
Z

Tr
�

exp(−βH(0)I )TC exp
�
−i
∫
C

dt ′H(i)I (t
′)
�

exp
�
i
∫
C

d4x J (x)φI(x)
��

. (2.2.34)
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2.2 · Perturbation theory in thermal equilibrium

Now we use (2.2.15) and (2.2.32) to express the generating functional (2.2.33) for exact Green’s functions
in terms of that for perturbative Green’s functions:

Z ′[J ] =
Z0

Z
exp

�
− iλ

4!

∫
C

d4x
δ4

δJ (x)4

�
Z (0)[J ]. (2.2.35)

Expanding the integro-differential exponential operator in its power series, we obtain the (formal)
Dyson series for the generating functional, providing the perturbative expansion of the generating
functional of exact Green’s functions as a power series in the coupling constant, λ.
For convenience we can also define

Z[J ] = exp
�
− iλ

4!

∫
C

d4x
δ4

δJ (x)4

�
Z (0)[J ]. (2.2.36)

Because of (2.2.35) this implies

Z[J = 0] =
Z
Z0

, (2.2.37)

and thus with this generating functional the Green’s functions are given by

iG(n)C (x1, . . . , xn) =
1

Z[J = 0]

�
δnZ[J ]

iδJ (x1)iδJ (x2) · · · iδJ (xn)

�

J=0
. (2.2.38)

To derive the Feynman rules, thus we first need to evaluate (2.2.32) To perform the trace, we use the
occupation-number basis. We can use all formulae from Sect. 1.2, but since we here assumed a selfad-
joint scalar field, describing uncharged particles, the mode decomposition reads

φI(x) =
∑
~k

1p
V

h
a(~k)u~k (x)+ a†(~k)u∗~k (x)

i
. (2.2.39)

Here we used the definition of the mode functions (1.2.24) and introduced a finite quantization volume
V . According to (2.2.30) we have to evaluate the trace

Z0Z (0)[J ] =Tr
�

exp(−βH(0)I )TC exp
�

i
∫
C

d4x J (x)φI(x)
��

=
∞∑

n(~k)=0

�
{n(~k)}

����exp(−βH(0)I )TC exp
�
i
∫
C

d4x J (x)φI(x)
�����{n(~k)}

�
.

(2.2.40)

For the Hamiltonian we use the normal-ordered (renormalized) form (1.2.28), which for our neutral
particles reads

H(0)I =
∑
~k

N(k)ω~k
. (2.2.41)

From this we find, letting the first exponential operator in (2.2.40) act to the left,

Z0Z (0)[J ] =
∞∑

n(~k)=0

exp


−β∑

~k

n(~k)ω~k



�
{n(~k)}

����TC exp
�
i
∫
C

d4x J (x)φI(x)
�����{n(~k)}

�
. (2.2.42)
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2. The real-time formulation of equilibrium quantum-field theory

To evaluate the expectation value, we have to expand the exponential. This gives expectation values of
contour-ordered field-operator products,

Z (n)[J ] =
®
TC

¨ n∏
a=1

J (xa)φI(xa)
«

1...n

¸(0)

=
in

n!

∞∑
n(~k)=0

exp


−β∑

~k

n(~k)ω~k




×
®
{n(~k)}

�����TC
¨ n∏

a=1
J (xa)φI(xa)

«

1...n

�����{n(~k)}
¸

,

(2.2.43)

where we have introduced the short-hand notation

{ f (x1, . . . , xn)}1...n =
∫
C

d4x1 · · ·
∫
C

d4xn f (x1, . . . , xn), (2.2.44)

where the temporal integrals run over the time contour and the spatial integrals over the cubic volume
V .
Now we read the field operators in terms of the mode decomposition (2.2.39). Since the occupation-
number states are orthogonal, and we have

a†(~p)
���{n(~k)}

¶
=
Æ

n(~p)+ 1
���{n(~k)}~k 6=~p ∪{n(~p)→ n(~p)+ 1}

E
,

a(~p)
���{n(~k)}

¶
=
Æ

n(~p)
���{n(~k)}~k 6=~p ∪{n(~p)→ n(~p)− 1}

E
,

(2.2.45)

due to the trace all matrix elements in (2.2.43) are with respect to the same occupation-number basis
state for the bra and the ket, only those contributions from the field-operator product which consists of
the same number of annihilation operators a and creation operators a†. Because of the orthonormality
of this basis we further have ¬

{n′(~k)}
���{n(~k})

¶
=
∏
~k

δ
n′(~k),n(~k), (2.2.46)

and thus only those parts of the matrix elements which consist of the same number of annihilation and
creation operators survive. This implies that only operator products with an even number, n = 2 j ,
contribute, and these matrix elements are given by all sums over possible contractions, very similar as
in the Wick theorem for vacuum expectation values (see [Hee02] for more details). The only difference
is that here the contractions are defined by

TCφ•I (x1)φ
•
I (x2) = 〈TCφI(x1)φI(x2)〉(0) = i∆C (x1, x2) (2.2.47)

with the free contour-ordered propgator (2.2.30). Thus for an even number n = 2 j of field operators in
(2.2.43) the sum over all contractions reduces just to the multiplication with the number of complete
contractions3. Each contraction provides a factor i j [{∆C (x1, x2)J (x1)J (x2)}12]

j . This means that

Z (2 j )
0 [J ] =

(−i) j

2 j · j ![{∆C (x1, x2)J (x1)J (x2)}12]
j . (2.2.48)

3This number is given as follows: there are
�2 j

2

�
= 2 j (2 j − 1)/2 possibilities to choose the first pair out of the (2 j ) field

operators. Then there are (2 j −2)(2 j −3)/2 possibilities to choose the next pair out of the remaining (2 j −2) field operators,
etc. This makes (2 j )!/2 j choices of j pairs, but we have to sum only once over each contraction, i.e., it does not matter in
which order we have chosen the j ! pairs in one specific contraction. Thus the total combinatorial factor is finally (2 j )!/[2 j · j !].
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2.2 · Perturbation theory in thermal equilibrium

Summing these expressions over j we finally get

Z0[J ] = exp
�
− i

2
{∆C (x1, x2)J (x1)J (x2)}12

�
. (2.2.49)

2.2.4 The free contour propagator

To complete the calculation of the generating functional for free Green’s functions (2.2.49) we have
to evaluate the free contour propagator. This is also a concrete example for the technique to calcu-
late expectation values of contour-ordered field-operator products, we have looked at in the previous
section.
First we derive some general properties about this propagator, which hold also true for the exact two-
point Green’s function (cf. (2.2.28) for n = 2). In both cases the derivation of these properties works
in the same way, using the free Hamiltonian in the interaction picture or the full Hamiltonian in the
Heisenberg picture respectively. Here, we write it down for the former case, i.e., the free propagator.
By definition according to (2.2.30) we have

i∆C (x1, x2) =ΘC (t1, t2)i∆
>(x1, x2)+ΘC (t2, t1)i∆

<(x1, x2), (2.2.50)

where the thermal Wightman functions are defined by

i∆>(x1, x2) = 〈φI(x1)φI(x2)〉(0) , (2.2.51)

i∆<(x1, x2) = 〈φI(x2)φI(x1)〉(0) . (2.2.52)

The contour unit-step function is defined as

ΘC : C ×C →C, ΘC (t1, t2) =




1 for t1 >C t2,
1/2 for t1 = t2,
0 for t2 <C t2.

(2.2.53)

The ordering symbols with C as subscript denote the ordering of the times along the contour.
The functions (2.2.51) and (2.2.52) are to be read as functions with complex time arguments. In the
following we shall also derive, in which domain of the complex time plane these functions are well
defined. First of all we note that these functions are only functions of the difference of the space-time
arguments, which is due to the translation invariance of the equilibrium state. To show this, we use the
space-time translation operator (1.2.41) to write

i∆>(x1, x2) =
¬
exp(ix1 ·P(0)I )φI(0)exp(−ix1 ·P(0)I )exp(ix2 ·P(0)I )φI(0)exp(−ix2 ·P(0)I )

¶(0)
. (2.2.54)

Now, we can cyclically change the order of the operators under the trace and also use that the translation
operator commutes with exp(−βH(0)I ) to get

i∆>(x1, x2) =
¬
exp

�
i(x1− x2) ·P(0)I

�
φI(0)exp

�
−i(x1− x2) ·P(0)I

�
φI(0)

¶(0)
. (2.2.55)

Using again (1.2.41-1.2.42) we see that this can be written as

i∆>(x1, x2) = 〈φI(x1− x2)φI(0)〉(0) = i∆>(x1− x2, 0) =: i∆>(x1− x2). (2.2.56)
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2. The real-time formulation of equilibrium quantum-field theory

For∆< in the very same way we obtain

∆<(x1, x2) =∆
<(x1− x2, 0) =:∆<(x1− x2). (2.2.57)

Coming back to the question on the domain of definition concerning complex time arguments we use
(2.2.56) and write out the corresponding expectation value (2.2.55) in terms of the trace again, leading
to

i∆>(x) = 〈φI(x)φI(0)〉(0) =
1

Z0
Tr
¦

exp
�
H(0)I (−β+ it )

�
φI(0, ~x)exp(−iH(0)I t )φI(0)

©
. (2.2.58)

Now using the positive semidefiniteness of the Hamiltonian we see that the trace only exists if Im t ∈
(−β, 0]. From this form of writing the Wightman function we also find the Kubo-Martin-Schwinger
(KMS) relation, which plays a very important role in the equilibrium case. For Im t ∈ [0,β) we have

i∆>(t − iβ, ~x) =
1

Z0
Tr
¦

exp(itH(0)I )φI(0, ~x)exp
�
−iH(0)I (t − iβ)

�
φI(0)

©

=
1

Z0
Tr
¦
φI(x)exp(−βH(0)I )φI(0)

©

=
1

Z0
Tr
¦

exp(−βH(0)I )φI(0)φI(x)
©

= i∆<(x),

(2.2.59)

which shows that∆< is defined in the strip Im t ∈ [0,β) and that for such t

∆>(t − iβ, ~x) =∆<(x), (2.2.60)

which is the KMS relation, holds. With (2.2.50) we have

∆C (x1, x2) =ΘC (x1, x2)∆
>(x1− x2)+ΘC (x2, x1)∆

<(x1− x2). (2.2.61)

Since∆> is well defined for Im t ∈ (−β, 0] and∆< for Im t ∈ [0,β),∆C is well defined for Im(t1−t2) ∈
(−β,β), i.e., for time arguments with Im t1, Im t2 ∈ (−β, 0], as it should be for these time arguments
on the Schwinger-Keldysh contour.
Because of the spatial and temporal translation invariance of the equilibrium state, for the Feynman
rules it will turn out to be convenient to work in energy-momentum space, which is achieved by Fourier
transformation, but this is not applicable for the contour ordered Green’s function directly. Thus, one
uses a matrix notation for the Green’s functions, according to where the time arguments are located
on the contour, i.e., one introduces

∆i j (x1, x2) =∆C (x1, x2), (2.2.62)

where on the left-hand side the superscripts run over the set {1,2, v}, denoting where on the contour the
time arguments are located (time-ordered part, anti-time-ordered part of the real-time contour, and the
vertical addendum of the extended equilibrium Schwinger-Keldysh contour, respectively). Then these
matrix propagators have all their time arguments defined as usual real numbers or along the vertical
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2.2 · Perturbation theory in thermal equilibrium

part t = ti − iτ with τ ∈ [0,β). Explicitly the definition (2.2.62) gives

∆11(x1, x2) =:∆11(x1− x2) =Θ(t1− t2)∆
>(x1− x2)+Θ(t2− t1)∆

<(x1− x2), (2.2.63)

∆12(x1, x2) =:∆12(x1− x2) =∆
<(x1− x2), (2.2.64)

∆21(x1, x2) =:∆21(x1− x2) =∆
>(x1− x2), (2.2.65)

∆22(x1, x2) =:∆11(x1− x2) =Θ(t2− t1)∆
>(x1− x2)+Θ(t1− t2)∆

<(x1− x2), (2.2.66)

∆1v (x1, x2) =∆
2v (x1, x2) =∆

<(x1− x2), (2.2.67)

∆v1(x1, x2) =∆
v2(x1, x2) =∆

>(x1− x2), (2.2.68)
∆vv (x1, x2) :=∆

vv (x1− x2) (2.2.69)
=Θ(τ1−τ2)∆

>[−i(τ1−τ2), ~x1− ~x2]+Θ(τ2−τ1)∆
<[−i(τ1−τ2), ~x1− ~x2].

We note that only the mixed real-vertical matrix elements (2.2.66) and (2.2.67) depend on the initial
time, ti . To find the explicit expressions for these matrix Green’s functions, we only need to calculate
∆>(x), directly using its definition cf. (2.2.51). Then in our case of hermitean field operators we also
know

∆<(x) =∆>(−x). (2.2.70)

First we evaluate the partition sum of an ideal gas, which is the most simple example of this kind of
calculations:

Z (0) =Trexp(−βH(0)I ) =
∞∑

n(~k)=1

¬
{n(~k)}

���exp(−βH(0)I )
���{n(~k)}

¶
. (2.2.71)

First we use (2.2.40) and the fact that our occupation-number basis vectors are eigenvectors of H(0)I .
This leads to

Z (0) =
∞∑

n(~k)=0

exp


−β∑

~k

n(~k)ω~k


=∏

~k

∞∑
n(~k)=0

exp[−βω~k
n(~k)]. (2.2.72)

The sums obviously are convergent geometric series, which yields

Z (0) =
∏
~k

1
1− exp(−βω~k

)
. (2.2.73)

This infinite product we can translate into an infinte sum by taking the logarithm

lnZ (0) =−∑
~k

ln
�
1− exp(−βω~k

)
�

. (2.2.74)

Here, we can also easily take the infinite-volume limit. In this limit the momenta become continuous,
and we have to translate the sum into an integral. For the finite cubic volume, in a small momentum-
space volume element d3~k there are obviously d3~k L3/(2π)3 single-particle modes since the discrete
momentum values are ~k ∈ (2π/L)Z. Thus, the correct interpretation of the infinite-volume limit is
achieved by making the volume very large (compared toβ3 as a typical volume scale of the thermalized
system) and approximating the sum in (2.2.74) by the corresponding integral

lnZ (0) =−V
∫
R3

d3~k
(2π)3

ln
�
1− exp(−βω~k

)
�

. (2.2.75)
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Further we need

iZ0∆
>(x) =Tr

¦
exp(−βH(0)I )φI(x)φI(0)

©

=
∞∑

n(~k)=0

exp


−β∑

~k

n(~k)ω~k


¬{n(~k)}

���φI(x)φI(0)
���{n(~k)}

¶
.

(2.2.76)

To evaluate the matrix element we use the mode decomposition (2.2.39) and Eqs. (2.2.45) and (2.2.46).
In the next equation we set k0

1,2 =ω~k1,2
. Then for the matrix element in (2.2.76) we need

*
{n(~k)}

������
1

V
Æ

2k0
1 2k0

2

�
a(~k1)exp(−ik1x)+ a†(~k1)exp(ik1x)

��
a(~k2)+ a†(~k2)

�������{n(
~k)}
+

=
1

V 2ω~k1

¦
[1+ n(~k1)]exp(−ik1 · x)+ n(~k1)exp(ik1 · x)

©
δ~k1,~k2

.

(2.2.77)

This we have to multiply with the exponential in (2.2.76) and sum over ~k1 and ~k2 within the sum over
the n(~k). After some algebra we get

iZ0∆
>(x) =

1
V

∑
~k1


∏
~k 6=~k1

exp[−βn(~kω~k
)]




×
∞∑

n(~k1)=0

exp[−βn(~k1)ω~k1
]

1
2ω~k1

¦
[1+ n(~k1)]exp(−ik1 · x)+ n(~k1)exp(ik1 · x)

©
.

(2.2.78)

For the product we can obviously write
∏
~k 6=~k1

exp[−βn(~k)ω~k
] = Z0

¦
1− exp(−βn(~k1)]

©
. (2.2.79)

And for the sum over n(~k1 we need

∞∑
n=0

n exp(−αn) =− d
dα

∞∑
n=0

exp(−αn) =− d
dα

�
1

1− exp(−α)
�
=

exp(−α)
[1− exp(−α)]2 . (2.2.80)

Plugging (2.2.79) and (2.2.80) with α=−βω~k1
into (2.2.78) we finally get after some algebra

i∆>(x) =
1
V

∑
~k1

1
2ω~k1

n
[1+ fB(ω~k1

)]exp(−ik1 · x)+ fB(ω~k1
)exp(ik1 · x)

o
k0

1=ω~k1

. (2.2.81)

In the infinite-volume limit this translates into the integral

i∆>(x) =
∫
R3

d3~k
(2π)32ω~k

n
[1+ fB(ω~k1

)]exp(−ik1 · x)+ fB(ω~k1
)exp(ik1 · x)

o
k0

1=ω~k1

(2.2.82)

with the Bose-Einstein distribution function

fB(k
0) =

1
exp(βk0)− 1

. (2.2.83)
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Now we can rewrite (2.2.82) to a four-dimensional integral making use of the on-shell δ distribution,

δ(k2−m2) =
1

2ω~k

�
δ(k0−ω~k

)+δ(k0+ω~k
)
�

, (2.2.84)

and the property
fB(−k0) =−1− fB(k

0) (2.2.85)

to give

i∆>(x) =
∫
R4

d4k
(2π)4

2πσ(k0)δ(k2−m2)
�
1+ fB(k

0)
�

exp(−ik · x). (2.2.86)

This is a Fourier representation for the function∆>. The sign function in the energy domain is defined
as usual in connection with Fourier transformations:

σ(k0) =



−1 for k0 < 0,
0 for k0 = 0,
1 for k0 > 0.

(2.2.87)

In principle that is what we need in the practical use of the perturbative evaluation of n-point Green’s
functions, but as it will turn out later it is customary to regularize the on-shell δ distribution under the
integral such that we obtain a regularized function∆>η which still fulfills the KMS condition (2.2.60).

For this purpose, following [Mab97], we regularize the δ distributions in energy space and the Fourier
transformed Heaviside unit-step functions in a specific way. For the unit-step function the regulariza-
tion in the time domain reads

Θη(t ) =Θ(t )exp(−η|t |). (2.2.88)

Here and in the following the regularization parameter η > 0. In the following we assume all calcula-
tions to be performed with a finite η in the limit η→ 0+, where the limit has to be taken after all energy
integrals are evaluated, i.e., as a weak limit in the sense of distribution theory. Physically the regular-
ization of this kind has to be interpreted as a generalization of the theory of asymptotic states and
evaluating transition rates in the corresponding S-matrix formalism in vacuum quantum field theory
to the case of equilibrium many-body theory. We come back to this issue from time to time later.
With this regularization the Fourier transform of the unit-step function to the energy domain becomes

Θ̃η(p0) =
∫ ∞

0
dt exp[t (−η+ i p0)] =

i
p0+ iη

. (2.2.89)

The distribution δ(p0−ω) for ω ∈R corresponds to exp(−iωt )/(2π) in the time domain. Thus the
regularization for the δ distribution within our scheme reads

δη(p0−ω) =
1

2π

∫
R

dt exp[i(p0−ω)t −η|t |]

=
i

2π

�
1

p0−ω+ iη
− 1

p0−ω− iη

�

=
1
π

η

(p0−ω)2+η2
.

(2.2.90)

For the unit-step function in the energy domain we find

Θη(p0) =
∫ p0

−∞
d p0 δη(p0) =

1
2
+

1
π

arctan
�

p0

η

�
(2.2.91)
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and for the sign function,

ση(p0) =Θη(p0)−Θη(−p0) =
2
π

arctan
�

p0

η

�
. (2.2.92)

In the following we evaluate the socalled Mills representation of the propagator, i.e., the mixed time-
momentum representation [Mil69]. From (2.2.82) we find

i∆>M(t , ~k) =
1

2ω~k

n
[1+ fB(ω~k

)]exp(−iω~k
t )+ fB(ω~k1

)exp(iω~k
t )
o

(2.2.93)

for the unregularized function. For the regularized one we have to substitute the combined expression
σ(k0)δ(k

2−m2) by

δ (σ)η (k2−m2) =
i

2π(2ω~k
)

�
1

k0−ω~k
+ iη

− 1
k0−ω~k

− iη
− 1

k0+ω~k
+ iη

+
1

k0+ω~k
− iη

�
(2.2.94)

in (2.2.86)4. The Mills representation of the regularized propagator is then given by

i∆>M,η(t , ~k) =
∫

Ct

dk0

2π
2πδ (σ)η [(k0)2−ω2

~k
)
�
1+ fB(k

0)
�

exp(−ik0 t ). (2.2.95)

Here we can take t in the open strip Im t ∈ (−β, 0) in the complex t plane. The original integration
path along the real k0 axis is closed with a large semi circle in the upper (lower) complex plane for
Re t < 0 (Re t > 0), leading to the closed contours Ct in the complex k0 plane shown in Fig. 2.3. For
this choice of the contour the large semi circle does not contribute in the limit of its radius to infinity
due to the exponential function. Since due to our regularization procedure the integrand is an analytic
function, we can use the theorem of residues to evaluate the integral.

The only singularities of the integrand are the simple poles ofδ (σ)η (k2−m2) close to the real axis and the
simple poles of fB (k

0) at iωn where the bosonic Matsubara frequencies are given byωn = 2πn/β=
2πnT with n ∈ Z. Note that the pole at n = 0 is compensated by the factor δ (σ)η (k2 − m2), so that
there is no problem with this pole when integrating along the real axis (see Fig. 2.3).
For Re t > 0 we have to close the contour close to the real k0 axis in the lower plane, and thus this
contour is oriented clockwise. This gives

i∆>M,η(t , ~k) =
1

2ω~k

¦�
1+ fB(ω~k

− iη)
�

exp[−i(ω~k
− iη)t ]+ fB(ω~k

+ iη)exp[i(ω~k
+ iη)t ]

©

− T
2ω~k

∞∑
n=1

Xn exp(−ωn t ) if Re t > 0, Im t ∈ (−β, 0)
(2.2.96)

with

Xn(~k) =
1

iωn −ω~k
+ iη

− 1
iωn −ω~k

− iη
+

1
iωn +ω~k

− iη
− 1

iωn +ω~k
+ iη

=
8ηωnω~k

[(iωn −ωk )2+η2][(iωn −ωk )2+η2]
.

(2.2.97)

4It is important to note that we must not substitute the δ distribution and sign function by their regularized versions
(2.2.90) and (2.2.92), because generally a product of distributions is not well-defined. Here, in the unregularized form the
meaning of the product is clear, but it is not generally allowed to write such a product as the weak limit of the product of the
corresponding regularized expressions.
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2.2 · Perturbation theory in thermal equilibrium

−2πiT

−4πiT

−6πiT

k 06πiT

...

4πiT

2πiT

ω~k + iη

ω~k − iη−ω~k − iη

−ω~k + iη

...

Re t < 0

Re t > 0

Figure 2.3: The integration contours in the complex k0 plane for the evalution of the regularized prop-
agator (2.2.95).

For Re t < 0 we have to close the contour in the upper plane, which is counter clockwise, i.e., positively
oriented. Picking up the corresponding residues in the upper k0 half-plane, we find

i∆>M,η(t , ~k) =
1

2ω~k

¦�
1+ fB(ω~k

+ iη)
�

exp[−i(ω~k
− iη)t ]+ fB(ω~k

− iη)exp[i(ω~k
+ iη)t ]

©

− T
2ω~k

∞∑
n=1

Xn exp(ωn t ) if Re t < 0, Im t ∈ (−β, 0).
(2.2.98)

This we can combine with (2.2.99) to the expression

i∆>M,η(t , ~k) =
1

2ω~k

exp(−ησ t )
∑
ε=±1
[Θ(ε)+ f (ω~k

− iεση)]exp(−iεω~k
t )

− T
2ω~k

∞∑
n=1

exp(−ωnσ t )Xn with σ = σ(Re t ).
(2.2.99)

Because of (2.2.70) we have for Im t ∈ (0,β)

i∆<M,η(t , ~k) =∆>M,η(−t , ~k) =
1

2ω~k

exp(−ησ t )
∑
ε=±1
[Θ(−ε)+ f (ω~k

− iεση)]exp(−iεω~k
t )

− T
2ω~k

∞∑
n=1

exp(−ωnσ t )Xn with σ = σ(Re t ).
(2.2.100)

It is easy to see that the KMS condition (2.2.60) holds also for the regularized propagator,

∆>M,η(t − iβ, ~k) =∆<M,η(t , ~k) for Im t ∈ (0,β). (2.2.101)
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2. The real-time formulation of equilibrium quantum-field theory

The Mills representation of the contour-ordered regularized free propagator then is given by

i∆(C )M,η(t1, t2; ~k) = iΘC (t1, t2)∆
>
C ,η(t1− t2; ~k)+ iΘC (t2, t1)∆

<
C (t1, t2; ~k)

=
1

2ω~k

exp(−ησ t )
∑
ε=±1

[ΘC (t1, t2)Θ(ε)+ΘC (t2, t1)Θ(−ε)]exp(−iεω~k
t )

+
1

2ω~k

exp(−ησ t )
∑
ε=±1

f (ω~k
− iεση)exp(−iεω~k

t )

− T
2ω~k

∞∑
n=1

exp(−ωnσ t )Xn with σ = σ(Re t ), Im t ∈ (−β,β).

(2.2.102)

Here ~k is the momentum in the Fourier transform with respect to the “relative position”, ~x1− ~x2.
Now we come back to the generating functional for free contour-ordered Green’s functions (2.2.49).
Using the regularized propagator (2.2.102) shows that in the limit ti → −∞ only the contributions
from the pure real-time propagtors ∆i j (x1 − x2) (with i , j ∈ {1,2}) and the pure imaginary-time (or
Matsubara) propagators survive. The reason is that for any η > 0 both, ∆>M,η(x) and ∆<M,η(x) vanish

for Re t → ±∞. Now, cf. (2.2.63-2.2.69) the mixed real-imaginary-time propagators, ∆ j v
M,η(x1 − x2)

and ∆v j
M,η(x1 − x2), depend on ti , and thus their contribution to the exponential in (2.2.49) vanish in

the limit ti →−∞. This means that the generating functional factorizes as follows:

Z0[J ] = exp

�
i
2

∫
CR

d4x∆C (x1, x2)J (x1)J (x2)
�

exp

�
i
2

∫
Cv

d4x∆C (x1, x2)J (x1)J (x2)
�

= Z (R)0 [J ]Z
(v)
0 [J ].

(2.2.103)

Both expressions do not depend on ti as to be expected for a translation-invariant state.

2.2.5 Feynman rules

x x

x2

x1
J J

iJ (x) iJ (x) i∆C (x1, x2)

=

Figure 2.4: Contour-Feynman
diagram elements to evaluate
the corrections to the generat-
ing functional.

Now we can easily derive the Feynman rules to evaluate contour-
ordered Green’s functions perturbatively. We start with the calcula-
tion of the corrections to the partition function. From (2.2.37) we
know that

Z = Z0Z[J = 0]. (2.2.104)

First we expand Z[J ] in powers of the coupling constant, λ, by ex-
panding the operator-valued exponential in (2.2.36). Writing

V̂ (x) =
λ

4!
δ4

δ[iJ (x)]4
(2.2.105)

the expansion takes the form

Z[J ] =
∞∑
j=0

1
j !
(−i) j

j∏
k=1

∫
C

d4xkV̂ (xk )Z0[J ]. (2.2.106)
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=− iλ

4!

1

2!

�1
2

�2 ∫
C

d4x[i∆C (x, x)]2 ×4︸︷︷︸
from 1st derivative wrt. iJ (x)

×3︸︷︷︸
from 2nd derivative wrt. iJ (x)

×2︸︷︷︸
from 3rd derivative wrt. iJ (x)

=
1

2!

�
− i

2

�2h¦
J1∆C ,12 J2

©
12

i2

J

J ∗

J

J ∗

−i
∫
C d4x V̂
�

δ
iδJ (x)

�

Figure 2.5: Diagrammatic evaluation of the first order correction to Z[J = 0].

Then we also expand Z0[J ]

Z0[J ] = exp
�
− i

2
{∆12J1J2}12

�
=
∞∑
l=0

1
l !

�
− i

2
{∆12J1J2}12

�l
. (2.2.107)

Here we have written ∆i j =∆C (xi , x j ) for convenience. To evaluate the contribution of order λ j to
Z[J = 0] we only have to derive the term with l = 2 j from the exponenital series in (2.2.107). This is
quite simple but a bit tedious to be done by hand. Thus we use Feynman-diagram techniques. For the
terms in the series in (2.2.107) we use the diagrammatic elements with their meaning given in Fig. 2.4.
We make the diagrammatic procedure clear on the example of the first-order correction to Z[J = 0].
This is depicted in (2.5). Each functional derivative in V̂ (x) takes away one blob, symbolizing iJ . Since
the terms in the expansion (2.2.107) are totally symmetric under the exchange of the iJ ’s we have just
to take the derivatives succesively once and multiply with the number of J ’s still left. At the end we
have a closed diagram with one point x, over which one has to integrate. At j th order there can be
several such diagrams. We note that the first derivative with respect to J always cancels the factor 1/2 j

in the series (C .74). Also the factor 1/l ! = 1/(2 j )! from the expansion of Z0[J ] is cancelled from the
successive derivatives of the corresponding power l = 2 j of

�
J1∆C ,12J2

	
12.

From these considerations we get the following Feynman rules to evaluate the j th-order correction to
Z[J = 0].

• Draw j vertices with four legs. Each of those stand for a factor

x =− iλ
4!

. (2.2.108)

Multiply the whole expresseion with a factor 1/ j !.

• connect each pair of legs with a propagator line standing for i∆C (x1, x2) to obtain totally closed
diagrams. Find all possible different topologies of this kind of diagrams. For each diagram mul-
tiply the expression with a factor counting the number of possible ways to do the connections of
vertex points with propagator lines to obtain this topology. Sum all the so obtained expressions.

• integrate over all space-time points with an integral operator
∫
C d4x.
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2. The real-time formulation of equilibrium quantum-field theory

combinatorial factor is 3 :

1
1!
×3→ ×1→=

iλ

8

∫
C

d4x [∆C (x, x)]2x

Figure 2.6: Example for the determination of the combinatorial factor for the closed “eight diagram”,
which symbolizes the first-order correction to Z[J = 0].

The reader should make himself or herself clear that these rules really describe taking the successive
derivatives from the V̂ (xk )
To explain how to obtain the 1st correction from these rules, where the most complicated task is to fig-
ure out the correct combinatorial factor, look at Fig. 2.6. Finally we note that we only need to take into
account the vertical imaginary-time part in the integrals for the evaluation of these closed diagrams
without external points. The reason is that the generating functional for free Green’s functions factor-
izes into a pure imaginary-time and a pure real-time functional (cf. (2.2.103). Thus, when splitting the
integrations in all the closed diagrams in its real- and an imaginary-time part, no diagram can contain
the “mixed propagators” ∆v j or ∆ j v and thus only diagrams with all vertices on the real axis or with
all vertices on the vertical part of the time contour occur. Now the real part of the contour is closed
by itself and thus the along the real-time contour vanish. Thus, we need to take into account only the
integrations along the vertical part remain.
Of course, the expressions from the diagrams derived above are still not well definied, because in general
the integrals do not exist. We come back to this issue in the next section, where we shall show on
examples that the divergences are renormalizable for Dyson-renormalizable quantum field theories in
the same sense as the corresponding vacuum quantum field theory is Dyson-renormalizable. Also the
counter terms for the wave-function normalization, the mass, and the coupling constant necessary to
render all Green’s functions finite at any order of perturbation theory are precisely the counter terms
of vacuum quantum field theory, i.e., no temperature dependent counter terms are necessary, and the
theory is well defined independently of the thermodynamic state of the system.
It is now clear that the same diagrammatic technique also applies to the evaluation of Green’s functions
since they are also given by derivatives with respect to the external current, J (x). The only difference
is that, of course, over the external points is not integrated.
In general, at a given order of perturbation theory, the corrections to an n-point Green’s function will
consist of sums over diagrams of different topology with j vertices. Together there are j+n space-time
points in such a diagram, but only over the inner vertex point one has to integrate. Usually each diagram
can consist of several disconnected subdiagrams. It is the great advantage of the diagram technique that
one can evaluate each connected piece separately.
Now, if we like to evaluate n-point functions with time arguments on the real part of the contour, any
subdiagram that is connected to at least one external point can contain only space-time points with the
time argument on the real part of the contour, as discussed for the closed diagrams without external
points. Thus, for such diagrams we only need to work with the real-time Green’s functions ∆i j with
i , j ∈ {1,2}. The closed diagrams are the corrections to Z[J = 0], and we shall show later that they are
precisely canceled to the given order of perturbation theory by the normalization factor 1/Z[J = 0] in
(2.2.38).
Before, we shall derive the Feynman rules for real-time propagators in momentum space. To that
end we go over to the matrix formalism, i.e., we work with the propators ∆i j , defined by (2.2.63)-
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2.2 · Perturbation theory in thermal equilibrium

(2.2.66) and want to perturbatively evaluate the corresponding n-point Green’s functions G i1,...,in
n . The

superscripts run over {1,2} and note on which part of the Keldysh contour the time argument is located.
These functions are all defined as functions along the usual real-time axis. Accordingly each inner vertex
point and each external space-time point must be labeled with the corresponding index. Over the inner
points we have to integrate over R4 and to sum over the corresponding index. There one has to take
into account that the part of the time integration in the sense of the contour integral along the anti-time
ordered branch, indicated by an index 2 is from +∞ to −∞ and thus one must flip the sign, i.e., each
vertex with a time index 2 stands for +iλ/4!, while each vertex with a time index 1 for −iλ/4!.
The advantage of the matrix formalism is that the free propagator functions ∆i j can be Fourier trans-
formed also with respect to time. First, we give the non-regularized versions of these functions. From
(2.2.86) we read immediately off that

i∆̃21(k) = i∆̃>(k) = 2πσ(k0)δ(k2−m2)[1+ fB(k
0)]. (2.2.109)

The KMS relation (2.2.59) translates in Fourier space to

i∆̃12(k) = i exp(−k0β)∆̃21(k) = 2πσ(k0)δ(k2−m2) fB(k
0). (2.2.110)

The thermal time-ordered Green’s function is given from these thermal Wightman functions by
(2.2.63). Now we can use the convolution rule for Fourier transformations. We define the convolution
for two functions in the frequency domain by

[ f̃ ∗ g̃ ](ω) =
∫
R

dω′

2π
f̃ (ω−ω′) g̃ (ω′). (2.2.111)

Expressing them in terms of their Fourier integrals we get

[ f̃ ∗ g̃ ](ω) =
∫
R

dω′

2π

∫
R

dt
∫
R

dt ′ exp[i(ω−ω′)t + iω′ t ′] f (t )g (t ′). (2.2.112)

Now performing the frequency integral gives a factor 2πδ(t − t ′), and integration over t ′ thus finally
gives

[ f̃ ∗ g̃ ](ω) =
∫
R

dt exp(iωt ) f (t )g (t ). (2.2.113)

This means that a product of functions in the time domain corresponds to the convolution in the
frequency domain. It also shows that the convolution operation is commutative, i.e.,

f̃ ∗ g̃ = g̃ ∗ f̃ . (2.2.114)

Using (2.2.89) we find

i∆̃11(k) = i
∫
R4

d4x [Θ(t )∆21(x)+Θ(−t )∆12(x)]exp(−ik · x)

=−
∫
R

dz
2π


 ∆21(z, ~k)

k0− z + i0+
− ∆12(z, ~k)

k0− z − i0+


 .

(2.2.115)

Using (2.2.109) and (2.2.110) and working out the integral, using the on-shellδ distribution yields after
some algebra

i∆̃11(k) =
i

k2−m2+ i0+
+ 2πδ(k2−m2) f (|k0|). (2.2.116)
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2. The real-time formulation of equilibrium quantum-field theory

From this we immediately find the anti-timeordered propgator by noting that from the definition of
the various propagators follows the relation

∆11+∆22 =∆12+∆21 ⇒ ∆22 =∆12+∆21−∆11. (2.2.117)

After some algebra for the Fourier transform this can be brought into the form

i∆̃22(k) =− i
k2−m2− i0+

+ 2πδ(k2−m2) f (|k0|). (2.2.118)

This form of the propagtors with a f (|k0|) has the advantage to make it easy to calculate the limit
T → 0+, i.e., β → ∞, which yields the limit R → |Ω〉 〈Ω|, i.e., it leads to vacuum quantum field
theory.
We also bring the off-diagonal propagators into this form by using (2.2.85). This gives

i∆12(k) = 2π[Θ(−k0)+ f (|k0|)]δ(p2−m2),

i∆21(k) = 2π[Θ(k0)+ f (|k0|)]δ(k2−m2).
(2.2.119)

We finally note that problems occur in the case, where in the perturbative evaluations of real-time
Green’s functions two or more free propagators with the same momentum argument are multiplied,
because of corresponding powers of on-shell δ functions. In such cases we have to work with the
regularized propgators. We shall show in a moment that with the above introduced regularization of
the propagators these problems become well-defined distributions in the limit η→ 0+.
The Feynman rules in space contour-time form can then easily translated into energy-momentum space
form. To that end we first write them in terms of the matrix propagators ∆i j (x1, x2) ≡ ∆i j (x1 − x2)
and apply the convolution theorem for Fourier transforms this time in the space-time domain, i.e.,

[ f ∗ g ](x) =
∫
R4

d4x ′ f (x − x ′)g (x ′)⇔ã[ f ∗ g ](k) = f̃ (k) g̃ (k). (2.2.120)

It turns out that, as expected from translation invariance, the n-point functions contain an energy-
momentum conserving factor δ (4)(

∑
k), i.e,

G i1,...,in
n (k1, . . . , kn) = (2π)

4δ (4)(k1+ · · ·+ kn)G̃
i1,...,in
n (k1, . . . , kn). (2.2.121)

The Feynman rules to evaluate the j th-order correction G̃n to the n-point real time function in mo-
mentum space then read

• draw j vertices and n external points and connect them in any possible way to diagrams which
may be connected or disconnected but any connected subdiagram must contain at least one exter-
nal point. Each space time point (inner vertex point or external point) is labeled with a contour
index i ∈ {1,2}.
• Calculte the combinatorial factor of the diagram as explained above for the space contou-time

Feynman rules.

• the meaning of the diagram elements for φ4 theory are as follows:

i = (−1)i
iλ

4!
, k = i∆i j (k).

i

j

(2.2.122)
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2.2 · Perturbation theory in thermal equilibrium

It is important to note that the propagator lines carry an arrow indicating the flow of momentum
and, concerning the contour indices have to be read against the direction of the arrow.

• Label the directed propagator lines with momenta such that at any vertex four-momentum con-
servation is fulfilled and integrate over any momentum left that is not a momentum labeling an
external leg. Such momenta occur in diagrams with closed loops.

Obviously problems for such diagrams with the on-shell δ distributions only occur for self-energy
insertions, i.e., insertions of diagrams in one propagator (two-point function) line. Formally such
insertions can be resummed by defining the self energy by the Dyson equation,

G i j
2 (k) =∆

i j (k)−∆i k (k)ηk lΣ
l m(k)ηmnGn j

2 (k), (2.2.123)

where we have defined
(ηi j ) = diag(1,−1) (2.2.124)

to take into account the sign changes according to the integration over the backward (anti-time ordered)
part of the contour. This can be written more conveniently in matrix notation,

Ĝ2 = ∆̂− ∆̂η̂Ĝ2. (2.2.125)

Obviously the self energyΣi j consists of all diagrams with two external legs stripped from the external
propagators, which cannot be made disconnected by cutting only one propagator line. Such diagrams
with an arbitrary number of external points with amputated legs in general are called one-particle
irreducible vertex functions. We shall also discuss the appropriate generating functional below in
Sect. 3.3. For such self-energy insertions one has to use the regularized propagators, as discussed after
Eq. (2.2.87).
Now we shall investigate the very important analyticity structure of two-point functions in energy-
momentum representation. We use the free propagator as an example. Besides the matrix elements of
the matrix propagator also the retarded and advanced propagators are of great physical importance.
As we shall see below, they appear in linear-response theory which is an important tool to derive phys-
ical properties of the many-body system in equilibrium, e.g., the dielectric function or the index of re-
fraction of electromagnetic waves in a medium from many-body QED or other transport coefficients.
The free retarded propagator is defined in the space-time representation by

i∆ret(x) =Θ(t ) 〈[φI(x),φI(0)]〉(0) = i[∆11(x)−∆12(x)]. (2.2.126)

From (2.2.110) and (2.2.116) we obtain

∆̃ret(k) =
1

k2−m2+ iσ(k0)0+
=

1
(k0+ i0+)2−ω2

~k

. (2.2.127)

In regularized form it reads

∆̃ret,η(k) =
1

2ω~k

�
1

k0−ω~k
+ iη

− 1
k0+ω~k

+ iη

�
. (2.2.128)

As it must be, the poles of this propagator are slightly shifted into the lower k0 plane. On the other
hand we can also directly use the definition (2.2.126) of the retarded propagator, applying once more
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the convolution theorem of Fourier transforms:

∆ret(x) =Θ(t )[∆
21(x)−∆12(x)]

⇒∆̃ret(k) = [Θ̃ ∗ (∆̃21− ∆̃12)]](k) =
∫
R

dz
2π

A0(z, ~k)
k0− z + iη

.
(2.2.129)

This is the Kramers-Kronig relation. For the socalled spectral function we have on the one hand
from (2.2.129)

A0(z, ~k) = i[∆̃12(k)− ∆̃21(k)]. (2.2.130)

On the other hand we can use the relation

Im
1

z − k0+ iη
=−πδη(z − k0) (2.2.131)

to obtain the spectral function as
A0(k) =−2Im∆̃ret(k), (2.2.132)

which also holds true for the regularized functions.
The advanced Green’s function is defined as

i∆adv(x) =−Θ(−t ) 〈[φI(x),φI(0)]〉
=−iΘ(−t )[∆21(x)−∆12(x)].

(2.2.133)

Since the Fourier transform of Θ(−t ) is Θ̃∗(p0) and i∆12 as well as i∆21 are real functions, we immedi-
ately get

∆̃adv(k) = ∆̃
∗
ret(k) =

1
(k0− i0+)2−ω2

~k

, (2.2.134)

and again the same relation holds true for the regularized functions (for which simply the 0+ has to be
substituted by a finite positive number η).
As we see, the retarded and advanced Green’s function can be interpreted as limiting values of an ana-
lytic function in the complex k0 plane which only has poles on the real axis, namely

∆̃a(k) =
1

(k0)2−ω2
~k

, (2.2.135)

whereω~k
=
Æ

m2+ ~k2 > 0. In terms of the retarded and advanced Green’s functions we can write the
diagonal propagator-matrix elements in the form

∆11(k) =∆ret(k)+∆
12(k). (2.2.136)

Another important function is the Feynman propagator, which is defined as

∆̃F(k) = ∆̃a(k
0+ iσ(k0)0+, ~k)

=
1

k2−m2+ i0+

=
1

2ω~k

�
1

k0−ω~k
+ i0+

− 1
k0+ω~k

− i0+

�

=Θ(k0)∆ret(k)+Θ(−k0)∆adv(k).

(2.2.137)
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The latter form is the reason for calling this propagator the Feynman propagator: The modes with
positive frequency propagate with the retarded propagator and those with negative frequency with
the advanced one. In the case of vacuum (zero-temperature) quantum field theory this propagator is
identical with the time-ordered propgator. It is important to keep in mind that this is not the case
anymore at finite temperature.
The regularized form is again given by substituting the finite positive number η for 0+. With help of
(2.2.126) and the corresponding relation between the advanced and anti-time ordered propagator we
can write

∆̃11(k) = ∆̃ret(k)+ ∆̃
12(k), (2.2.138)

∆̃22(k) =∆12(k)− ∆̃adv(k) =−[∆̃11(k)]∗. (2.2.139)

The advantage of this way of writing the propagators is that we immediately know the regularized
form. We just have to use (2.2.128) and (2.2.134) (with the substitution 0+ → η) for the retarded and
advanced propagator and (2.2.110) with σ(k0)δ(k2−m2)→ δ (σ)η (k2−m2) cf. (2.2.94). Now we can
express the retarded Green’s function as well with help of the Feynman propagator

∆̃ret(k) =Θ(k
0)∆F(k)+Θ(−k0)∆∗F(k). (2.2.140)

Using this in (2.2.138) together with the property of the Bose-distribution function (2.2.85), we can
finally cast the regularized matrix propagator into the form [Lv87, Gel99].

∆̂η(k) = Û (k0)∆̂D,η(k)Ûη(k
0) (2.2.141)

with the matrices

Û =




p
1+ fB(|k0|) Θ(−k0)+ fB(|k0|)p

1+ fB(|k0|)
Θ(k0)+ fB(|k0|)p

1+ fB(|k0|)
p

1+ fB(|k0|)


 , ∆̂D,η(k) = diag

�
∆̃F,η(k),−∆̃∗F,η(k)

�
. (2.2.142)

This is immediately verified by working out the matrix product (2.2.141), using the identity

δ (σ)η (k2−m2) =
i

2π
[∆̃F,η(k)− ∆̃∗F,η(k)], (2.2.143)

and comparing the matrix elements with their explicit expressions in the form (2.2.117)-(2.2.119). Fur-
ther by direct calculation one finds

Û η̂Û = η̂ ⇒ Û−1 = η̂Û η̂. (2.2.144)

Now Dyson’s equation (2.2.123) can be solved in terms of a geometric series

Ĝ2 = ∆̂+ ∆̂η̂Σ̂η̂∆̂+ · · ·= ∆̂
∞∑

n=0
(η̂Σ̂η̂∆̂)n . (2.2.145)

Supposed that Σ̂ has no δ- or pinch singularities itself, then it is easy to show that also Ĝ or any finite
partial sum truncated at a specific n can have such singularities since we simply can write

Ĝ2 = Û ∆̂DÛ
∞∑

n=0
(η̂Û Σ̂DÛ η̂Û ∆̂DÛ )n

(2.2.144)
= Û ∆̂D

∞∑
n=0
(η̂Σ̂Dη̂∆̂D)

n Û . (2.2.146)
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2. The real-time formulation of equilibrium quantum-field theory

Now, since the analytic properties of the free propagator-matrix elements follow simply from the time-
ordering along the real-time contour in space-time representation, the same structure
(2.2.142) holds for the exact two-point Green’s function, Ĝ2, with the same matrix Û , i.e., the ma-
trix Σ̂D must indeed also be diagonal, and thus the potentially dangerous products ∆̃F∆̃

∗
F never occur

in (2.2.146), and this also holds true for any truncation of this series. Such products are dangerous,
because the singularities at k0 =ω

k̂
of the free propagators in the limit η→ 0+ are then pinched from

both sides of the real axis, and thus such products do not have a well-defined weak limit in the sense of
distributions. But now, due to (2.2.146) in fact only products of the type ∆̃n

F or (∆̃∗F)
n occur, and thus

have a definite meaning as distributions in the limit η→ 0+. They are defined by the corresponding
contour integration in the complex k0 plane via the residuum theorem of function theory and in the
limit lead to Cauchy-principle values auf derivatives of the functions and derivatives of the on-shell δ
functions.
That the self energy Σ̂(k) is indeed free of pinch singularities itself is shown by induction with respect
of the perturbative order under consideration. Suppose the assertion where true up to order O (λn).
Then any line within a proper subdiagram of a contribution to the self energy of order O (λn+1) can
only have self-energy insertions of lower order in the coupling and is thus free of pinch singularities by
assumption. That the leading-order O (λ1) self energy is free of singularities is clear since it is given by
the simple tadpole diagram

−iΣ̃i i
1 (k) = l

k

k

i ⇒ Σ̂= diag(Σ11,−Σ11) =Σ11η̂. (2.2.147)

The latter equality we shall prove in the next section. It obviously has only diagonal elements and
is independent of k, i.e., after renormalization it is just a temperature dependent mass term. Thus
in leading order the self energy is non-singular and thus by induction this is the case for self-energy
contributions at any order.
Another important feature of the above considerations is seen at this example of a constant self energy.
If we plug this in into the infinite sum (2.2.145) we first have to use the regularized expressions for∆F

and also the Bose-distribution functions contained in the matrix Û have to be taken as fB(|k0|) and not
as fB(ω~k

), which superficially is the same in the weak limit η→ 0+, where the on-shell δ distribution
in the free propagators render these prescriptions equivalent. However, precisely to resum the Dyson
series, we have to use the regularized form of the propagators, and due to our analysis with the Mills
representation, we have seen that there we must take the distribution functions as a function of k0 and
not ω~k

. The limit η→ 0+ has to be taken after the resummation. Now due to (2.2.144) the diagonal
form of the leading-order self energy is also

Σ̂D = Σ̃
11η̂, (2.2.148)

and thus after some algebra

Ĝ(1)D = (1− Σ̃11∆̂Dη̂)
−1∆̂D =

�
∆̂D

�
m2→m2+Σ̃11

, (2.2.149)

as expected. This we have to multiply from both sides with the matrix, Û , and only then to take the
weak limit η→ 0+. This leads to the correct form for a mass insertion, i.e., the on-shell δ distributions
refer to the shifted mass and thus also the Bose-distribution functions get their argument at ω∗

~k
=
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2.2 · Perturbation theory in thermal equilibrium

Æ
~k2+m2+ Σ̃11 as it must be. This example verifies the above abstractly proven fact that with this

regularization prescription the update of the distribution functions are properly taken into account
within the real-time diagram technique. There has been no need to take into account the contribution
of the vertical part of the contour explicitly. As shown above, this is due to the analytic structure of
the Green’s functions in thermal equilibrium and thus also closely related to the KMS condition.
Finally we have to come back to the correction factors for the partition sum, i.e., the closed diagrams
contributing to the perturbative evaluation of Z[J = 0]. The straight-forward way would be to just
work on the vertical part of the contour only. This leads to the imaginary-time or Matsubara Feyn-
man rules with discrete imaginary Matsubara frequencies instead of real continuous energies. This
will be explained in more detail in Sect. 3.2 and Appendix B. Here one only has to take into account
that any perturbative correction to a two-point function has exactly the analytic properties assumed
to translate the Matsubara sums into integrals, and that the integration path for the last remaining mo-
mentum integral can be deformed to two contours close to the positive real k0 axis as explained in
Sect. 3.2.2. The analytic properties then show that this final momentum integral can be performed by
knowing the corresponding real-time two-point function (more precisely it is sufficient to know the
time-ordered two-point function only).
Formally any closed diagram can be taken as closing an arbitrary complicated truncated subdiagram
with two external space-time points, which we denote with −iA(x1, x2), with the propagator line i∆.
The corresponding contribution to the correction factor reads, using the original form of the complete
extended Schwinger"=Keldysh"=contour formlism

z =
∫
C

d4x1

∫
C

d4x2AC (x1, x2)∆C (x2, x1). (2.2.150)

Defining first the two-point function

CC (x1, x3) =
∫
C

AC (x1, x2)∆C (x2, x3) (2.2.151)

leads to

z =
∫
C

d4xCC (x, x). (2.2.152)

Now, it is easy to see that at least at any finite order of perturbation theory, all the two-point functions
have the same analytical properties as the (free or full) propagator. From translation invariance it is
clear that CC (x1, x2) =CC (x1− x2) and thus CC (x, x) =CC (0) and finally

z =−iβV CV (0), (2.2.153)

where CV is the Matsubara-two-point function, which is defined solely on the vertical part of the con-
tour. We also have used the finite-volume regularization of the spatial integral. Our goal is to express
(2.2.153) in terms of the real-time two-point function along the Kedysh contourCR. For this purpose
we note that any two-point function obeys the general analytical properties as the perturbative propa-
gator ∆C (x1, x2) =: ∆C (x1− x2) and the full propagator G(2)C (x1, x2) =: G(2)C (x1− x2), where we have
used the translation invariance of the equilibrium state in both space and time. We have derived these
properties above (Eq. (2.2.126) and the following paragraphs).
Due to the KMS condition its Fourier representation is given by

CV (−iτ, ~x) =
1
β

∑
n∈Z

∫
d3~k
(2π)3

exp
�
−iωnτ+ i~k · ~x

�
C̃V (iωn , ~k) (2.2.154)
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2. The real-time formulation of equilibrium quantum-field theory

with the Matsubara frequencies

ωn =
2πn
β
= 2πnT , n ∈Z. (2.2.155)

The Matsubara two-point function is immediately related to the corresponding real-time functions via

CV (−iτ, ~x) =C>(−iτ, ~x), τ ∈ [0,β]. (2.2.156)

In momentum space we can express the real-time functions with help of the spectral function

AC (k) = i[C̃>(k)− C̃<(k)] = iC̃<(k)[exp(βk0)− 1] = iC̃>(k)[1− exp(−βk0)], (2.2.157)

where in the last steps we have used the Fourier-transformed KMS condition (2.2.59), which is valid for
any two-point function as for the free propagator. We have also shown above that this quantity is real
and thus related to the retarded two-point function by

AC (k) =−2Im C̃ret(k). (2.2.158)

Further we have defined the analytic two-point function

C̃a(k) =
∫
R

dz
2π

AC (z, ~k)
k0− z

. (2.2.159)

For real k0 the retarded and advanced two-point functions are given by

Cret(k) =Ca(k
0+ i0+, ~k), Cadv(k) =Ca(k

0− i0+, ~k) =C ∗ret(k) for k0 ∈R. (2.2.160)

Using the inverse Fourier transform of (2.2.154) and (2.2.156),

C̃V (iωn , ~k) =
∫ β

0
dτ
∫
R3

d3~x exp(iωnτ− i~k · ~x)C>(−iτ, ~x), (2.2.161)

and

C>(−iτ, ~x) =
∫
R4

d4k
(2π)4

C̃>(k)exp(−τk0+ i~k · ~x) (2.2.162)

we finally obtain

C̃V (iωn , ~k) =
∫
R

dz
2π

C̃>(z, ~k)
iωn − z

[exp(−βz)− 1]

(2.2.157)
= −

∫
R

dz
2π

AC (z, ~k)
iωn − z

2.2.159= −Ca(iωn , ~k).

(2.2.163)

Now we need

CV (0) =
1
β

∑
n∈Z

∫
R3

d3~k
(2π)3

C̃V (iωn , ~k). (2.2.164)
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2.2 · Perturbation theory in thermal equilibrium

Using (B.1.6) and (2.2.163) together with (2.2.160) we get

CV (0) =
1
2

∫
R4

d4k
(2π)4i

[1+ 2 fB(k
0)][Cadv(k)−Cret(k)]

=
1
2

∫
R4

d4k
(2π)4

[1+ 2 fB(k
0)]AC (k0)

=
1
2

∫
R4

d4k
(2π)4

[C̃>(k)+ C̃<(k)]

=
1
2

∫
R4

d4k
(2π)4

[C̃ 11(k)+ C̃ 22(k)] =
∫
R4

d4k
(2π)4

C̃ 11(k).

(2.2.165)

Thus we find

z =−iβV
∫
R4

d4k
(2π)4

C̃ 11(k). (2.2.166)

2.2.6 Renormalization

We shall close our considerations on the operator techniques and real-time Feynman rules by giving
two simple one-loop examples of φ4 theory for calculations of loop integrals, showing that indeed
only the vacuum counter terms, known from usual vacuum quantum field theory5, are needed to
render the diagrams finite. The vacuum case is always given in the limit T → 0, and the key is to
carfully separate off the vacuum contributions to the thermal Feynmandiagrams and renormalize them
in the usual way, using a customary regularization scheme (we shall use dimensional regularization as
our standard method) or directly BPHZ renormalization, which is most appropriate in the real-time
formalism, because the free propagator can be easily split into pure vacuum and temperature-dependent
parts. According to Eqs. (2.2.116-2.2.119), the vacuum and temperature parts of the propagator-matrix
elements are given by6

i∆11
vac(k) =

i
k2−m2+ i0+

, i∆11
T (k) = 2πδ(k2−m2) fB(|k0|), (2.2.167)

i∆12
vac(k) = 2πδ(k2−m2)Θ(−k0), i∆11

T (k) = 2πδ(k2−m2) fB(|k0|), (2.2.168)

i∆21
vac(k) = 2πδ(k2−m2)Θ(k0), i∆11

T (k) = 2πδ(k2−m2) fB(|k0|), (2.2.169)

i∆22
vac(k) =−

i
k2−m2− i0+

, i∆22
T (k) = 2πδ(k2−m2) fB(|k0|). (2.2.170)

As the first (somewhat untypical) example we consider the tadpole selfenergy

−iΣi i
1 (k) = l

k

k

i . (2.2.171)

Using the Feynman rules and counting the combinatorial factor as explained above we get

Σ11
1 (k) =

iλ
2

∫
R4

d4 l
(2π)4

∆11(l ). (2.2.172)

5For a detailed treatment of renormalization in vacuum quantum field theory, see [Hee02]
6From here on we leave out the tilde for the momentum-space propagators.
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2. The real-time formulation of equilibrium quantum-field theory

Here we see that indeed only the vacuum diagram is quadratically divergent. It is simply a tempera-
ture-independent infinite correction to m2. Choosing the socalled on-shell renormalization scheme,
where the counter terms are chosen such that at any order of perturbation theory the renormalized
mass in the vacuum is given by the mass parameter m, we simply subtract the vacuum contribution
leading to

Σ11
1,ren(k) =

iλ
2

∫
R4

d4 l
(2π)4

∆11
T (l ) =

λ

2

∫
R4

d4 l
(2π)4

2πδ(l 2−m2) fB (|l 0|). (2.2.173)

As expected from our general discussion above, there is no problem with the use of the unregularized
propagator, and we can simply perform the k0 integration to get rid of the δ distribution, leading to
the obviously finite result

Σ11
1,ren(k) =

λ

2

∫
R3

d3~k
(2π)3

1
ω~k

fB(ω~k
). (2.2.174)

This shows that in leading order the self energy leads to a temperature dependent shift of the par-
ticles’ effective mass. It is a well-known phenomenon from condensed matter physics that often the
physics of excitations due to finite temperature (and/or density) lead to a discription of the fundamental
excitations of the system as “particles” which share most properties of the original particles, building
the constituents of the matter under consideration but with changed effective parameters (like here the
mass). Such excitations are called quasiparticles. As we shall see later, often there also occur quasipar-
ticles with totally different properties than the particles, building the elementary constituents of the
matter. E.g., in a superconducting medium, electrons (which are fermions) close to the Fermi surface
form quasi particles consisting of pairs of electrons, the socalled Cooper pairs with bosonic properties.
It is clear that in the case of the tadpole diagram, the off-diagonal elements vanish, because it is effec-
tively only a one-point function (which also leads to the fact that it is a four-momentum independent
constant due to translation invariance of the equilibrium state). The general property (2.2.117) then
leads to

Σ22
1,ren(k) =−Σ11

1,ren(k). (2.2.175)
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Chapter 3

Path-integral formulation

The path integral formulation of quantum field theory is convenient for general considerations espe-
cially in the context of gauge theories. Here we shall apply it first to the theory of many-body systems
of charged scalar bosons in order to have a gentle introduction to the path-integral technique and to
also treat an example with chemical potential, which is a true extension of the considerations on simple
φ4 theory of the previous chapter.

3.1 Definition of the path integral

To have a certain example at hand, we consider the quantized version of a complex field φ with the
dynamics of the classical theory defined by the Lagrangian1

L = (∂µφ∗)(∂ µφ)−m2φ∗φ− λ
8
(φ∗φ)2. (3.1.1)

The canonically conjugated field momenta are given by

Π∗ = ∂L
∂ φ̇∗

= φ̇, Π=
∂L
∂ φ̇

= φ̇∗, (3.1.2)

while the Hamilton density is

H = φ̇Π∗+ φ̇∗Π−L =Π∗Π+(gradφ∗)(gradφ)+m2φ∗φ+ λ
8
(φ∗φ)2. (3.1.3)

This theory has not only the Poincaré symmetry of space-time but also a
global U(1) symmetry φ→ exp(−iχ )φ, φ∗→ exp(iχ )φ∗ giving rise to the conserved Noether charge

Q =
∫

d3~xφ∗(x)i
↔
∂ 0φ(x). (3.1.4)

1It should be kept in mind that in the Lagrangian and the action principleφ andφ∗ are independent field variables, rather
than conjugate complex quantities. While in vacuum quantum field theory, for the solutions of the field equations, the star
becomes the meaning of complex conjugation, this is not the case at finite chemical potential. As we shall see, in this case,
we have to impose boundary conditions for the fields, integrated over in the path integral, which are not compatible with an
interpretation of φ∗ as the conjugate complex of φ.
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3. Path-integral formulation

As already in the previous chapter for free fields the canonical quantisation is done by making the fields
to field operators which according to the spin-statistics theorem obey the bosonic canonical equal-time
commutation relations

[φ(t , ~x),φ(t , ~y)] = 0, [φ(t , ~x),Π(t , ~y)] = iδ(~x − ~y). (3.1.5)

The quantization of the Hamiltonian and the Noether charge (3.1.4) leads to characteristic operator-
ordering problems. Also the products of local operator expressions are not well defined at all since we
have to define the meaning of the product of generalised functions like the δ-distributions appearing
in the commutator relations (3.1.5). Here we use the usual very naive physicists’s rule of thumb to
chose a convenient ordering of the operators to define formal operator expressions from the classical
definitions, always keeping in mind, that we have to renormalize the physical quantities calculated from
these expressions.
Since we like to apply the path integral formalism we use the left ordering in the canonical formulation,
i.e., we always order the field momentum operators to the left of the field operators themselves. For
the charge (3.1.4) this rule yields

Q = i
∫

d3~x (Π†φ†−Πφ). (3.1.6)

This is a selfadjoint operator up to an indefinite field-independent constant. With help of (3.1.5) one
proves immediately the commutation relations

[Q,φ(x)] =−φ(x),
�
Q,φ†(x)

�
=φ†(x), (3.1.7)

which tell us, that Q is the generator of the underlying U(1) symmetry of the theory. This is the quan-
tum analogue of Noether’s theorem known from classical field theory: Each one-parameter symmetry
group defines a conserved charge which in turn is the generator of this symmetry group.
Now we like to investigate the equilibrium state

R =
1
Z

exp(−βH+αQ), Z =Tr [exp(−βH+αQ)] . (3.1.8)

To define the path integral we introduce eigenstates of the field operators in the Heisenberg picture:

φ(x) |φ,φ∗, t 〉=φ(x) |φ,φ∗, t 〉 , φ†(x) |φ,φ∗, t 〉=φ∗(x) |φ,φ∗, t 〉 . (3.1.9)

These generalized eigenkets are time dependent since in the Heisenberg picture we have by definition

φ(t , ~x) = exp(iHt )φ(0, ~x)exp(−iHt ). (3.1.10)

Here we have set the initial time to 0 and made use of the fact, that H is a time-independent quantity.
From this we get

|φ,φ∗, t 〉= exp(iHt ) |φ,φ∗, 0〉 . (3.1.11)

Due to (3.1.7) for α ∈R we also find the relations

exp(−αQ)φ(x)exp(αQ) = exp(α)φ(x), exp(−αQ)φ†(x)exp(αQ) = exp(−α)φ†(x), (3.1.12)

which means for the field-operator eigenstates

exp(αQ) |φ,φ∗〉= |exp(α)φ, exp(−α)φ∗〉 . (3.1.13)
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We can also introduce the generalized eigenkets for the canonical field momenta. From the commutator
relations (3.1.5) one obtains

〈φ,φ∗, t = 0 |Π,Π∗, t = 0〉= exp
�

i
∫

d3~x[Π(0, ~x)φ(0, ~x)+Π∗(0, ~x)φ∗(0, ~x)]
�

. (3.1.14)

We define the normalisation such that
∫

DφDφ∗ |φ,φ∗, t 〉 〈φ,φ∗, t |=
∫

DΠDΠ∗

(2π)2
|Π,Π∗, t 〉 〈Π,Π∗, t |= 1. (3.1.15)

As usual, here the functional integrals have to be defined in terms of a discretised version of the space-
time arguments and then one has to take the continuum limit.
Now for a time-dependent functional F(t ) = F[φ, t ] due to (3.1.15) we have

〈F(t )〉= 1
Z

Tr{exp(−βH+αQ)F(t )} (3.1.16)

For the following we insert 1= exp(−iHt )exp(+iHt ) and, using [Q,H] = 0, we can write

〈F(t )〉= 1
Z

Tr{exp(−iHt )exp(+iHt )exp(−βH+αQ)F(t )}

=
1
Z

Tr{exp(−iHt )exp(−βH+αQ)exp(+iHt )F(t )}

=
1
Z

Tr{exp(−βH+αQ)exp(+iHt )F(t )exp(−iHt )}.

(3.1.17)

Now we use (3.1.15) to evaluate the trace with help of the eigenvectors |φ,φ∗, 0〉, setting the initial time
ti = 0 for convenience,

〈F(t )〉= 1
Z

∫
Dφ

∫
Dφ∗ 〈φ,φ∗, 0 |exp(−βH+αQ)exp(+iHt )F(t )exp(−iHt )|φ,φ∗, 0〉 . (3.1.18)

Now we have, because of [H, Q] = 0,

〈φ,φ∗, 0|exp(−βH+αQ) = 〈φ,φ∗, 0|exp(αQ)exp(−βH)
(3.1.13)
= 〈exp(α)φ, exp(−α)φ∗, 0)|exp(−βH)

(3.1.11)
= 〈exp(α)φ, exp(−α)φ∗,−iβ)| .

(3.1.19)

Plugging this in (3.1.18) we finally get

〈F(t )〉= 1
Z

∫
DφDφ∗ 〈exp(α)φ, exp(−α)φ∗,−iβ |exp(+iHt )F(t )exp(−iHt )|φ,φ∗, 0〉 . (3.1.20)

This is the typical situation for a path-integral formulation: We have to calculate a matrix element of
an operator for the time evolution from t = 0 to t = −iβ with an insertion of time-evolution along
the real-time axis and back. Thus, the original Schwinger-Keldysh contour (Fig. 2.1) is extended at the
end by a vertical part running from 0 to −iβ. Again the real part of the contour can be extended to
run from t = ti to an arbitrary final time t f > t (see Fig. 2.2). It is clear, that the same holds true
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3. Path-integral formulation

for the initial time which can be chosen to be ti < 0. As we have already seen in Sect. 2.2.103 for the
equilibrium case it is convenient to extend the real part of the contour along the whole time axis, i.e.,
taking ti →−∞. This freedom is due to the time-translation invariance of the equilibrium state. It
should be kept in mind, that for a general non-equilibrium situation, it does not make sense to consider
times smaller than the initial time, where the system has been prepared.
To derive a paht-integral expression for (3.1.20) we take advantage of the fact that for our system, defined
by the Lagrangian (3.1.1), the Hamiltonian (3.1.2) is of the form

H =H1[Π,Π†]+H2[Φ,Φ†]. (3.1.21)

Now, for any real or complex parameter∆τ, we have

exp[∆τ(H1+H2)] = exp(∆τH1)exp(∆τH2)+O(∆τ2). (3.1.22)

Using this decomposition in (3.1.20), where we introduce a lattice on the time contour according to
Fig. 3.1, we can write

〈F(t )〉=
∫

Dφ j∗
k

dφ j
k

∫ DΠ j∗
k

DΠ j
k

(2π)2

×
¬
φ3

N3

���exp
�
−i∆t3H1(t

3
N3
)
����Π3

N3

¶¬
Π3

N3

���exp
�
−i∆t3H2(t

3
N3
)
����φ3

N3−1

¶

×
¬
φ3

N3−1

���exp
�
−i∆t3H1(t

3
N3−1)

����Π3
N3−1

¶¬
Π3

N3−1

���exp
�
−i∆t3H2(t

3
N3
)
����φ3

N3−2

¶
. . .

×
¬
φ3

1

���exp
�−i∆t3H1(t

3
1 )
����Π3

1

¶¬
Π3

1

���exp
�
−i∆t3H2(t

3
N3
)
����φ3

0

¶

×
¬
φ2

N2

���exp
�
−i∆t2H1(t

2
N2
)
����Π2

N2

¶¬
Π2

N2

���exp
�
−i∆t3H2(t

2
N2
)
����φ2

N2−1

¶

× . . .

×
¬
φ2

1

���exp
�−i∆t2H1(t

2
1 )
����Π2

1

¶¬
Π2

1

���exp
�−i∆t3H2(t

2
1 )
����φ2

0

¶

×
¬
φ2

0

���F(t 2
i )
���φ1

N1

¶

×
¬
φ1

N1

���exp
�
−i∆t1H1(t

1
N1
)
����Π1

N1

¶¬
Π1

N1

���exp
�
−i∆t1H2(t

1
N1
)
����φ1

N1−1

¶

× . . .

×
¬
φ1

1

���exp
�−i∆t1H1(t

1
1 )
����Π1

1

¶¬
Π1

1

���exp
�−i∆t3H2(t

1
1 )
����φ1

0

¶

(3.1.23)

The inserted projectors |Π〉 〈Π| and |φ〉 〈φ| have to be understood to be taken always at the appropriate
time arguments. At the boundaries of the contour we have t 1

i = t 3
i = t 2

N2
and t 2

i = t 1
N1

. Further we
have to imply boundary conditions for the outermost bra and ket (the so called KMS-condition, named
after Kubo, Martin, and Schwinger): φ3

N3
= exp(−α)φ1

0 and (φ3
N3
)∗ = exp(+α)(φ1

0)
∗. There are no

boundary conditions for the canonical field momenta.
Now from (3.1.21) and (3.1.14) we find the following expressions for the matrix elements appearing in
(3.1.23):

¬
φ j

k

���exp(−i∆t j H1)
���Πk

¶
= exp

�
−i∆t j H1(Πk ,Π∗k )+ i

∫
d3~x(φkΠk + cc)

�
,

¬
Πk

���exp(−i∆t j H2)
���φk−1

¶
= exp

�
−i∆t j H2(φk−1,φ∗k−1)− i

∫
d3~x(φk−1Πk + cc)

�
.

(3.1.24)
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3.1 · Definition of the path integral

t 1
0 t 1

1 · · ·

t 3
1

t 2
N2
= t 3

0

t 3
N3

...

t 2
1 t 2

0· · ·

t 1
N1
= t 2

0 = t

Figure 3.1: The time lattice for the extended Schwinger-Keldysh contour.

Plugging this in (3.1.23) and reading the expression as the lattice version of a path integral one obtains
in the continuum limit N j →∞ ( j ∈ {1,2,3}):

〈F(t )〉= 1
Z

∫
KMS

DφDφ∗
∫

DΠDΠ∗

(2π)2
exp

�
−i
∫
C

d 4x
�
H −Πφ̇−Π∗φ̇∗

��
F (t ), (3.1.25)

where “KMS” at the path integral sign reminds us that we have to impose the boundary conditions

φ(−iβ, ~x) = exp(−α)φ(0, ~x), φ∗(−iβ, ~x) = exp(α)φ∗(0, ~x). (3.1.26)

We have to integrate also with respect to φ(0, ~x) and φ∗(0, ~x) because of the trace in (3.1.17). As our
derivation clearly shows, there are no boundary conditions for the functional integration over the
canonical field momenta.
Finally we note that a path-integral with a functional of multiple time arguments along the contour
gives an expectation value of contour-time ordered operator products, i.e.,

〈TCF1(t1) · · ·Fn(tn)〉=
1
Z

∫
KMS

DφDφ∗DΠDΠ∗

(2π)2

× exp
�
−i
∫
C

d 4x
�
H −Πφ̇−Π∗φ̇∗

��
F1(t1) · · ·Fn(tn).

(3.1.27)

Now we can use the fact, that the Hamiltonian (3.1.3) is quadratic in the field momenta Π and Π∗ with
field-independent coefficients. Thus we can evaluate the functional integration with respect to the field
momenta in (3.1.25) exactly. The result is the stationary point of the exponential times an indefinite
factor. Thus, we can write

〈F(t )〉= 1
Z ′

∫
KMS

DφDφ∗ exp{iSC [φ,φ∗]}F (t ) with SC [φ,φ∗] =
∫
C

d4xL . (3.1.28)

In the following we shall use the abbreviation

{ f1...n}1...n =
∫
C

d4x1 · · ·d4xn f (x1, . . . , xn) (3.1.29)

for the integration of a function with multiple space-time arguments. The time argument is always
running along the time contour.
The new partition sum Z ′ has to be chosen such, that 〈1〉= 1, yielding

Z ′ =
∫

KMS
DφDφ∗ exp[i{L1}1]. (3.1.30)
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3. Path-integral formulation

Generalizing (3.1.28) to the expectation value of local field operators at different times we find imme-
diately

〈TCφ(x1) · · ·φ(xn)〉=
1

Z ′

∫
KMS

DφDφ∗φ(x1) · · ·φ(xn)exp[i{L1}1]. (3.1.31)

The generating functional for expectation values of contour-ordered operator products is defined as

Z[ j , j ∗] =
∫

KMS
DφDφ∗ exp[i{L1+ j ∗1φ1+ j1φ

∗
1}1] (3.1.32)

3.1.1 Two-point functions along the real-time contour

First we study the general case of a non-equilibrium situation and thus restrict ourselves to the real-
time branch of the contour. In the next section we shall treat the equilibrium case and the analytic
continuation necessary to go over from the real- to the imaginary-time formalism.
We define a two-point function on the Schwinger-Keldysh contour (see Fig. 2.1) as

iF (x, y) = 〈TCA(x)B(y)〉 . (3.1.33)

Herein A and B are arbitrary bosonic local field operators2.
Further we like to use Fourier transformations which are only available if we use real times, not contour
times. Thus, we introduce a matrix Green’s function formalism as follows:

F̂ (x, y) =
�

F 11(x, y) F 12(x, y)
F 21(x, y) F 22(x, y)

�
=−i

�〈TcA(x)B(y)〉 〈B(y)A(x)〉
〈A(x)B(y)〉 〈TaA(y)B(x)〉

�
. (3.1.34)

Since the off-diagonal elements of this matrix are expectation values of fixed operator products and the
time evolution is unitary, they are analytic functions for t ∈ R. The four matrix elements obviously
are not independent of each other but fulfil the relation

F 11+ F 22 = F 12+ F 21. (3.1.35)

With help of the contour unit-step function (2.2.53) we can write the contour Green’s function as

F (x, y) =ΘC (x0, y0)F
21(x, y)+ΘC (y0, x0)F

12(x, y). (3.1.36)

Sometimes the introduction of the retarded and advanced two-point functions is useful. Both have real
time arguments (not contour time arguments):

FR(x, y) = F 11(x, y)− F 12(x, y) =Θ(x0− y0)[F
21(x, y)− F 12(x, y)],

FA(x, y) = F 11(x, y)− F 21(x, y) =−Θ(y0− x0)[F
21(x, y)− F 12(x, y)].

(3.1.37)

For the matrix elements (3.1.34) we can introduce the Wigner transform

F̃ i j (X , p) =
∫

d4ξ F i j (X + ξ /2,X − ξ /2)exp(i pξ ), i , j ∈ {1,2}. (3.1.38)

If the state is translation invariant then obviously F̃ depends on p only. This is the case for the vacuum
state and thermal equilibrium.

2For the fermionic case one has to introduce the usual sign convention when interchanging operators to bring them in
the order assigned by the various time ordering symbols.
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3.1 · Definition of the path integral

For the special case B =A† we find from (3.1.36)

iF̃ ±∓(X , p) ∈R,

[iF̃ ±±(X , p)]∗ = iF̃ ∓∓(X , p),

[F̃R(X , p)]∗ = F̃A(X , p).

(3.1.39)

From (3.1.37) we get
F̃R(X , p) = [Θ̃ ∗ (F̃ 21− F̃ 12)︸ ︷︷ ︸

−iFS

](X , p), (3.1.40)

where the p0-convolution of Wigner functions is defined as

[Θ̃ ∗ f ](X , p) =
∫

d p0

2π
Θ̃(p0− p ′0) f (X , p ′0, ~p). (3.1.41)

Since

Θ(t ) =
∫

d p0

2π
i

p0+ i0+
exp(−i p0 t ) (3.1.42)

(3.1.40) reads

F̃R(X , p) =
∫ d p ′0

2π
F̃S (X , p ′)

p0+ i0+− p ′0
, ~p ′ = ~p. (3.1.43)

From
1

p0− p ′0+ i0+
=P 1

p0− p ′0
− iπδ(p0− p ′0) (3.1.44)

we find the expression
F̃S (X , p) =−2Im F̃R(X , p) (3.1.45)

for the spectral function and the Kramers-Kronig relation

Re F̃R(X , p) =−P
∫ d p ′0

π

Im F̃R(X , p ′)
p0− p ′0

. (3.1.46)

It is important to note that in the special case B =A† (particularly for the two-point Green’s function,
where A=φ and B =φ†) we have the additional properties

[iF 21(x, y)]∗ = iF 21(y, x), [iF 12(x, y)]∗ = iF 12(y, x),

[iF 11(x, y)]∗ = iF 22(y, x), [iF 22(x, y)]∗ = iF 11(y, x),
[FR(x, y)]∗ = FA(y, x).

(3.1.47)

3.1.2 The two-point Green’s function in equilibrium

In thermodynamic equilibrium due to translation invariance the two-point matrix Green’s functions
depend on the relative coordinate ξ = x1− x2 only. Also the Green’s functions have additional prop-
erties due to the KMS condition on the fields. In the following we note only the time arguments of the
Green’s function, which makes the notation more convenient. In this chapter we discuss the Green’s
function for scalar fields, which is defined by setting A(x) =φ(x) and B(x) =φ†(x) in (3.1.34):

iG(x, y) =

TCφ(x)φ†(y)

�
. (3.1.48)
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3. Path-integral formulation

In terms of the path integral the 21-two-point function is defined by

iZ[0]G21(ξ ) =
∫

KMS
DφDφ∗φ(ξ +)φ∗(0−)exp(iS[φ,φ∗])

=
∫

KMS
DφDφ∗ exp(−µβ)φ(ξ )φ∗(−iβ)exp(iS[φ])

= iZ[0]G12(ξ + iβ)exp(−µβ).

(3.1.49)

Here the time argument of ξ is located at the real part of the contour. Thus, we have the analytic
continuation of G12 to imaginary time arguments, and it fulfills

G21(ξ − iβ) = exp(−µβ)G12(ξ ) for−β< Imξ < 0. (3.1.50)

The Fourier transform of this KMS-condition reads

G̃21(p) = exp[β(p0−µ)]G̃12(p). (3.1.51)

From (3.1.45) follows

GS (p) =A(p) =−2Im G̃R(p), (3.1.52)

iG̃12(p) =A(p) fB(p0−µ), (3.1.53)

iG̃21(p) =A(p)[1+ fB(p0−µ)], (3.1.54)

where we have introduced the Bose-Einstein distribution function

fB(x) =
1

exp(βx)− 1
. (3.1.55)

With the spectral representation (3.1.43) we have

G̃R(p) =
∫ d p ′0

2π

A(p ′0, ~p)
p0− p ′0+ i0+

. (3.1.56)

With (3.1.37) and (3.1.39) we find the following expression for the contour Green’s function

iGC (x
′, x) =

∫
d4 p
(2π)4

A(p)exp[−i p(x ′− x)][ΘC (t
′, t )+ fB(p0−µ)], (3.1.57)

where we have used the contour unit-step function (2.2.53) for compact notation.

3.1.3 The free equilibrium propagator

The Feynman rules for perturbation theory at finite temperatures can be derived in the same way as
the Feynman rules for vacuum physics. The only difference is, that the propagators are replaced by
the real-time propagators or the imaginary-time propagators. Here we use the path integral formalism.
The generating functional for the free theory reads

Z0[ j , j ∗] =N
∫

KMS
DφDφ∗ exp[−i

�
φ∗1(�+m2)φ1

	
1+ i{ j ∗1φ1+ j1φ

∗
1}1]. (3.1.58)
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3.1 · Definition of the path integral

Since the path integral is Gaussian, it can be calculated exactly. One needs to find the stationary point
of the exponential, which is given by the Klein-Gordon equations of motion with the auxiliary fields
j and j ∗ as sources,

−(�+m2)φ j =− j , −(�+m2)φ∗j =− j ∗,

φ j (−iβ, ~x) = exp(−α)φ j (0, ~x), φ∗j (−iβ, ~x) = exp(α)φ∗j (0, ~x)
(3.1.59)

where the second line gives the KMS conditions on the fields. Using the invariance of the path integral
measure under field translations it turns out immediately, that (3.1.58) is given by

Z0[ j , j ∗] = exp
�
−i
∫
C

d4x j ∗(x)φ j (x)
�

. (3.1.60)

The solutions φ j and φ∗j of (3.1.59) are given with help of the free contour Green’s function

φ j (x) =−
∫

d4x ′∆C (x, x ′) j (x ′). (3.1.61)

Due to the translation invariance of the equilibrium state, in both time and space, the contour Green’s
function is a function of the coordinate difference only, i.e.,∆C (x, x ′) =∆C (x − x ′).
itself is uniquely determined by the equation of motion

−(�+m2)∆C (x) = δC (x). (3.1.62)

Since this is the Green’s function for the fieldφ j , it must fulfill the corresponding boundary condition,
cf. Eq. (3.1.59),

∆C (t − iβ, ~x) = exp(−α)∆C (t , ~x). (3.1.63)

The contour δ-distribution is defined as usual by
∫
C

dt ′ f (t ′)δC (t − t ′) = f (t ), (3.1.64)

where f is an arbitrary test function defined along the time contour C .
It is more easy to find the retarded Green’s function and use the general equations (3.1.52-3.1.54) for
the other real-time functions. Since∆R(x)∝Θ(t )we find the solution for (3.1.62) with this boundary
condition to be

∆̃R(p) =
1

p2−m2+ i0+ sign(p0)
. (3.1.65)

So the spectral function is given by

A0(p) =−2Im∆̃R(p) = 2π sign(p0)δ(p
2−m2). (3.1.66)

Using (3.1.52-3.1.54) this leads to the following expressions for the free real-time propagators

∆11(p) =
1

p2−m2+ i0+σ(p0)
− 2πiδ(p2−m2)σ(p0) fB(p0−µ),

∆12(p) =−2πiδ(p2−m2)σ(p0) fB(p0−µ),
∆21(p) =−2πiδ(p2−m2)σ(p0)[1+ fB(p0−µ)],
∆22(p) =− 1

p2−m2− i0+σ(p0)
− 2πiδ(p2−m2)σ(p0) fB(p0−µ).

(3.1.67)
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3. Path-integral formulation

Using (3.1.61) in (3.1.60) we get the solution for the generating functional for the free-field case

Z0[ j , j ∗] = exp
�−i{∆C (x1− x2) j

∗
1 j2}12

�
. (3.1.68)

The generating functional for the interacting fields can be expressed with help of the free functional

Z[ j , j ∗] =
�

exp
�

iSI

�
δ

iδ j (x1)
,

δ

iδ j ∗(x1)

��
Z0[ j , j ∗]

�

1
. (3.1.69)

The perturbation series is obtained by expanding the exponential functional derivation operator in
powers of SI.
As we have seen in Sect. 2.2.4, that then one has to regularize the δ-distribution in the “causally correct
way”, namely

δ(x) =w-lim
ε→0+

δε(x) =w-lim
ε→0+

1
2πi

�
1

x − iε
− 1

x + iε

�
=

1
π

ε

x2+ ε2
. (3.1.70)

For more details, also see [Gel96, LM96, Mab97, Gel99].
Further when using the regularizedδ distributions, it is important to write fB (p0−µ) and not fB (ω~p−
µ) in (3.1.67). From our derivation of the equilibrium Feynman rules in Sect. 2.2.5 we know that then
we do not need to bother with possible contributions from the vertical part of the contour, which
was due to the factorization (2.2.103) of the generating functional for Green’s functions along the full
contour in pure real-time and imaginary-time generating functionals.

3.2 Thermodynamics of ideal Bose gases

The only place we really need the imaginary time formalism is when we want to calculate thermody-
namic bulk quantities. We show now how to do this with help of analytic continuations of the real-time
quantities. We shall also use the ideal gas as an example to further develop some techniques to evaluate
path integrals and give some low- and high-temperature expansions of the partition sum, which also
introduces interesting calculational techniques, that are also useful for other calculations in thermal
quantum field theory.

3.2.1 Path-integral evaluation of the partition sum

In order to obtain the correct T - and µ-dependent factors to calculate the partition sum of the non-
interacting charged scalar bosons we have to go back to the Hamiltonian path integral

Z(β,µ) =N
∫

KMS
DφDφ∗

∫
DΠDΠ∗ exp

h
−i
¦
H1−Π1φ̇1−Π∗1φ̇1

©
CV 1

i
. (3.2.1)

We need to calculate only along the vertical part of the contour since the contributions from the two
real-time branches cancel, since the real-time contour is closed for itself.
While the time-domain is the bounded imaginary interval (0,−iβ) to regularize the path integral in the
infrared domain at first we have to restrict the spatial coordinates to a finite volume which we chose as
a cube of length L. We imply periodic boundary conditions. Taking the thermodynamic limit L→∞
for the densities the dependence on the boundary conditions drops out.
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3.2 · Thermodynamics of ideal Bose gases

Theβ- and µ-dependence comes from the KMS-conditions on the fields, which, cf. (3.1.59), read now

φ(τ =β, ~x) =φ(τ = 0, ~x)exp(−βµ), φ∗(β, ~x) =φ∗(0, ~x)exp(βµ). (3.2.2)

Since this affects only the time argument of the fields we need to discretise only this variable to keep
track of the right normalisation factors of the Gaussian path integrals3. We substitute t =−iτ in (3.2.1)
and divide the τ-interval (0,β) in n equidistant parts. With ε=β/n the τ-discretised version reads:

Z0(β,µ) =N lim
n→∞

∫
Dφ∗k Dφk

∫
DΠ∗k DΠk

exp

�
− ε

n∑
k=1

∫
d3~x

�
Π∗kΠk +(∇φ∗k )(∇φk )+m2φ∗kφk

− iΠ
φk −φk−1

ε
− iΠ∗k

φ∗k −φ∗k−1

ε

��
,

(3.2.3)

where we write Z0 for the partition sum of the ideal gas, N denoting the indefinite β- and µ-inde-
pendent overall normalisation factor. We write φk for φ(kε, ~x) etc. The periodic KMS boundary
conditions (3.2.2) are realized by

φn =φ0 exp(−βµ), φ∗n =φ
∗
0 exp(+βµ). (3.2.4)

Next we evaluate the integral over the canonical field momenta,

Z0(β,µ) =N ′ lim
n→∞

1
εn

∫
KMS

Dφ∗k Dφk

× exp

�
−ε

n∑
k=1

∫
d3~x
|φk −φk−1|2

ε2
+m2φ∗kφk +(∇φ∗k )(∇φk )

�
,

(3.2.5)

where N ′ is an indefinite factor that is independent of β and µ. In the continuum limit this goes of
course over to the Lagrangian version of the path integral but with the special normalisation of the
path integral contained in ε, which uniquely determines the β and µ dependence. If we define this
continuum limit we can include the correct normalization factor of the discretised form (3.2.4) in the
path integral measure D̃φ∗D̃φ and write (3.2.5)

Z0(β,µ) =N ′
∫

KMS
D̃φ∗D̃φexp

�
−
∫ β

0
dτ
∫

d2ω−1~xLE

�
(3.2.6)

Here we have explicitely written the time-integral in the parameterisation with the real euclidian time
variable τ. The euclidian version of the free Lagrangian reads:

LE = (∂τφ
∗)(∂τφ)+ (∇φ∗)(∇φ)+m2φ∗φ (3.2.7)

which by definition is obtained from the negative Minkowski metric by substituting x0→−iτ. So we
obtain a positive definite euclidian metric.
To calculate (3.2.6) we Fourier transform the fields to spatial momentum space but keep the time vari-
able (this is the Mills representation). Due to our finite volume and periodic boundary conditions this
reads

φ(x) =
1
V

∑
~p

φ(τ, ~p)exp(i~p~x), φ∗(x) = 1
V

∑
~p

φ∗(τ, ~p)exp(−i~p~x). (3.2.8)

3Of course also here this factor is determined only up to an indefinite constant, independent of β and µ.
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3. Path-integral formulation

Herein we have set V = l 3. The sums run over the momenta ~p = (2π/l )(n1, n2, n3) with nk ∈ Z. In
the thermodynamic limit we can substitute

∑
~p

→ V
(2π)3

∫
d3~p. (3.2.9)

In the Mills representation the euclidian action reads

SE =
∫ β

0
dτ

1
V

∑
~p

[(∂τφ
∗)(∂τφ)+ω

2φ∗φ] with ω2 = ~p2+m2. (3.2.10)

Now we look for the stationary point of the action functional for fixed ~p

SE (~p) =
∫ β

i
dτ
�
(∂τφ

∗)(∂τφ)+ω
2φ∗φ

�
(3.2.11)

with the boundary conditions given by the KMS condition of the path integral:

δSE

δφ

�����
φ=φcl

=
δSE

δφ∗

�����
φ=φcl

= 0,

φ(0, ~p) =φ0, φ(β, ~p) = exp(−βµ)φ0, φ∗(0) =φ∗0, φ∗(β) = exp(βµ)φ∗0.

(3.2.12)

The solutions of these classical imaginary-time harmonic oscillator equations are given by

φcl(τ) =φ0

�
cosh(ωτ)+

[exp(−βµ)− cosh(ωβ)]
sinh(ωβ)

�
,

φ∗cl(τ) =φ
∗
0

�
cosh(ωτ)+

[exp(βµ)− cosh(ωβ)]
sinh(ωβ)

�
.

(3.2.13)

Then we can write the general field within the path integral as

φ=φcl+φ
′ with φ′(τ = 0) =φ′(τ =β) = 0. (3.2.14)

From the homogeneity of the boundary conditions for φ′ we obtain immediately

SE [φ, ~p] = SE [φcl]+ SE [φ
′]. (3.2.15)

Substitution of (3.2.13) yields

SE [φcl, ~p] = 2ωφ∗0φ0
sinh[β(µ−ω)/2] sinh[β(µ+ω)/2]

cosh(βω/2) sinh(βω/2)
(3.2.16)

For the partition sum we get

Z(β,µ) =N
∏
~p

∫
d(φ∗0/

p
V )d(φ0/

p
V )exp[SE [φcl]]×

×
∫ φ(τ=β)=0

φ(τ=0)=0
D(φ∗/

p
V )D(φ/

p
V )exp[SE [φ]]

︸ ︷︷ ︸
Zhom

.
(3.2.17)
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3.2 · Thermodynamics of ideal Bose gases

Here we have scaled the path-integral measure by a factor 1/V . To calculate Zhom, the partition sum
for fields with homogeneous boundary conditions, we have to go back to the time-discretised version
of the path integral (3.2.5) again since it depends on β, and we want to calculate the corresponding
factors correctly. Due to our homogeneous boundary conditions we can write

S lat
E =−φ∗t

M̂
ε
φ (3.2.18)

where φ = (φ1, . . . ,φn−1)
t is the momentum dependent vector at the time-lattice points. The matrix

is given by

M̂ =




2+ω2ε2 −1 0 . . . 0
−1 2+ω2ε2 −1 . . . 0
0 −1 2+ω2ε2 −1 . . .

0 0 −1 . . .
. . .


 . (3.2.19)

Now we need the determinant of this matrix because of the formula
∫

dn z∗dn z exp(−az†Âz) =
2πi

an det Â
. (3.2.20)

For the determinant we find the recursion formula

Dn−1 = det M̂ = (2+ω2ε2)Dn−2−Dn−3, D0 = 1, D−1 = 0. (3.2.21)

It is easily solved by writing it in the form
�

Dn
Dn−1

�
=
�

2cosh u −1
1 0

�

︸ ︷︷ ︸
Â

�
Dn−1
Dn−2

�
with 2cosh u = 2+ω2ε2. (3.2.22)

By iteration this leads to �
Dn

Dn−1

�
= Ân

�
1
0

�
. (3.2.23)

We diagonalise the matrix Â and transform back to the original basis which finally gives

Dn−1 =
2n2

ωβ

sinh
h

n arcosh
�
1+ ω2

2n2

�i
p

4n2+ω2β2
. (3.2.24)

For the continuum limit we need this expression only in leading order for large n:

Dn−1
∼=

n→∞
n
β

sinh(ωβ)
ω

=
1
ε

sinh(ωβ)
ω

. (3.2.25)

Putting this into the time-lattice (3.2.5) version of (3.2.17) yields by using (3.2.25)

Zhom(~p) =N
∏
~p

ω

sinh(ωβ)
. (3.2.26)
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3. Path-integral formulation

Note, that the factor 1/εn from the integration over the canonical field momenta has cancelled. The
final result for (3.2.17) now reads

Z(β,µ; ~p) =N
∏
~p

1
cosh(βω)− cosh(βµ)

. (3.2.27)

To evaluate this we take the logarithm and make use of (3.2.9). Thereby we have to take care of the
zero mode ~p = 0, i.e., ω = m because due to d3~p =ω

p
ω2−m2 dω d(cosθ) dφ it is cancelled when

going over to the integral. Some algebraic manipulations finally yield

Ω∞(β,µ) =−V
∫

d3~p
(2π)3

{βω+ ln[1− exp[−β(ω+µ)]]+ ln[1− exp[−β(ω−µ)]]}−
− ln[1− exp(−β(m−µ))]− ln[1− exp(−β(m+µ))].

(3.2.28)

This expression is divergent, because of the term βω in the integrand. Using (2.1.35) to calculate the
entropy this divergent contribution cancels. Using the entropy to define the potential Ω we see, that
it is cancelled by the renormalisation of the pure vacuum zero-point energy. Had we made use of the
operator formalism this would have been cured by using the normal ordering for field operators. On
the other hand the normal ordering becomes problematic in the context of gauge theories. The result
of this procedure leads finally to

Ω0(β,µ) =−V
∫

d3~p
(2π)3

{ln[1− exp[−β(ω+µ)]]+ ln[1− exp[−β(ω−µ)]]}−
− ln[1− exp(−β(m−µ))]− ln[1− exp(−β(m+µ))].

(3.2.29)

Now it is easy to take the thermodynamic limit. It is clear that this expression only makes sense if
m±µ> 0, i.e., −m <µ< m. For such µ we find in the thermodynamic limit, V →∞

1
V
Ω0(β,µ) ∼=

V→∞
−
∫

d3~p
(2π)3

{ln[1− exp[−β(ω+µ)]]+ ln[1− exp[−β(ω−µ)]]}

:=
1
V
Ω∗0(β,µ).

(3.2.30)

The star denotes the fact, that this is only the expression for the occupation of states different from the
ground state. It is again clear, that this expression makes only sense if |µ|< m. As we have seen, in this
case the fraction of the particles in the ground state is as “infinitesimal” as those of any other state and
the substitution of the momentum-sum by the integral is justified.
This changes if for a given temperature the charge density of the gas becomes so high, that it cannot
be reached with |µ| < m. Then a “macroscopic” number of particles is in the ground state, which
phenomenon is known as Bose-Einstein condensation. Then we have to let µ→±m in the thermo-
dynamic limit. But for this limit the contribution from the zero mode in (3.2.28) diverges if it is taken
for fixed V . In the integral (3.2.30) this singularity does not provide any trouble since it is integrable.
This discussion shows, that at presence of a Bose-Einstein condensate we have to take the limitµ→±m
together with the thermodynamic limit V →∞. For definiteness we discuss the limit µ→+m. The
treatment of the “charge conjugated” stateµ→−m is analogous. At finite V we have to chooseµ< m
and for µ→ m the contribution of

Ωcond(β,µ) =− ln[1− exp(−β(m−µ))] (3.2.31)
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3.2 · Thermodynamics of ideal Bose gases

cannot be neglected. Now the physical sense of this contribution is, that the fraction of the charge
density in the condensate has to be fixed when taking the thermodynamic limit. For finite volume we
have

qcond(β,µ) =
1
V
[∂αΩcond(β,µ= α/β)]α=βµ =

1
V

1
exp[β(m−µ)]− 1

!= q0 > 0. (3.2.32)

This means that we have to take the thermodynamic limit by letting the volume

V (β,µ) =
1
q0

1
exp[β(m−µ)]− 1

(3.2.33)

and make µ→ m. The condensate delivers a contribution to the energy and entropy density given by

ε0 = lim
µ→m−0

1
V (β,µ)

[∂βΩcond(β,α/β)]α=βµ = q0m,

s0 = lim
µ→m−0

1
V (β,µ)

TΩcond(1/T ,µ) = 0.
(3.2.34)

In this case the “particles” with positive charge quantum number build the condensate. For the other
possible limit µ→−m, the condensate is built by the negatively charged “anti-particles”.

q0 < 0, ε0 = |q0|m, s0 = 0. (3.2.35)

We close this section by noting, that we can also take into account adiabatic changes of the volume V .
In the thermodynamic limit all extensive quantities become proportional to the volume and thus we
can write for the first fundamental law of thermodynamics

dU = T dS +µdQ − TΩ
V

dV . (3.2.36)

The physical meaning of Ω is thus given by

Ω=
PV
T

, (3.2.37)

where P is the pressure of the gas.
The result for the thermodynamic quantities of the ideal Bose gas of charged particles finally summa-
rizes as follows:

Φ(T ,µ) =V T
∫

d3~p
(2π)3

¨
ln
h
1− exp

�
−ω−µ

T

�i
(3.2.38)

+ ln
h
1− exp

�
−ω+µ

T

�i«
+Ωcond(T ,µ),

U (T ,µ) =V
∫

d3~p
(2π)3

ω [ fB(ω−µ)+ fB(ω+µ)]+Q0m, (3.2.39)

Q(T ,µ) =V
∫

d3~p
(2π)3

[ fB(ω−µ)− fB(ω+µ)]+Q0, (3.2.40)

S(T ,µ) =−
�
∂ Φ

∂ T

�
V ,T
=V

∫
d3~p
(2π)3

¨
[1+ fB(ω−µ)] ln [1+ fB(ω−µ)] (3.2.41)

− fB(ω−µ) ln fB(ω−µ)+ (µ→−µ)
«

.
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3. Path-integral formulation

Here, one has to keep in mind that in the thermodynamic limit, if there is a condensate, we have to
make µ→ m in the sense detailed above.
To derive the expression for the entropy we have used the identities

ln
�
1− exp(−ω′/T )

�
=−ω

′

T
− ln fB(ω

′) =− ln[1+ fB(ω
′)]. (3.2.42)

3.2.2 The partition sum as functional determinant and the heat-kernel method

We have seen in the previous section, that the β-dependent factor from the integration over the field
momenta, can only be cancelled if one goes over to the modified path integral measure for the partition
sum

Z(β,µ) =N ′
∫

KMS
D̃φ∗D̃φexp[−SE [φ

∗,φ]], (3.2.43)

which is defined by the path integral’s time-lattice version (3.2.5).
On the other hand, we have found a rather simple result and we now like to find an expression for the
functional determinant such that we can directly use the continuum limit.
Instead of using the modified measure in (3.2.43) for the Lagrangian description of the path integral we
can go back to the usual one and introduce a β-dependent indefinite normalisation constant.
We demonstrate this on the simple example of a noninteracting neutral scalar field. The introduction of
a chemical potential for charged fields does not change the argument, since the indefinite factor depends
only on β and not on µ. We come back to this case in the next section.
The Euclidian Lagrangian reads

LE =
1
2
(∂ E
µ φ)(∂

E
µ φ)+

m2

2
φ2 (3.2.44)

with φ ∈R. We write the partition sum in the following form

Z0(β) =N (β)
∫

KMS
Dφexp

�
−
∫ β

0
dτ
∫

V
d3~x LE

�
. (3.2.45)

The KMS condition here is the simple periodic one without a chemical potential, which we cannot
introduce in this case, because there is no conserved charge. Thus, we directly use the formal equation

lnN (β)
∫

KMS
Dφexp

�
−1

2

∫
d4x ′

∫
d4xφ(x ′)D−1(x, x ′)φ(x)

�
= ln

N (β)p
DetD−1

=−1
2

Tr ln(D−1/M 2).
(3.2.46)

Here M is a constant with dimension mass or energy to render the argument of the logarithm dimen-
sionless. Further we have to read the inverse propagator as the operator

D−1 = (�E −m2). (3.2.47)

So far (3.2.46) is only a formal functional extension of the discretized Euclidean path integral, treated
in Sect. 3.2.1 in the sense of a continuum limit. In the evaluation of Gaussian path integrals in their
form with a discretized space-time lattice, one naturally arrives at determinants which arise from the
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3.2 · Thermodynamics of ideal Bose gases

discreticed version of the differential operators appearing in the Lagrangian that is quadratic in the
integration-field variables. This arises from the most simple multidimensional real Gaussian integral

∫
RN

dN ~x exp
�
−1

2
~x t Â~x

�
=

√√√ (2π)N
det Â

. (3.2.48)

Here, Â is a positive definite symmetric matrix. The proof of this formula is simple: The matrix Â
can always be diagonalized by an orthogonal transformation: Â′ = ÔÂÔ t = diag(λ1, . . . ,λN ) with
eigenvalues λ j > 0 for j ∈ {1, . . . ,N} and Ô t = Ô−1. Then introducing new integration variables

~x ′ = Ô†~x, dN ~x = |det Ô|dn~x ′ = dN ~x ′ leads to

∫
RN

dN ~x exp
�

1
2
~x t Â~x

�
=
∫
RN

dN ~x ′ exp

 
1
2

n∑
j=1

λ j x ′2j

!
=

√√√√ (2π)N∏N
j=1λ j

. (3.2.49)

Further det Â′ =
∏N

j=1λ j = det(ÔÂÔ†) = det Â, so that (3.2.49) implies (3.2.48). It is clear that in this
most simple case, where λ j > 0 for all j ∈ {1,2, . . . ,N} we can also write

∫
RN

dN ~x exp
�

1
2
~x t Â~x

�
= (2π)N/2 exp

 
−1

2

N∑
j=1

lnλ j

!
= (2π)N/2 exp

�
−1

2
tr ln Â

�
. (3.2.50)

The difficulty now arises when taking the continuum limit of the multidimensional integral. There
we silently assume that the corresponding limit of the determinant exists, but in fact usually it is not
convergent and we have to regularize and renormalize the result, implementing the definite physical
meaning of the calculated quantity by specifying appropriate renormalization conditions.
The D’Alembert operator in (3.2.47) is to be understood in the Euclidean sense, defined in the space of
real scalar functions subject to the periodic KMS-boundary condition

φ(β, ~x) =φ(0, ~x). (3.2.51)

To give the functional trace in (3.2.46) a definite meaning, we introduce the heat-kernel technique,
which bases on the idea to read the operator H = (−�E+m2)/M 2 as a Hamilton operator in a Hilbert
space for a particle in four spatial dimensions as in usual quantum mechanics, where the wave func-
tions in position representation fulfill the KMS-boundary condition (3.2.51). Then the Euclidean time-
evolution Green’s function, introducing ϑ as an additional formal time parameter reads

U (ϑ; x, x ′) =


x
��exp(−Hϑ)

�� x ′
�

. (3.2.52)

This leads to the definition of the heat kernel4

H (ϑ) =Tr U =
∫
V

d4xU (ϑ; x, x). (3.2.54)

4The name “heat kernel” originates from the fact that the Green’s function (3.2.52) obviously obeys a differential equation
similar to the heat-conduction equation in four spatial dimensions with ϑ as the time variable:

∂ϑU (ϑ; x, x ′) =−
x ��exp(−Hϑ)H
�� x ′
�
=
∆E ,x −m2

M 2
U (ϑ; x, x ′). (3.2.53)
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3. Path-integral formulation

Then formally we have

H̃ (α) =
∫ ∞

0
dϑ ϑ−1+αH (ϑ) = Γ (α)

∫
V

d4x


x
��H−α�� x

�
. (3.2.55)

Usually, for a positive definite Hermitian operator H, the integral is convergent for α > 0, but the right-
hand side can be read as the analytic continuation to the whole complex α-plane except the simple poles
of the Γ function at α ∈ {0,−1,−2, . . .}.
For our case of evaluating functional determinants, we use the Laurent expansion of (3.2.55) around
the pole at α= 0. This gives

H̃ (α) =βV
�

1
α
− γE

�
−
∫
V

d4x 〈x |lnH| x〉+O (α) (3.2.56)

with the Euler-Mascheroni constant γE ≈ 0.577. We have used the regularization of the integration of
the spatial part of x as to be restricted to a large but finite spatial volume, V . Thus, up to divergent
constants, the H̃ (α) gives the desired functional trace of lnH as needed in (3.2.46).
For our case of a free scalar gas we can simply insert the “momentum eigenstates” to evaluate the proper-
time-evolution progator (3.2.52):

U (ϑ; x, x ′) =


x
��exp(−ϑH)

�� x ′
�
= T

∑
ωn

∫
R3

d4 p 〈x |exp(−ϑH)| p〉
p
�� x ′

�

= T
∑
ωn

∫
R3

d3~p
(2π)3

exp

�
− p2

E +m2

M 2
ϑ

�
exp[−i pE · (x − x ′)E ].

(3.2.57)

Here we have used that our “Hamiltonian” reads

H =
p2

E +m2

M 2
with p0 =ωn = 2πnT , n ∈Z. (3.2.58)

The p0 component runs over the Bose-Matsubara frequencies due to the corresponding periodic KMS
boundary conditions, while the patial components are defined on R3.
The heat kernel (3.2.54) is easily evaluated since

U (ϑ; x, x) = T
∑
ωn

∫
R3

d3~p
(2π)3

exp

�
− p2

E +m2

M 2
ϑ

�
=

T M 3

8π3/2ϑ3/2

∑
ωn

exp
�
−ϑω

2
n +m2

M 2

�
, (3.2.59)

which is independent of x because of the translation invariance of the equilibrium state. The space-time
integral thus becomes a trivial factor βV = V /T (regularized again in the sense of the finite-volume
result in the thermodynamic limit), and the heat kernel thus reads

H̃ (α) =
M 3V
8π3/2

∑
ωn

�
m2+ω2

n

M 2

�3/2−α
Γ
�
−3

2
+α

�
. (3.2.60)

To evaluate the sum over the Matsubara frequencies we use (B.1.7) with

h(z) =
�

m2− z2

M 2

�ε
= exp

�
ε ln

�
m2− z2

M 2

��
with ε=

3
2
−α. (3.2.61)

94



3.2 · Thermodynamics of ideal Bose gases

Here the power has to be understood as defined by the principal value for the logarithm, defined to be
positive real for m2 − z2 > 0. Now it is more convenient to use the summation formula in the form
(B.1.6), for which we need

h(p0+ i0+)− h(p0− i0+) =−2i

�
p2

0 −m2

M 2

�ε
sin
�
πε sign p0�Θ(p2

0 −m2). (3.2.62)

Since the integrand in (B.1.7) is symmetric we finally get

H̃ (α) =−VβM 3

8π5/2
sin
�
π
�

3
2
−α

��
Γ
�
−3

2
+α

�∫ ∞
m

d p0 [1+ 2 fB(p0)]
�

p2
0 −m2

M 2

�3/2−α
. (3.2.63)

Now, the part including the Bose-distribution function is finite for α→ 0 and thus we get

Tr ln
�−�E +m2

M 2

�
T
=−βV

3π2

∫ ∞
m

d p0 (p
2
0 −m2)3/2 fB(p0). (3.2.64)

For the “vacuum part” of (3.2.63) we have to keep α > 5/2 in order get a convergent integral over p0:

H̃vac(α) =−
VβM 3

16π5/2
sin
�
π
�

3
2
−α

��
Γ
�
−3

2
+α

�∫ ∞
m

d p0

�
p2

0 −m2

M 2

�3/2−α

=−βV m4

32π3
sin
�
π
�

3
2
−α

���M
m

�2α
Γ
�5

2
−α

�
Γ
�
−3

2
+α

�
Γ (−2+α)

=
βV m4

64π2

�
2
α
+ 3− 2γE− 2 ln

�
m2

M 2

��
+O (α).

(3.2.65)

In the last step we have used the Laurent expansion around α= 0, thus arriving at the desired analytic
continuation. Finally we obtain for the renomalized grand-canonical potential

Φvac,ren =
T
2

Tr ln
�

D−1

M 2

������
T→0

=
V m4

128π2

�
A+ 2 ln

�
m2

M 2

��
, (3.2.66)

where A is an aribtrary temperature-independent constant, which is physically irrelevant since an
additive temperature-independent constant has the meaning of the vacuum contribution to the total
energy and is thus unobservable within special relativity. This of course is also true for the logarithmic
term in (3.2.66).
The part of (3.2.63) which contains the Bose distribution is finite for α= 0 and needs no renormaliza-
tion, and this is the only contribution to the grand-canonical potential that is relevant as a thermody-
namic quantity. To see that this contribution,

Φtherm =−
V

6π2

∫ ∞
m

d p0(p
2
0 −m2)3/2 fB(p0), (3.2.67)

coincides with half of (3.2.38) for µ= 0 and Ωcond = 0 we note that through integration by parts, using

fB(p0) = T ∂p0
ln[1− exp(−βp0)], (3.2.68)

we find

Φtherm =
T V
2π2

∫ ∞
m

d p0 p0

Æ
p2

0 −m2 ln[1− exp(−βp0)]. (3.2.69)
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This can of course be rewritten in terms of |~p| =
Æ

p2
0 −m2 and using d3~p = 4πd|~p|~p2 for functions

depending only on |~p| but not on the angles of spherical coordinates:

Φtherm = T V
∫
R3

d3~p
(2π)3

ln[1− exp(−βω)] with ω =
Æ
~p2+m2. (3.2.70)

This is indeed of the form (3.2.38) since

Ωtherm =−βΦtherm =−V
∫
R3

d3~p
(2π)3

ln[1− exp(−βω)]. (3.2.71)

The internal energy is given by

Uren =−
∂ Ωren

∂ β
=V

∫
R3

d3~p
(2π)3

ω fB(ω). (3.2.72)

3.2.3 Functional treatment of Bose-Einstein condensation

Another application for the funcional methods worked out so far is an alternative treatment of the
Bose-Einstein condensation, which we have already found in Sect. 3.2. Here we follow [Kap81, KG06]
with the simplification of implementing the chemical potential as a boundary (KMS) condition in the
path integral rather than using the “grand-canonical Hamiltonian” K=H−µQ, were Q is the operator
of the conserved charge from the U(1) symmetry of the charged boson field. Again we start from the
Lagrangian of a free charged scalar field,

L = (∂µφ∗)(∂ µφ)−m2φ∗φ. (3.2.73)

The great simplification of our method to implement the chemical potential as a boundary condition in
the path integral compared to the method with the introduction of the “grand-canonical Hamiltonian”
and using theµ= 0-KMS condition (see [Kap81, KG06]) is that we can use the naive Lagrangian version
path integral, as has been shown in great detail in Sect. 3.2.1.
Since we are interested in the grand-canonical potential only, we calculate only the partition sum using
the vertical part of the contour only. As in the previous section we have

Z =
∫

KMS
DφDφ∗ exp[−SE[φ,φ∗]] (3.2.74)

with

SE[φ,φ∗] =
∫ β

0
dτ
∫
R3

d3~x
�
(∂ E
µ φ

∗)(∂ E
µ φ)+m2φ∗φ

�
. (3.2.75)

The main difference is in the KMS-boundary conditions for the fields, which according to (3.1.26) read

φ(τ =β, ~x) = exp(−βµ)φ(0, ~x), φ∗(τ =β, ~x) = exp(−βµ)φ0(0, ~x). (3.2.76)

Now we expand the action functional (3.2.75) around a stationary point, i.e., a classical solution ϕ of
the imaginary-time solutions

(−�E+m2)ϕ = (−�E+m2)ϕ∗ = 0. (3.2.77)
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which of course also have to fulfill the boundary conditions (3.2.76). Since we consider thermal equi-
librium, we are only interested in spatially homogeneous solutions of this kind, i.e.,

∂ 2
τ ϕ(τ) = m2ϕ, ∂ 2

τ ϕ
∗(τ) = m2ϕ∗, (3.2.78)

The solutions, fulfulling the KMS conditions (3.2.76) are obviously

ϕ(τ) =
¨
ϕ0 exp(−µτ) if µ= m,
0 otherwise

ϕ∗(τ) =
¨
ϕ∗0 exp(µτ) if µ= m,
0 otherwise.

(3.2.79)

As we shall see, in the first case we have Bose-Einstein condensation as explained in Sect. 3.2.1. With-
out loss of generality we can choose ϕ0 = ϕ

∗
0 ∈ R, because otherwise we can redefine the phase of the

field with an appropriate phase factor, which is physically irrelevant due to the invariance of the action
with respect to such phase redefinitions, which are the group theoretical reason for the conservation
of the charge according to Noether’s theorem. The value ϕ0 of the “condensate” has to be seen as an
external parameter in the grand-canonical potential. Its value is determined by the equilibrium condi-
tion that this potential has to take a minimum under variation of such external parameters, while the
thermodynamic variables, V , T , and µ are kept fixed. So we have to evaluate the partion sum, before
we can find this value. Writing

φ= ϕ+φ′, φ∗ = ϕ∗+φ′∗ (3.2.80)

and using the invariance of the path-integral measure under field translations we arrive at

Z =
∫

KMS
Dφ′Dφ′∗ exp[−SE[ϕ+φ

′,ϕ∗0 +φ
′∗]

= exp[βV (µ2−m2)ϕ2
0]
∫

KMS
Dφ′Dφ′∗ exp

�−SE[φ
′,φ′∗]

�

= exp[βV (µ2−m2)ϕ2
0]
�
det

�−�E+m2

M 2

��−1

.

(3.2.81)

Note that this is not a contradiction since, of course, the path integral is independent of the labeling
of the integration-field variables. We only have used the simplification that we have defined ϕ to be a
spatially homogeneous solution of the classical Euclidean equations of motion. According to (3.2.79)
(m2−µ2)ϕ2

0 = 0 for this solution. This is equivalent to the stationarity of the grand canonical potential

Φ=−T lnZ =V (m2−µ2)ϕ2
0 +Φ

′. (3.2.82)

Since Φ′ is independent of ϕ0, for |µ|< m, we must have ϕ0 = 0 in order to minimize Φwith respect to
variations of ϕ0. For µ= m the value of ϕ0 is indetermined from the stationarity condition of Φ, and
we have Bose-Einstein condensation as we already know from the discussion in Sect. 3.2.1. To derive
this result within our functional scheme, we first have to evaluate

Φ′ = T Trln
�−�E+m2

M 2

�
. (3.2.83)

For the evaluation of the functional trace we use the very same heat-kernel regularization as in the
previous section. The calculation evolves in the same way as there. The only difference is that we have
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3. Path-integral formulation

to take care of the changed KMS boundary conditions for the field. Here the Fourier expansion reads

φ′ = T
∑
ωn

∫
R3

d3~p
(2π)3

φ̃(p)exp[−i(ωn − iµ)τ]exp(i~p · ~x). (3.2.84)

Thus our calculation of the heat kernel for the uncharged scalar bosons of the previous Section can
directly be used. The only change is that we have to substituteωn→ωn − iµ in (3.2.60):

H̃ (α) =
M 3V
8π3/2

Γ
�
−3

2
+α

�∑
ωn

�
m2+(ωn − iµ)2

M 2

�3/2−α
. (3.2.85)

The function to be used for the evaluation of the Matsubara sum with help of (B.1.7) thus now reads

h(p0) =
�

m2− (p0+µ)
2

M 2

�ε
= exp

�
ε ln

�
m2− (p0+µ)

2

M 2

��
with ε=

3
2
−α. (3.2.86)

We use again (B.1.6). The only difference in our evaluation compared to the one for the neutral scalar
particles is that the integral is no longer symmetric with respect to p0. So we have two contributions
from the branch cut of the logarithm in (3.2.87). The first one along the positive real axis is due to the
particle contributions and reads after some algebra

H̃+(α) =
M 3βV
16π3/2

Γ (−ε)
∫ ∞

m−µ
d p0

2πi
[1+ 2 fB(p0)][h(p0+ i0+)− h(p0− i0+)]

=−M 3βV
16π5/2

sin(πε)Γ (−ε)
∫ ∞

m
d p0[1+ 2 fB(p0−µ)]

�
p2

0 −m2

M 2

�ε
.

(3.2.87)

The contribution along the negative real axis comes from the antiparticles and is given by

H̃−(α) =−
M 3βV
16π5/2

sin(πε)Γ (−ε)
∫ ∞

m
d p0[1+ 2 fB(p0+µ)]

�
p2

0 −m2

M 2

�ε
(3.2.88)

Again, the contributions from the integrals (3.2.87) and (3.2.88) that do not involve Bose-distribution
factors are divergent and independent of T and µ, i.e., vacuum contributions that are regularized by
the heat-kernel method. They can be treated as above for the neutral scalar bosons, leading to the same
result,

H̃vac(α) =−
VβM 3

8π5/2
sin
�
π
�

3
2
−α

��
Γ
�
−3

2
+α

�∫ ∞
m

d p0

�
p2

0 −m2

M 2

�3/2−α

=
βV m4

64π2

�
2
α
+ 3− 2γE− 2 ln

�
m2

M 2

��
+O (α),

(3.2.89)

where A is an aribtrary temperature-independent constant, which is physically irrelevant since an
additive temperature-independent constant has the meaning of the vacuum contribution to the total
energy and is thus unobservable within special relativity. This of course is also true for the logarithmic
term.
For the finite part we can set α= 0 in (3.2.87) and (3.2.88) to get

H̃therm(0) =
βV
6π2

∫ ∞
m

d p0(p
2
0 −m2)3/2[ fB(p0−µ)+ fB(p0+µ)]. (3.2.90)
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3.2 · Thermodynamics of ideal Bose gases

First of all we note that this equation makes only sense for |µ| ≤ m. Then we find

Φtherm =−T lnZ = (m2−µ2)ϕ2
0V −T H̃T (0)

= (m2−µ2)ϕ2
0V − V

6π2

∫ ∞
m

d p0(p
2
0 −m2)3/2[ fB(p0−µ)+ fB(p0+µ)]

= (m2−µ2)ϕ2
0V +T V

∫
R3

d3~p
(2π)3

ln
h
1− exp

�
−ω−µ

T

�i

+T V
∫
R3

d3~p
(2π)3

ln
h
1− exp

�
− p0+µ

T

�i
,

(3.2.91)

where in the last step we have integrated by parts, using

fB(p0±µ) = T
∂

∂ p0
ln
h
1− exp

�
− p0±µ

T

�i
. (3.2.92)

We also have substituted p0 =
p

P 2+m2 =ω and d3~p = 4πdP P 2 = 4πd p0 p0

Æ
p2

0 −m2 for integrands
that depend only on P but not the angles in polar coordinates for ~p.
As stressed above, in (3.2.91) we first interpret ϕ0 as a parameter, to be chosen such that Φren = min
for fixed thermodynamic variables, V , T , and µ. For |µ| < m, we have to set ϕ0 = 0 in order to
minimize Φren. For |µ| = m this criterion does not determine ϕ0 since then it does not appear in
(3.2.91) anymore, and Φren does not change under variations of ϕ0. To make sense of this we evaluate
the net charge, which according to (2.1.39) is given by

〈Q〉=−
�
∂ Φ

∂ µ

�

T ,V

= 2µϕ2
0V +V

∫
R3

d3~p
(2π)3

[ fB(p0−µ)− fB(p0+µ)]

:= 〈Q〉cond+ 〈Q〉exc .

(3.2.93)

Now the relation of ϕ0 to Bose-Einstein condensation becomes clear: Let us discuss the case 〈Q〉> 0,
i.e., 0 ≤ µ ≤ m. The integral part 〈Q〉exc is monotoneously rising with T at fixed µ and with µ at
fixed T . So if for some T we have 〈Q〉exc < 〈Q〉 even for µ= m, then we have to set µ= m, and ϕ0 is
determined by

ϕ2
0 =
〈Q〉− 〈Q〉exc,T ,µ=m

2mV
=

Qcond

2mV
> 0. (3.2.94)

Otherwise, i.e., if for the given T the integral contribution 〈Q〉exc > 〈Q〉 ≥ 0 we have to choose 0 ≤
µ < m and then necessarily ϕ0 = 0 in order to minimize Φren. For 〈Q〉 < 0 the same arguments go
through with µ=−m and

ϕ2
0 =−

Qcond

2mV
> 0. (3.2.95)

To find the mean total energy we rather go back to (2.1.26) using

Ω(β,α) = lnZ =−βΦ(T = 1/β,µ= α/β). (3.2.96)

Taking the derivative and then setting (µ2−m2)ϕ2
0 = 0, which holds for situations with or without a

condensate, we obtain

U =−
�
∂ Ω

∂ β

�

V ,α
= 2µ2ϕ2

0V +V
∫
R3

d3~p
(2π)3

ω[ fB(ω−µ)+ fB(ω+µ)]. (3.2.97)
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3. Path-integral formulation

For |µ|< m we have to setϕ0 = 0, and the condensate contribution vanishes as it must be. For |µ|= m,
according to (3.2.94) we have a contribution Ucond = |Qcond|m to the total energy. This again shows
the particle nature of the condensate: Each particle in the condensate is at rest, i.e., its momentum
vanishes, and thus contributes with its rest energy E(~p = 0) = m to the total energy of the system.
For T → 0+, all particles (or antiparticles) are in the condensate, forming a coherent state with a
macroscopic mean particle number all occupying the same single-particle momentum eigenstate for
~p = 0.

3.3 Interacting field theory

In this section, we shall derive the perturbative expansion for Green’s functions with help of the path
integral. Of course, we will find the same results as in Sect. 2.2, but from a different perspective and
with some calculational advances.

3.3.1 Generating functionals

In this section we restrict ourselves to one of the most simple interacting quantum field theories, namely
φ4-theory of a neutral scalar field. All the techniques developed on hand of this example can be easily
generalized to more realistic cases. We postpone the treatment of interacting gauge theories to the next
chapter, where we shall treat quantum electrodynamics at finite temperature and also nonabelian gauge
theories. We follow [Wei96, Hee02], where the same ideas are developed for the S-matrix theory of
vacuum quantum-field theory. All arguments are easily generalized to the many-body path integrals
for equilibrium theory since the only difference are the boundary conditions for the integration over
the fields, i.e., instead of hommogeneous boundary conditions in the vacuum theory we have to use
the KMS conditions (3.2.2). We also can start with the Lagrangian form of the path integral since there
are no derivative couplings. We shall also use the naive path-integral, keeping in mind the prescription
of the relevant β dependence of the normalization factor, derived using the lattice version of the path
integral in Sect. 3.2.1.
The Lagrangian for φ4 theory reads

L = 1
2
(∂µφ)(∂

µφ)− m2

2
φ2− λ

4!
φ4. (3.3.1)

For the following it is convenient to explicitly reintroduce Planck’s elementary action ħh (we still use
units with c = 1). Then the generating functional for Green’s functions (3.1.32) is given by

Z[ j ] =N (β)
∫

KMS
Dφexp

�
i
ħh
�
S[φ]+ { j1φ1}1

��
. (3.3.2)

This is the generating functional for Green’s functions in the sense that

iG(n)C (x1, . . . , xn) = 〈TCφ(x1) · · ·φ(xn)〉=
ħhn

inZ[ j = 0]
δnZ[ j ]

δ j (x1) · · ·δ j (xn)

�����
j=0

. (3.3.3)

For the following it is also convenient to introduce Green’s functions where the external source, j , is
kept:

iG(n)C (x1, . . . , xn) =
ħhn

inZ[ j ]
δnZ[ j ]

δ j (x1) · · ·δ j (xn)
. (3.3.4)
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3.3 · Interacting field theory

In terms of Feynman diagrams for contour Green’s functions these are all diagrams with connected and
disconnected parts, but each connected part of any diagram is attached to at least one external point,
because the factor 1/Z( j ) cancels all closed diagrams, which factor out any derivative. This we shall
prove with help of the path-integral formalism in a moment.
It is also immediately clear that we can define a generating functional for connected Green’s functions
by writing Z[ j ] in terms of the products of connected diagrams. We arrange the corresponding sum
by the number N of conneted parts, including a formal contribution with N = 0 standing simply for
1. Now we only want to count each topology of connected parts once. Suppose the j th connected
diagram out of the N connected parts contains n j vertices. From the expansion of the exponential in
the interaction-picture time-evolution operator of the states, leading to the Dyson series (2.2.106) we
get a factor 1/(n1+ · · ·+nN )!. Then there is a compensating factor (n1+ · · ·nN )! from the permutations
of all vertices, but we have to count all permutations that just describe the interchange the vertices of
among the N connected components only once, giving a factor 1/N !. So, if iW [ j ]/ħh is the sum of all
connected diagrams, all diagrams of Z[ j ] is given by

Z[ j ] =
∞∑

N=0

1
N !
(iW [ j ]/ħh)N = exp

�
i
ħh

W [ j ]
�

. (3.3.5)

We have introduced the factor ħh for convenience of power counting, as we shall see in a moment. The
generating functional for connected Green’s functions is given by

W [ j ] =−il̄nZ[ j ]. (3.3.6)

For an inductive proof on the level of the Green’s functions themselves, see [Hee02].

3.3.2 Loop expansion and effective action

Our next goal is the derivation of the Dyson-Wick series for the generating functional. To that end we
split the action in a “free and an interaction part”,

L0 =
1
2
(∂µφ)(∂

µφ)− m2

2
φ2, LI =

M 2−m2

2
φ2− λ

4!
φ4. (3.3.7)

The perturbative expansion is formally in powers of the interaction part of the Lagrangian. Another
useful expansion scheme is the expansion as a formal series in powers of ħh rather than powers of λ. As
we shall see, this is particularly convenient within the path-integral approach since it can be done as a
formal saddle-point expansion. To that end we first define the generating functional for free Green’s
functions by

Z0[ j ] =N
∫

KMS
Dφexp

�
i
ħh

∫
C

d4x [L0(x)+ j (x)φ(x)]
�

. (3.3.8)

Here N is a j -independent normalization factor, which does not play any physics relevant role. Now
we define the field ϕ as the stationary point of the action, including the external source, j :

−(�+M 2)ϕ =− j ⇒ ϕ(x) =−
∫
C

d4x ′∆C (x, x ′) j (x ′). (3.3.9)

Now we expand the classical action around this solution, after some algebra leading to

S0[ϕ+φ
′, j ] =

∫
C

d4x
�
−1

2
j (x)ϕ(x)+

1
2
(∂µφ

′)(∂ µφ′)− M 2

2
φ′2

�

=−1
2

∫
C

d4x
∫
C

d4x ′∆C (x, x ′) j (x) j (x ′)+ S0[φ
′].

(3.3.10)
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3. Path-integral formulation

Due to the translation invariance of the path-integral measure, Dφ= D(ϕ+φ′) = Dφ′, we thus find

Z0[ j ] = exp
�
− i

2ħh

∫
C

d4x
∫
C

d4x ′∆C (x, x ′) j (x) j (x ′)
�

N
∫

KMS
Dφ′ exp

�
i
ħh

S0[φ
′]
�

. (3.3.11)

This leads to

Z0[ j ] = Z0(M )exp
�
− i

2ħh

∫
C

d4x
∫
C

d4x ′∆C (x, x ′) j (x) j (x ′)
�

, (3.3.12)

where Z0(M ) is the partition sum for a free Bose gas for uncharged scalar particles with mass M , which
is determined up to divergent factor from due to the “vacuum energy”, which is physically irrelevant.
We have calculated it in Sect. 3.2.2 with help of the heat-kernel method. For our purpose to derive the
perturbative expansion, i.e., the Feynman rules, the only relevant notion is that up to this factor, indeed
Z0[ j ] is indeed identical with the result (2.2.49) obtained in a much more involved way in Sect. 2.2.3
within the operator formalism. The derivation of the Feynman rules has been given already there. For
now we just need the full generating functional for Green’s functions in terms of this formal expansion.
It is given by (2.2.106), taking care of the ħh factors,

Z[ j ] = exp
�
− iλ
ħh

∫
C

d4x ħh4 δ4

δ j (x)4

�
Z0[ j ]. (3.3.13)

This means that in the Feynman diagrams each vertex point contributes effectively a factor ħh−1 and
each internal or external line a factor ħh∆C , because each vertex is represented by four derivatives with
respect to j and thus involves two factors ∝ ∆C /ħh. Together with ħh4 this makes two propagator
and an ħh2 factor. Each diagram (connected of disconnected) thus is of O (ħh I−V ). Now for a connected
closed diagram (including those containing the external sources, j ) in the momentum-space version one
has I momenta running in internal lines, but at each vertex (including the one-point vertex standing
for an external source) there is momentum conservation, and the total momentum flux is 0, thus one
has V −1 constraints on the momenta, and thus there are L= I −V +1 loops in a connected diagram.
Thus any connected diagram, contributing to iW [ j ]/ħh is of orderO (ħhL−1). Particularly the connected
diagrams with no loops, i.e., the tree-level diagrams are of order O (1/ħh), providing the leading-order
O (1) of the ħh expansion of W .
Next we can give a very elegant functional derivation for the effective action, which is defined as the
generating functional for one-particle irreducible diagrams [Col85, Wei96]. In diagrammatic lan-
guage each connected diagram, contributing to a connected n-point Green’s function, can be built using
truncated diagrams (i.e., diagrams stripped off their external legs) that do not become disconnected by
cutting just one of the remaining (necessarily internal) line, i.e., the amputated 1PI diagrams, which
define the proper vertex functions, connected with exact propagators as internal lines and as external
lines redressing the amputated external lines. In other words, we can express each connected Green’s
function as formal tree-level diagrams, using the proper vertex functions with the internal and external
legs expressing exact propagators.
Now it is easy to derive this generating functional from a formal consideration, using the just derived
result of the fact that the loop expansion is a formal expansion in powers of ħh. Suppose our generating
functional for n"=point proper vertex functions is given by Γ [φ], i.e., the proper vertex functions are
given by

Γ (n)(x1, . . . , xn) =
δnΓ

δφ1 · · ·δφn
, (3.3.14)
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3.3 · Interacting field theory

then the tree-level approximation is given by the O (ħh−1) contribution to iWΓ [ j ]/ħh, where

ZΓ [ j ] = exp
�

i
ħh

WΓ [ j ]
�
=
∫

KMS
Dφexp

�
i
ħh
�
Γ [φ]+ { j1φ1}1

��
. (3.3.15)

Now the tree-level contribution is given by the stationary point of the bracket in the exponential, i.e.,
for the solution of the equation

δΓ [ϕ j ]

δϕ j (x)
=− j (x). (3.3.16)

Thus the tree-level contribution to WΓ is W , and thus we have

W [ j ] = Γ [ϕ j ]+
¦

j1ϕ j (x1)
©

1
. (3.3.17)

Taking the derivative with respect to j of this equation, using (3.3.16) one finds

ϕ j (x) :=
δW [ j ]
δ j (x)

. (3.3.18)

It is clear, that only the 1PI connected parts of diagrams have to be renormalized, because two renor-
malized parts, connected only by a propagator line, will cause no further divergences. Thus, when the
effective action is renormalized, all the proper vertex functions and thus all connected and disconnected
Green’s functions are well defined.
For the evaluation of the effective action, it is more costumary to reorganize the loop expansion, using
the socalled background-field formulation [Jac74], which also proves very useful for models with
local Abelian or non-Abelian gauge symmetry like QED or standard model of elementary particles
[Abb81, Abb82, AGS83].
To that end we substitute φ = ϕ0 +φ

′ in (3.3.2) with a background field ϕ0. Since the path-integral
measure is invariant under such field translations we can write

Z[ j ] =N (β)
∫

KMS
Dφ′ exp

§
i
ħh
�
S[ϕ0+φ

′]+
�

j1(ϕ01+φ
′
1)
	

1

�ª

= exp
§

i
ħh
�
S[ϕ0]+ {ϕ01J1}1

�ª
Z1,

(3.3.19)

where

Z1[ j ] =N (β)
∫

KMS
Dφexp

§
i
ħh
�
S[φ+ϕ0]− S[ϕ0]+ {φ01 j1}1

�ª
. (3.3.20)

For convenience we write φ instead of φ′ under the path integral again. From (3.3.19) and (3.3.20) we
have

W [ j ] =−iħh lnZ[ j ] = S[ϕ0]+ {ϕ01 j1}1+W1[ j ] with W1[ j ] =−iħh lnZ1[ j ]. (3.3.21)

Now we interpret j as a functional of ϕ0 and write all functionals as functionals of ϕ0. Then, for the
“mean field” for the Legendre transformation to the effective action (3.3.17) we find

ϕ1 =
δW [ j ]
δ j1

= ϕ01+
��
δS[ϕ0]
δϕ02

+
δW1[ϕ0]
δϕ02

+ j02

�
δϕ02

δ j1

�

2
. (3.3.22)
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3. Path-integral formulation

Now, in order that ϕ = ϕ0, we have to demand that

δS[ϕ0]
δϕ01

+
δW1[ϕ0]
δϕ01

+ j01 = 0, (3.3.23)

and then, according to (3.3.17) the effective action reads

Γ [ϕ] = S[ϕ]+W1[ϕ]. (3.3.24)

To find an appropriate perturbative scheme to evaluate the effective action, we thus need to calculate
W1[ϕ]. To that end we use (3.3.23) in (3.3.20) to eliminate j in favor of ϕ. This yields the functional
integro-differential equation,

Z1 = exp
�

i
ħh

W1

�
=N (β)

∫
KMS

Dφexp
�

i
ħh

�
S̃[φ,ϕ]−

�
φ1
δW1

δϕ1

�

1

��
. (3.3.25)

with

S̃[φ,ϕ] = S[φ+ϕ]− S[ϕ]−
�
ϕ1
δS[ϕ]
δϕ1

�

1
. (3.3.26)

Now we introduce the new generating functional

Z̃[ϕ,K] =N (β)
∫

KMS
Dφexp

§
i
ħh

�
S̃[φ,ϕ]+ {φ1K1}1

�ª
. (3.3.27)

Then, obviously
W1[ϕ] =−iħh ln Z̃[ϕ,K]|K=−δW1/δϕ

. (3.3.28)

Now we can expand Z̃[ϕ,K] perturbatively in powers of ħh with the usual techniques. Then the
one-particle irreducible graphs for the theory with the action S̃[φ,ϕ] are given for that K , for which
δZ̃/δK = 0. Now we can prove that the solution is indeed

K =−δW1

δϕ
⇒ δZ̃[ϕ,K]

δK
= 0. (3.3.29)

This implies that we can perform the usual perturbative calculations with the action S̃[φ,ϕ], defined
by (3.3.26) although in practice this is only posible for a constant background field ϕ, but this is already
an important case to study phase transitions in thermal equilibrium.
To prove (3.3.29), we have to show

δZ̃[ϕ,K]
δK1

�����
K=−δW1/δϕ

=N (β)
∫

KMS
Dφφ1 exp

�
i
ħh

�
S̃[φ,ϕ]−

�
φ1
δW1(ϕ)
δϕ1

�

1

��
= 0. (3.3.30)

To this end we differentiate (3.3.25) wrt. to ϕ:

−iħh
δZ1

δϕ1
=N (β)

∫
KMS

Dφ

�
δ S̃[φ,ϕ]
δϕ1

−
�
φ2
δ2W1(ϕ)
δϕ1δϕ2

�

2

�

× exp
�

i
ħh

�
S̃[φ,ϕ]−

�
φ1
δW1(ϕ)
δϕ1

�

1

��
.

(3.3.31)
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3.3 · Interacting field theory

Now we evaluate this path integral for the first term from S̃,

∫
KMS

Dφ
δS[φ+ϕ]
δϕ1

exp
�

i
ħh

�
S̃[φ,ϕ]−

�
φ1
δW1(ϕ)
δϕ1

�

1

��

=−iħh
∫

KMS

δ

δφ1
exp

�
i
ħh

�
S̃[φ,ϕ]−

�
φ1
δW1(ϕ)
δϕ1

�

1

��

+
∫

KMS
Dφ

�
δS[ϕ]
δϕ1

+
δW1[ϕ]
δϕ

�
exp

�
i
ħh

�
S̃[φ,ϕ]−

�
φ1
δW1(ϕ)
δϕ1

�

1

��
.

(3.3.32)

The first path integral over a total functional derivatives vanishes due to the periodic KMS conditions.
Inserting the rest into (3.3.31) gives

−iħh
δZ1

δϕ1
=
δW1

δϕ1
Z1 =N (β)

∫
KMS

Dφ
�
δW1[ϕ]
δϕ1

−
�
φ2

δ2

δϕ1δϕ2

�

2
(S[ϕ]+W1[ϕ])

�

exp
�

i
ħh

�
S̃[φ,ϕ]−

�
φ1
δW1[ϕ]
δϕ1

�

1

��
.

(3.3.33)

Since the first term in the bracket under the path integral in the upper line does not depend on φ, we
can take it out of the path integral, and the resulting term is just the left-hand side of the equation. This
means we have

0=N (β)
∫
C

d4x2
δ2

δϕ1δϕ2
[S[ϕ]+W1[ϕ]]

×
∫

KMS
Dφφ2 exp

�
i
ħh

�
S̃[φ,ϕ]−

�
φ1
δW1[ϕ]
δϕ1

�

1

��
.

(3.3.34)

The second functional derivative above is just the inverse propagator, and thus convoluting with the
propagator proves (3.3.30).
This means, to evaluate the effective action Γ [ϕ], we just have to evaluate the effective action for the
theory defined by the classical action S̃[φ,ϕ], which in turn is defined by (3.3.26) with an arbitrary
external field ϕ for vanishing expectation value of the “quantum field”, i.e., 〈φ〉= 0. In general this is
not possible in practice.

3.3.3 Perturbative evaluation of the effective potential and renormalization

However, we can perform the evaluation for ϕ = const. The corresponding function is called the ef-
fective potential. We start with deriving the Feynman rules. According to (3.3.26) we have to evaluate
the Lagrangian for S̃:

L̃ (φ,ϕ) =
1
2
(∂µφ)(∂

µφ)−
�

m2

2
+
λ

2
ϕ2
�
φ2− λ

3!
ϕφ3− λ

4!
φ4. (3.3.35)

Since we assume ϕ = const we have again a translation-invariant situation, and we can use the Feyn-
man rules in momentum space. The propagator to be used is the usual free propagator but with a
ϕ-dependent squared mass, given by µ2(ϕ) = m2+ λϕ2, which we assume to be larger than 0 for our
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3. Path-integral formulation

calculations. The Keldysh matrix elements for the real-time propagator are then given by (2.2.116-
2.2.119)

iD11(p,µ) =
i

p2−µ2+ iε
+ 2πδ(p2−µ2) fB(|p0|),

iD12(p,µ) = 2π[Θ(−p0)+ fB(|p0|)]δ(p2−µ2),

iD21(p,µ) = 2π[Θ(p0)+ fB(|p0|)]δ(p2−µ2),

iD22(p,µ) =− i
p2−µ2− iε

+ 2πδ(p2−µ2) fB(|p0|).

(3.3.36)

We have written the propagators in the form, where they appear in terms of a vacuum and finite-
temperature part, which is very convenient for the evaluation of the Feynman integral, because it
admits an easy separation of temperature-independent vacuum parts and temperature-dependent in-
medium parts. This is one of the advantages of the use of the real-time formalism also in equilibrium
many-body quantum-field theory. This separation in vacuum and in-medium parts is particularly im-
portant to renormalize (divergent) loop integrals with vacuum counter terms. As we shall see in the
following on this concrete example, the counter terms are defined entirely by the pure vacuum parts,
i.e., after having subtracted all subdivergences of a diagram with multiple loops, the remaining over-
all divergence is in the temperature-independent part of the diagram. This is due to the on-shell δ
distributions and the exponential decay of fB(|p0|) for p0→∞.
The perturbative (tree-level) vertex functions are determined by the interaction Lagrangian, i.e., the last
two terms in (3.3.35) that are cubic and quartic in the “quantum field”, φ. We thus have the following
perturbative Feynman rules

j kp

= iD j k (p,µ), (3.3.37)

j

ϕ

= i(−1) j
λ

3!
ϕ, (3.3.38)

= i(−1) j
λ

4!
. (3.3.39)

To set up the correct renormalization scheme, we note that the effective action Γ [Φ̃] is an even func-
tional in Φ̃(x), i.e., Γ [−Φ̃] = Γ [Φ̃], which means that only the n"=point functions with even n are
non-zero. when evaluating the effective potential with the just given Feynman rules for Φ= ϕ = const,
also the ϕ legs count to n.
Now we determine the superficial degree of divergence. For a diagram with E external lines (not count-
ing lines symbolizing the constant mean field ϕ) and V1 vertices of the type (3.3.38) and V2 vertices of
the type (3.3.39) we have 4V1+3V2 four-momenta in the diagram. There are V1+V2−1 constraints from
the energy-momentum conservation at each vertex, which holds because for a constant mean field the
situation is translation invariant. The−1 accounts for overall energy-momentum conservation. There
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3.3 · Interacting field theory

are I = (3V1+ 4V2− E)/2 internal lines, which implies that there must always be an even number of
V1-type vertices since E is even, and I must be an integer number. The superficial degree of divergence
in four space-time dimensions is given by D = 4L−2I , where L is the number of loops in the diagram,
each which contributes an integral over the four-momentum running around the loop. Each propaga-
tor with momentum p, symbolized by the internal lines, goes like 1/p2 and thus diminishes the degree
of divergence by this power. The number of loops is given by L= I − (V1+V2− 1) =V1/2+V2+ 1,
because there are V1+V2 constraints on the four momenta due to energy-momentum conservation at
each vertex, while overall energy-momentum conservation is already fulfilled by definition. Thus the
superficial degree of divergence of a given diagram is

D = 4L− 2I = 2V1+ 4V2+ 4− (3V1+ 4V2− E) = 4−V1− E . (3.3.40)

According to the BPHZ theorem (see, e.g., [Hee02]) after subtracting the divergences of sub-diagrams
recursively or by applying Zimmermann’s forest formula, only diagrams with D ≥ 4 are divergent.
Thus only diagrams with E ∈ {0, . . . , 4} can be divergent. So let’s consider these cases

• E = 0, which are the closed diagrams symbolizing corrections to the effective potential, i.e.,
to the grand-canonical thermal potential Φ. Here only diagrams with V1 ∈ {0,2,4} are overall
divergent.

• E = 1, the tadpole graphs and E = 2, the self-energy graphs. Only diagrams with V1 ∈ {0,2} are
divergent.

• E = 3 and E = 4, the contributions to the inverse propagator (i.e., the self-energy). Only dia-
grams with V2 = 0 are overall divergent.

Now each vertex V1 contains a factor ϕ, which shows that only n-point vertex functions with n ∈
{0,2,4} are overall divergent, and this implies that the theory is renormalizable with the corresponding
vacuum counterterms (vacuum energy, wave-function and mass as well as coupling-constant counter
terms). The counter-term Lagrangian thus reads

δL = δΛ+ δZ
2
(∂µφ)(∂

µφ)− δm2

2
φ2− δZm(m

2−M 2)
2

φ2− δZλ
4!
λφ4. (3.3.41)

We thus can renormalize the theory at a point m2 = M 2 > 0 for the effective mass, where ϕ = 0 is
the stable solution for the vacuum by imposing the mass-independent renormalization conditions
[Kug77, Kug97]

Γ [ϕ = 0, m =M ]|T=0 = 0 ⇒ δΛ1, (3.3.42)
∂m2Γ [ϕ = 0, m =M ]|T=0 = 0 ⇒ δΛ2, (3.3.43)

∂ 2
m2Γ [ϕ = 0, m =M ]

���
T=0
= 0 ⇒ δΛ3, (3.3.44)

Γ (2)[ϕ = 0, m =M , p = 0]
���
T=0
=−M 2 ⇒ δm, (3.3.45)

∂m2Γ (2)[ϕ = 0, m, p = 0]
���
m=M ,T=0

=−1 ⇒ δZm , (3.3.46)

Γ (4)[ϕ = 0, m =M , p1 = p2 = p3 = 0]
���
T=0
=−λ ⇒ δZλ. (3.3.47)

Here “mass independent” refers to the fact that all counter terms are defined for the theory with m =M .
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3. Path-integral formulation

To give the counter terms explicitly, we have to regularize the divergent diagrams (and sub-diagrams).
Since we use the heat-kernel method to evaluate the effective potential, we should also use the corre-
sponding regularization for evaluating the loop corrections to the self energyΣ=−[Γ (2)−D−1] and the
proper vertex function Γ (4) at m = M and ϕ = 0. Since these functions are given as functional deriva-
tives with respect to the fully space-time dependent mean fields Φ̃ this regularization is achieved with
Schwinger’s proper-time method. Since we only need the case T = 0 to get the counter terms that are
defined entirely in the vacuum theory, it is sufficient to work with the usual time-ordered propagators
and vertices only. The idea is to write

D(p, M ) =
1

p2−M 2+ iη
=−i

∫ ∞
0

dϑ exp[iϑ(p2−m2+ iη)] (3.3.48)

and to introduce the regularization in the same way as in Sect. 3.2.2 when we evaluated the functional
determinant

Dε(p, M ) = i
∫ ∞

0
dϑ(iM 2ϑ)α exp[iϑ(p2−m2+ iη)] =D(p, M )

�
M 2

m2− p2− iη

�ε
Γ (1+ ε). (3.3.49)

For sufficiently large ε with this expression for the propagator all loop integrals become finite. Of
course, at the end of the calculation, when the counterterms are appropriately chosen to fulfill the
MIR conditions (3.3.41-3.3.47), we have to let ε→ 0 again.
The trick of the proper-time method is however to integrate over the loop momenta first and then over
the “proper-time parameters” ϑ.
To evaluate the effective action and the counter-terms, however, it is sufficient to first evaluate Γ [ϕ]
with this regularization and then to use appropriate derivatives with respect to ϕ4, because the counter
terms are all evaluated at external momenta p j = 0, and this just

Γ (n)(p1 = . . .= pn−1 = 0) =
1
n!
∂ n

∂ ϕn
Γ [ϕ]. (3.3.50)

For the counter terms we have to set m2 =M 2 > 0 and ϕ = 0 after performing the derivatives.
For the one-loop approximation we thus can use (3.2.66) but with m2 → µ2 = m2 + λϕ2/2 and A=
−2/α− 3+ γE to get the regularized vacuum part of the effective potential

Vreg,vac(ϕ, m, M ) =−T
V
Γreg,vac(ϕ) =−L (ϕ)+

T
2V

Trln
�D−1(ϕ)

M 2

�

=
m2

2
ϕ2+

λ

4!
ϕ4

+
1

128π2

�
m2+

λ

2
ϕ2
�2 �
− 2
α
− 3+ 2γE+ 2 ln

�
m2+λϕ2/2

M 2

��
.

(3.3.51)

The renormalization conditions (3.3.42-3.3.44) immediately give

δΛ=V (ϕ = 0, M , M )+ (m2−M 2) ∂m2V (0, m, M )|m=M +
(m2−M 2)2

2
∂ 2

m2V (0, m, M )
���
m=M

=
2(γE− 1)m2− 4m2M 2+M 4

128π2
.

(3.3.52)
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The regularized two-point function at m2 =M 2, ϕ = 0 is given by

Γ (2)reg,vac(p = 0, m =M ,ϕ = 0)|=−V ′′reg,vac(ϕ)|ϕ=0,m2=M 2 =−M 2+
λM 2

32π2

�
1
α
+ 1− γE

�
. (3.3.53)

From (3.3.45) this gives

δm2 =
λM 2

32π2

�
1
α
+ 1− γE

�
. (3.3.54)

Further we find

∂M 2Γ
(2)
reg,vac(ϕ = 0, M , p = 0) =−1+

λ

32π2

�
1
α
+ 1− γE

�
⇒ δZm =

λ

32π2

�
1
α
+ 1− γE

�
. (3.3.55)

Finally we get

Γ (4)reg,vac(ϕ = 0, m =M , p1 = p2 = p3 = 0) =− d4

dϕ4
V (ϕ)|ϕ =−λ+

3λ2

32π2

�
1
ε
− γE

�

⇒ δλ=
3λ2

32π2

�
1
α
− γE

�
.

(3.3.56)

The renormalized vacuum part of the potential thus reads

Vvac,ren(ϕ, m, M ) =
m2φ2

2
+
λ

4!
φ4− 3m4− 4m2M 2+M 4+λm2ϕ2+ 3λ2ϕ2/4

128π2

+
(m2+λϕ2/2)2

64π2
ln
�

1+
λϕ2

2M 2

�
.

(3.3.57)

As we know already from Sect. 3.2.2 there is no divergence in the temperature-dependent part of the
effective potential. We can simply copy (3.2.67) with substituting m2→ m2+λϕ2/2:

Vren(ϕ, m, M ) =Vvac,ren(ϕ, m, M )− 1
6π2

∫ ∞
m2+λϕ2/2

d p0

�
p2

0 −m2− λ
2
ϕ2
�3/2

fB(p0). (3.3.58)

The mean field ϕ0 is then given by finding a minimum of this effective potential. We note that, of
course, the effective action in this perturbative approach is only well defined for mean fields such that
m2 + λϕ2/2 ≥ 0. As to be expected the perturbative expansion can only be defined for excitations
not too far from a minimum of the effective potential, which defines the mean field present in the
corresponding “vacuum state”. We shall investigate this problem in detail in the next chapter, where
we investigate the Baym functional, which allows to formulate self-consistent resummations of the
perturbation series for the propagator which at the same time obey conservation laws and are ther-
modynamically consistent. Here, “thermodynamical consistency” means that the definitions of the
bulk quantities like internal energy, pressure, entropy, etc. from the partition function coincides with
the definition of the same quantities from the self-consistently calculated one-particle Green’s function,
i.e., the propagator with self-consistently resummed self-energies.

3.4 Fermions

The path-integral formalism for fermions is not very different from that of bosons. Nevertheless we
need eigenstates of fermion operators which are defined as the generalized eigenvectors of field opera-
tors, as for bosons. To be consistent the anticommutator relations of the field operators, their eigenval-
ues have to be anticommuting. Thus, we need a new sort of algebraic objects, the so called Grassmann
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3. Path-integral formulation

numbers and a formal calculus, i.e., differentiation and integration with respect to those algebraic ob-
jects that allow for manipulations of path integrals and (functional) derivatives which are similar to the
bosonic case. In the following subsection we start with the treatment of Dirac fermions as true par-
ticles obeying Fermi-Dirac statistics. Later, we shall also treat abelian and non-abelian gauge theories,
where the Faddeev-Popov ghost fields are introduced as unphysical Grassmann valued fields obeying
Bose-Einstein boundary conditions. As we shall see there they do not give rise to physically observable
field degrees of freedom or particles but just compensate the unphysical field degrees of freedom of the
gauge bosons, leading to a consistent description of “matter fields” with vector bosons.

3.4.1 Path integrals for Dirac fermions

For simplicity we start with free Dirac fermions, which have been treated in the operator formalism in
Sect. 1.3. We start from the canonical formalism, i.e., with the real-time Lagrangean

L =ψ(i /∂ −m)ψ. (3.4.1)

The canonically conjugated field momentum is

Π=
∂L
∂ ψ̇

= iψγ 0 = iψ
†
. (3.4.2)

As we know from our discussion of Poincaré symmetry within the canonical quantization formalism
in Sect. 1.3.3, we have to quantize these fields with canonical equal-time anticommutation rules,

¦
ψα(t , ~x),ψβ(t , ~y)

©
=
¦
Πα(t , ~x),Πβ(t , ~y)

©
= 0,

¦
ψα(t , ~x),Πβ(t , ~y)

©
= i

n
ψα(t , ~x),ψ†

β
(t , ~y)

o
= iδ (3)(~x − ~y)δαβ,

(3.4.3)

where α,β ∈ {1, . . . , 4} denote Dirac-spinor indices. In the following we shall work with ψ and ψ† =
−iΠ for convenience.
For the thermal path integral along the extended Schwinger-Keldysh contour we have to discretize the
space-time variables. We also put the particles in a finite cubic volume V = L3 with periodic boundary
conditions for the fields as we did for bosons, and we shall denote the discretized spatial and Dirac
indices by one common index k. The corresponding equal-time anticommutators of course read

¦
ψα(t ),ψβ(t )

©
= 0,

n
ψα(t ),ψ

†
β
(t )
o
= δαβ. (3.4.4)

A complete set of compatbile observables are the Hermitean occupation-number operators,

Nα(t ) =ψ
†
α(t )ψα(t ). (3.4.5)

Since ψ2
α = 0, there exists a vacuum state

∀α : ψα |0〉= 0, (3.4.6)

Ignoring the time argument for a while, working at a fixed time argument t , further we have

N2
α =ψ

†
α[
¦
ψα,ψ†

α

©
−ψ†

αψα]ψα =ψ
†
αψα =Nα, (3.4.7)
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where we have used (3.4.4) and ψ2
α = 0. (3.4.7) implies that the possible eigenvalues of Nα are 0 or 1.

From the anticommutators (3.4.4) further we obtain the occupation-number basis

|{nα}〉=
∏
α

ψnα
α |0〉 , nα ∈ {0,1}. (3.4.8)

They form a complete set of orthonormal states.
For the path-integral representation we rather need a kind of coherent states, i.e., generalized eigen-
kets of the field operators and eigenbras of the canonical momenta. To establish the corresponding
formalism we work in a state space for a particle at only one space-time Dirac-index lattice site. As we
shall see, the generalization to the above considered case with mutliple lattice sites is straight forward.
So dropping the fixed index α for convenience. Then we have a situation that is similar to creation and
annihilation operators of a simple harmonic oscillator but with anticommutation relations rather than
commutation relations, i.e.,

{ψ,ψ}= 0,
¦
ψ,ψ†

©
= 1. (3.4.9)

The corresponding Hilbert space is obviously just two-dimensional with the occupation-number basis
|0〉 and |1〉=ψ† |0〉. Now we like to define formal field-operator eigenkets fulfilling

ψ |η〉= η |η〉 (3.4.10)

and momentum-operator eigenbras fulfilling

〈η∗|Π= 〈η∗| iψ† = 〈η∗| iη∗. (3.4.11)

From this we find
ψ2 = 0 ⇒ η2 = 0, (ψ†)2 = 0 ⇒ (η∗)2 = 0. (3.4.12)

Now we must have
|η〉= a |0〉+ b |1〉 ⇒ ψ |η〉= |0〉 . (3.4.13)

This means we have to set a = 1 and b =−η, i.e.,

|η〉= |η〉−η |η〉 . (3.4.14)

because then we have

ψ |η〉=−ψη |1〉=+ηψψ† |0〉= η |0〉= η(|0〉−η |1〉) = η |η〉 . (3.4.15)

Note that here we have assumed that the fermion-field operator anticommutes with the eigenvalue, η.
We shall see that this is a convenient convention. It is clear that we can write

|η〉= exp(−ηψ†) |0〉 , (3.4.16)

because

exp(−ηψ†) =
∞∑
j=0

(−ηψ†) j

j !
= 1−ηψ†. (3.4.17)

The series stops after j = 1, because (ηψ†)2 = ηψ†ηψ† =−η2(ψ2) = 0.
By formal adjungation of (3.4.17) we get

〈η∗|= 〈0|exp(−ψη∗) = 〈0| (1−ψη∗) = 〈0| − 〈1|η∗. (3.4.18)
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Indeed we have

〈η∗|ψ† =−〈1|η∗ψ† =+ 〈1|ψ†η∗ = 〈0|η∗ = (〈0| − 〈1|η∗)η∗ = 〈η∗|η∗. (3.4.19)

From (3.4.15) and (3.4.19) it follows

〈η∗ |η〉= (〈0| − 〈1|η∗)(|0〉−η |0〉) = 1+η∗η= exp(η∗η) = exp(−ηη∗), (3.4.20)

where Finally we have assumed that also the field eigenvalues η and η∗ anticommute. In this way we
have established a socalled Grassmann algebra. Together with the complex numbers they build a four-
dimensional algebra. The most general function that can be built as formal polynomials of Grassmann
and ordinary complex numbers obviously is

f (η∗,η) = f0+ f1η
∗+ f2η+ f12η

∗η, f0, f1, f2, f12 ∈C. (3.4.21)

As the next step we want to establish rules for integration with respect to Grassmann numbers. The
purpose is to get a partion of the identity operator. First we evaluate

exp(ηη∗) |η〉 〈η∗|= (1+ηη∗)(|0〉−η |1〉)(〈0| −η∗ 〈1|)
= (1+ηη∗)(|0〉 〈0| −η |1〉 〈0| −η∗ |0〉 〈1|+ηη∗ |1〉 〈1|
= |0〉 〈0| −η |1〉 〈0| −η∗ |0〉 〈1|+ηη∗ |1〉 〈1|+ηη∗ |0〉 〈0| .

(3.4.22)

We shall show now that we can establish algebraic rules for integration that are very similar to the
integration with respect to usual real or complex numbers by defining

∫
dη=

∫
dη∗ = 0,

∫
dηη=

∫
dη∗η∗ = 1,

∫
dηη∗ =

∫
dη∗η= 0. (3.4.23)

Also all Grassmann valued quantities, including the “differentials” should anticommute. Further we
define ∫

dη∗dη=
∫

dη
∫

dη∗ =−
∫

dηdη∗. (3.4.24)

Integration (3.4.22) thus gives
∫

dη∗dηexp(ηη∗) |η〉 〈η∗|= |0〉 〈0|+ |1〉 〈1|= 1, (3.4.25)

which is precisely the “completeness relation” for fermionic coherent states, we wished to establish.
Next we want to calculate the trace of operators representing observables. Observables are all built by
an even number of fermion operators such that Aη = ηA etc. We first write down the trace with
help of the usual occupation-number eigenbasis and then introduce completeness relations of the form
(3.4.25):

TrA=
1∑

n=0
〈n |A|n〉=

1∑
n=0

∫
dη∗dη

∫
dη′dη′∗ exp(ηη∗+η′η′∗) 〈n |η〉
η∗ ��A��η′�
η′∗ ��n � . (3.4.26)

Here we could lump the exponentials together, because its arguments consist of an even number of
Grassmann variables, and thus these arguments commute. Now we want to get rid of the occupation-
number states. First of all we can commute the last factor with the operator matrix element since the
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latter obviously consists of an even number of Grassmann variables. However, we have to commute
〈n |η〉 with



η′∗
��n �, which has to be handled with care. To that end we use (3.4.14) and (3.4.18):

〈n |η〉= δ0n −ηδ1n ,


η′∗
��n �= δ0n −η′∗δ1n . (3.4.27)

Thus we get
〈n |η〉
η′∗ ��n �= δ0n +ηη

′∗δ1n (3.4.28)

but 

η′∗
��n � 〈n |η〉= δ0n +η

′∗ηδ1n = δ0n −ηη′∗δ1n . (3.4.29)

Thus, we have
〈n |η〉
η′∗ ��n �= 
−η′∗ ��n � 〈n |η〉 , (3.4.30)

where we have lumped the additional minus sign arbitrarily to the bra-coherent state. Summing over
n thus leads to

TrA=
∫

dη′∗dη′ exp(η′η′∗)
∫

exp(ηη∗)

−η′∗ ��η�
η∗ ��A��η′�

(3.4.25)
=

∫
dη′∗dη′ exp(η′η′∗)


−η′∗ ��A��η′� .
(3.4.31)

As we shall now see, the most important feature is the minus sign in the bra of the matrix element.
Now it is immediately clear that all these considerations hold true for the case with more than one
lattice site, i.e., for a discretized field operator we simply have

TrA=
∫

dNη∗dNηexp
�∑

α

ηαη
∗
α

�
−η∗ ��A��η′� ,
∫

dNη∗dNη :=
∫ N∏

α=1
(dη∗αdηα). (3.4.32)

Now we apply this to the partition sum for Dirac fermions. We immediately include a chemical
potential for the conserved charge, i.e., the discretized form of (1.3.82)

Q(t ) =
∑
α

ψ†
αψ, (3.4.33)

where we have silently omitted the normal-ordering prescription since for our path-integral formalism
we want to establish Weyl ordering, i.e. we like to have all conjugated field momenta (or ψ† for that
matter) to the left of all field operators ψ. Thus our partition sum reads

Z =Trexp(−βH+αQ), (3.4.34)

as for the bosonic case, but now we use our path-integral description of traces over observable operators
built with Dirac-field operators (3.4.32). The evaluation goes quite in parallel with the bosonic case.
In order to have a conveniently defined real-time path integral, we’ll use the implementation of a finite
chemical potential in terms of boundary conditions for the fields as for the charged bosons. From the
commutation relations we find

exp(−αQ)ψβ exp(αQ) = exp(α)ψβ, exp(αQ)ψ†
β
(−αQ) = exp(+α)ψ†

β
. (3.4.35)

This implies
〈−η∗|exp(αQ) = 〈−η∗ expα| . (3.4.36)
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Thus, for the partition sum we can write

Trexp(−βH+αQ) =
∫

dnη∗dnηexp

 ∑
β

ηβη
∗
β

!
〈−expαη∗ |exp(−βH)|η〉 . (3.4.37)

Now introducing the extended real-time contour the very same calculation as in the bosonic case in
Sect. 3.1 leads to

Trexp(−βH+αQ) =N
∫

KMS
DψDψexp(iSC [ψ,ψ]), (3.4.38)

where we have relabeled the Grassmann fields from η to ψ and from η∗ to ψ. The KMS boundary
conditions for fermions read, because of (3.4.36,

ψ(−iβ, ~x) =−exp(µβ)ψ(0, ~x). (3.4.39)

From the commutation relations (3.4.35) this implies

ψ(−iβ, ~x) =−exp(−µβ)ψ(0, ~x). (3.4.40)

Here we have written α=µβ again.
To evaluate the partition sum it is again enough to consider the imaginary-time part of the Schwinger-
Keldysh path, and the calculation is very similar to the bosonic case. There are only two differences:
First of all we have quasi-antiperiodic boundary conditions for fermions rather than quasi-periodic
boundary conditions for bosons. Second we have to evaluate the Gaussian integral over Grassmann
numbers. We start with the one-dimensional case

∫
dη∗dηexp(−λη∗η) =

∫
dη∗dη(1−λη∗η) =

∫
dη∗dη(−λη∗η) = +λ. (3.4.41)

Now in the n-dimensional case with a hermitean complex matrix from this we immediately have

∫
dnη∗dnηexp

 
−

n∑
i j=1

Ai jη
∗
iη j

!
= det Â. (3.4.42)

This is proven as for bosons, using the fact that a hermitean matrix, Â, can be diagonalized with an
SO(n) matrix. We only need the substitution rule for our Grassmann integrations. First of all for a
general function it is clear that one only needs to consider

f (ηα,η∗α) = . . .+ f1...n

n∏
α=1

ηαη
∗
α. (3.4.43)

Then the integral reads ∫
dnη∗dnη f (ηα,η∗α) = f1...n . (3.4.44)

Now we consider the substitution

η′α =
∑
β

Mαβηβ, η′∗α =
∑
β

Nαβη
∗
β. (3.4.45)
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Then
n∏
α=1

η′α =
n∏
α=1

∑
β

Mαβηβ. (3.4.46)

The only non-vanishing contribution is the one, where all indices β are different, i.e.,
n∏
α=1

η′α =
∏

β= 1nηβ
∑
P∈Sn

σ(P )
n∏
α=1

MαP (α) =
n∏

β=1

ηβ det M̂ . (3.4.47)

From this we get

f (η′a ,η′∗a ) = . . .+ f1...n

n∏
α=1

η′αη
′∗
α = . . . f1...n det(M̂ N̂ )

∏
α

ηαη
∗
α (3.4.48)

Thus in order to have

f1...n =
∫

dnη′∗dnη′ f (η′a ,η′∗a ) =
∫

dnη∗dnη f (η′a ,η′∗a ) (3.4.49)

as for usual integral we have to define
∫

dnη′∗dnη′ =
∫

dnη∗dnη
1

det(M̂ N̂ )
. (3.4.50)

In the substitution rule thus the determinant of the transformation appears in the denominator instead
of the numerator for usual numbers. Thus we can keep in mind that concerning Gaussian integrals and
the substitution rule in the Grassmann integrals the determinants appear on the oposite place compared
to the rules for normal integrals.
For the proof for the Gaussian integral we need∑

αβ

Aαβη
′∗
α η
′
β =

∑
α,...,δ

AαβU ∗αγη
∗
γUβδηδ =

∑
α

λαη
∗
αηα. (3.4.51)

There we have assumed that
Û †ÂÛ = diag(λ1, . . . ,λn). (3.4.52)

Thus we only have to apply the substitution rule (3.4.50) for M̂ = Û †T and N̂ = Û . Then we have
det M̂ N̂ = det Û † det Û = 1, and this proves (3.4.42).
We only have to think about the Euclidean form of the action. This we most achieve most easily using

iSE =
∫
V

d4xψ(i /∂ −m)ψ=−i
∫ β

0
dτ
∫

V
d3~x ψ(−γ 0∂τ − i~γ ~∇−m)ψ. (3.4.53)

Setting
γ (E)0 = γ 0, γ (E)j =−iγ j , (3.4.54)

we find

SE =
∫ β

0
dτ
∫

V
d3~x ψ

�
γ (E)µ ∂ (E)µ +m

�
ψ=

∫ β

0
dτ
∫

V
d3~x ψ

�
/∂
(E)+m

�
ψ. (3.4.55)

We note that the Euclidean Dirac matrices are all hermitean and build the Clifford algebra of Euclidean
space with a positive metric, ¦

γ (E)µ ,γ (E)ν
©
= δµν . (3.4.56)
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3.4.2 Partion sum for non-interacting Dirac fermions

The partition sum then reads

Z =N
∫

KMS
DψDψexp(−SE). (3.4.57)

Since this is a Gaussian integral over Grassmann numbers we can immediately give the result, using
(3.4.42):

Z =N Det( /∂ (E)+m). (3.4.58)

Here, the determinant is in the numerator. Otherwise the calculation is pretty similar to the Bosonic
case. The only difference are the quasi-antiperiodic boundary conditions (3.4.39) and (3.4.40). We can
take the determinant with respect to the Dirac-spinor space first, leading to

det
spin
( /∂ (E)+m) = (−�E+m2)2. (3.4.59)

The partition sum thus is
Z =N [Detx(−�E+m2)]2. (3.4.60)

The grand-canonical potential thus is

Φ=−T lnZ =−2T Trx ln
�−�E+m2

M 2

�
, (3.4.61)

where we have written the indetermined constant in terms of a mass-scaling parameter M in order to
make the argument of the logarithm dimensionless. The degeneracy factor 2 stems from the 2s + 1
spin-degrees of freedom, where for the here considered Dirac fermions s = 1/2.
The evaluation of the functional trace also parallels the bosonic case. Again, we use the heat-kernel
method. Again we can immediately use (3.2.85) but we have to take into account the fermionic KMS
conditions (3.4.39) and (3.4.40). This leads to the summation over different Matsubara frequencies,

ψ(τ, ~x) = T
∑
ω̃n

∫
R

d3~p
(2π)3

ψ̃(p)exp(i~p · ~x)exp(−p0τ)

�����
p0=iω̃n+µ

, (3.4.62)

where the fermionic Matsubara frequencies are given by

ω̃n = (2n+ 1)πT , n ∈Z. (3.4.63)

They lead to the additional sign in the fermionic KMS conditions in comparison to the bosonic case.
The heat kernel for the functional determinant (3.4.61) thus reads

H̃ (α) =
M 3V
8π3/2

Γ (−ε)∑
ω̃n

�
m2+(ω̃n − iµ)2

m2

�ε
with ε=

3
2
−α. (3.4.64)

This means we can also reuse (3.2.86) to evaluate the fermionic Matsubara sum with help of (B.2.4).
Instead of (3.2.87) and (3.2.88) we finally have

H̃+(α) =−
M 3βV
16π5/2

sin(πε)Γ (−ε)
∫ ∞

m
d p0[1− 2 fF(p0−µ)]

�
p2

0 −m2

M 2

�ε
,

H̃−(α) =−
M 3βV
16π5/2

sin(πε)Γ (−ε)
∫ ∞

m
d p0[1− 2 fF(p0+µ)]

�
p2

0 −m2

M 2

�ε
.

(3.4.65)
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The T and µ independent divergent vacuum part is identical as for bosons, except for the sign and
the spin-degeneracy factor, which we write as 2s + 1 to make its origin explict:

Φvac,reg =−(2s + 1)[H̃+(α→ 0)− H̃−(α→ 0)]

=
(2s + 1)V m4

64π2

�
2
α
+ 3− 2γE− 2 ln

�
m2

M 2

��
+O (α). (3.4.66)

For the thermal part we can agan set α = 0. Here, the sign in (3.4.61) is cancelled by the sign in front
of the Ferm-Dirac distribution in (3.4.65). Thus we find in close analogy to (3.2.91)

Φtherm =− (2s + 1)T V
∫
R3

d3~p
(2π)3

ln
h
1+ exp

�
−ω−µ

T

�i

− (2s + 1)T V
∫
R3

d3~p
(2π)3

ln
h
1+ exp

�
−ω+µ

T

�i
,

(3.4.67)

whereω =
Æ
~p2+m2. The finally occuring extra sign originates from the additional sign in

fF =−T ∂p0
ln[1+ exp(−βp0)], (3.4.68)

which has to be used when integrating by parts as in the bosonic case in the step from (3.2.90) to
(3.2.91). As in the bosonic case the upper line is the contribution from the particles, the upper from
the antiparticles. We note that there is no restriction to the chemical potential anymore, and thus there
is no need for a condensation mechanism as for bosons for T → 0+.
To derive the other thermodynamical quantities it is again more convenient to use

Ωtherm(β,α) = lnZ =−βΦtherm(T = 1/β,µ= T α). (3.4.69)

Then we have (cf. (2.1.23), (2.1.26), and (2.1.39))

U =−
�
∂ Ω

∂ β

�

V ,α
= (2s + 1)V

∫
R3

d3~p
(2π)3

ω [ fF(p0−µ)+ fF(p0+µ)] , (3.4.70)

〈Q〉=
�
∂ Ω

∂ α

�
V ,β
= (2s + 1)V

∫
R3

d3~p
(2π)3

[ fF(p0−µ)− fF(p0+µ)] (3.4.71)

S =−
�
∂ Φ

∂ T

�
V ,µ
=−(2s + 1)V

∫
R3

d3~p
(2π)3

�
[1− fF(ω−µ)] ln [1− fF(ω−µ)]

+ fF(ω−µ) ln[ fF(ω−µ)]+ (µ→−µ)
	
. (3.4.72)

3.4.3 The free propagator

As an example for the derivation of the free real-time propagator, using the opposite way than that used
for bosons, namely starting from the Matsubara propagator, we calculate the free propagator for Dirac
fermions. Here and in the following the γµ are the usual Minkowski space Clifford-algebra elements:

{γµ,γ ν}= 2gµν . (3.4.73)

The easiest way to find the real-time propagators is to start with the Matsubara propagator which is
defined in terms of real-time quantities by

∆−1
FM(iω̃n +µ, ~p) =−(/p −m)|p0=iω̃n+µ

, (3.4.74)
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where we used the momentum representation. Here the ω̃n are the Fermion Matsubara frequencies as
defined in (3.4.63). Inverting the matrix yields

∆FM(iωn +µ, ~p) =− /p +m

p2−m2

�����
p0=iωn+µ

. (3.4.75)

The first step to find the real-time matrix propagator by analytic continuation is to transform to the
Mills representation, which is defined by

∆FM(τ, ~p) =− 1
β

∞∑
n=−∞

/p +m

p2
0 −ω2

exp(−p0τ)

�����
p0=iωn+µ

with ω =
Æ
~p2+m2. (3.4.76)

Now we can use (B.2.3) and the residuum theorem as in Sect. B.1.3. Finally we get

∆FM(τ, ~p) =
1

2ω
[1− fF(ω−µ)](γ 0ω− ~p~γ +m)exp(−ωτ)

− 1
2ω

fF(ω+µ)(−γ 0ω− ~p~γ +m)exp(ωτ)
(3.4.77)

As discussed in Sect. B.1.2 the analytic continuation to complex τ gives −i∆21
FM(t , ~p) for τ = it . The

Fourier transformation wrt. t yields after some algebra

i∆21
F (p) = 2π[1− fF(p0−µ)]σ(p0)(/p +m)δ(p2−m2). (3.4.78)

Using the path integral and the KMS conditions (3.4.39) and (3.4.40) we find the KMS condition for
the off-diagonal real-time Green’s functions:

∆21
F (x) =−exp(−µβ)∆12(x0+ iβ, ~x) ⇔ ∆12(p) =−exp[−β(p0−µ)]∆21(p). (3.4.79)

With the identity 1− fF(−z) = fF(z) from (3.4.78) we get

i∆12
F (p) =−2π fF(p0−µ)σ(p0)(/p +m)δ(p2−m2). (3.4.80)

For practical calculations it is more convenient to rewrite the propagator in a form, where it splits into
a vacuum and an in-medium part explicitly. That can be done by using the identity

fF(−x) = 1− fF(x). (3.4.81)

Then, introducing the functions
n±F (p0) = fF(|p0| ±µ), (3.4.82)

we find after some simple algebraic manipulations

i∆21
F (p) = 2π

�
Θ(p0)[1− n−F (p0)]−Θ(−p0)n

+
F (p0)

	
(/p +m)δ(p2−m2),

i∆12
F (p) = 2π

�
Θ(−p0)[1− n+F (p0)]−Θ(p0)n

−
F (p0)

	
(/p +m)δ(p2−m2).

(3.4.83)

One should note that n−F refers to particles n+F to antiparticles.
As a consistency check we calculate the retarded Green’s function from the dispersion relation

∆FR(p) =
∫

dz
2π

AF(z, ~p)
p0+ i0+− z

,

AF(p) = i[∆21
F (p)−∆12

F (p)] = 2πσ(p0)(/p +m)δ(p2−m2).
(3.4.84)

118



3.5 · Gauge models

Indeed we find the correct result

∆FR(p) =
/p +m

p2
0 −ω2+ i0+σ(p0)

. (3.4.85)

From the general relations (3.1.37) we find also the diagonal-matrix elements of the real-time propaga-
tors:

∆11
F (p) =∆FR(p)+∆

12
F (p)

=
�

1
p2−m2+ i0+

+ 2πi[Θ(p0)n
−
F (p0)+Θ(−p0)n

+
F (p0)]δ(p

2−m2)
�
(/p +m),

∆22
F (p) =∆

21
F (p)−∆FR(p)

=
�
− 1

p2−m2− i0+
+ 2πi[Θ(p0)n

−
F (p0)+Θ(−p0)n

+
F (p0)]δ(p

2−m2)
�
(/p +m).

(3.4.86)

3.5 Gauge models

The single-most important type of quantum-field theoretical models in physics are gauge models,
which have a local gauge symmetry. In this section, we shall investigate first the case of QED and give
a path-integral derivation of Planck’s radiation Law, i.e., the partition function of free photons.

3.5.1 The electromagnetic field

The most simple example for a gauge theory is Maxwell’s electrodynamics. One can show, using
the representation theory of the homogeneous orthochronous Poincaré group, that a massless vector
field necessarily must be treated as a gauge-field theory if one likes to use local vector fields Aµ as their
representatives [Hee02]. Here, we use the shorter way of “quantizing” the classical electromagnetic
field, starting from its Lagrange density,

Lγ =−
1
4

FµνF
µν with Fµν = ∂µAν − ∂νAµ. (3.5.1)

As we have emphasized before, for a complete quantization via path integrals, we have to go through
the Hamiltonian formulation. There we are confronted with the problem of gauge invariance already
at the classical level, because the canonical field momenta are given by

Πµ =
∂L

∂ (∂0Aµ)
= F 0

µ. (3.5.2)

Now Π0 = 0. This means that A0 is not a dynamical degree of freedom in the usual sense. Also the
manifest covariant structure of the model is lost, because Πµ is not a four vector, but this is the case in
the canonical formalism anyway. The reason for the problem of Π0 = 0 is gauge invariance, because
for any scalar field χ the Lagrange density (3.5.1) is invariant under the local gauge transformation

A′µ =Aµ− ∂µχ . (3.5.3)

We thus can choose Aµ such that
A0 = 0. (3.5.4)
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In this way we eliminate the nondynamical field-degree of freedom from the Lagrangian. The disad-
vantage of this choice of gauge is that then manifest Lorenz invariance is lost even at the Lagrangian
level. We shall, however proceed in this noncovariant way for a while and restore Lorentz invariance
later within the path-integral formalism.
The gauge condition (3.5.3) does not fix the gauge completely since we still have the freedom to use
a time-independent field χ (x) = χ̃ (~x) in the gauge transformation (3.5.3) without violating (3.5.4)
for the transformed vector potential if this constraint is fulfilled for the original one. To fix the gauge
completely, we can thus choose another arbitrary constraint. We know from classical electromagnetism
that a free electromagnetic field has a complete set of plain-wave solutions that are transverse with
respect to the propgation direction, given by the wave vector ~k. It is thus most convenient to use the
Coulomb-gauge condition

∂µAµ
(3.5.4)
= ~∇ · ~A= 0 (3.5.5)

in addition to (3.5.4). For a plain-wave solution this means that ~k · ~A= 0, i.e., encodes the transversality
of the electromagnetic waves into the vector potential of the electromagnetic field.
Now we want to work within a framework with only two gauge-field degrees of freedom. Obviously
from (3.5.5) we can write

A3(x) = Ã3[A1,A2, x] :=−
∫ x3

−∞
dz ′

�
∂1A1(t , x1, x2, z ′)+ ∂2A2(t , x1, x2, z ′)

�
. (3.5.6)

Further we have

Π3 = F 0
3

(3.5.4)
= ∂t A3 =−∂t A3 = E3[Π1,Π2]

=−
∫ x3

−∞
dz ′

�
∂1Π

1(t , x1, x2, z ′)+ ∂2Π
2(t , x1, x2, z ′)

�
,

(3.5.7)

where we have written E3 for the three-component of the electric field. In the following we write A3

and Π3 = E3, understanding the functionals (3.5.6) and (3.5.7).
It is easy to show that all the constraints are compatible with the equations of motion from Hamilton’s
principle with the Lagrange density (3.5.1)

�Aµ− ∂µ∂νAν = 0 (3.5.8)

which are just Maxwell’s equations of motion for the free electromagnetic field.
The Hamilton density is then defined as

H (Π1,Π2,A1,A2) =Πµ∂t Aµ−L = 1
2
( ~E2+ ~B2) with B c = εab c∂aAb . (3.5.9)

This is the well-known (gauge invariant) energy density of the electromagnetic field. Note, however,
that here we understandH as the functional of E1 = Π1, E2 = Π2, A1, and A2 with A3 and E3 given
by (3.5.6) and (3.5.7) respectively.
Now we can write the Hamiltonian version of the path integral. According to the spin-statistics
theorem, a spin-one field describes necessarily bosons, and we have to use usual c-number fields for the
gauge fields A1 and A2 and their conjugate momenta and apply the KMS conditions for bosons. Since
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there is no conserved quantity for free photons, we have to write down the partition function forµ= 0.
Thus we find for the partition sum

Z(β) =N
∫

KMS
DΦ1DΦ2

∫
DΠ1DΠ2 exp

�
i
�
(Π1∂t A1+Π2∂t A2−H 	

CV

�
. (3.5.10)

The direct evaluation of this path integral is, however, not so straight forward, because of the non-local
nature of the Hamilton density (3.5.9) with (3.5.6) and (3.5.7) for A3 and Π3. To be able to apply the
techniques of the previous sections 3.2 and 3.4 we have to rewrite the path integral as one over a local
Hamilton density. Particularly we would like apply the “short cut” to evaluate the partition function
with help of the functional determinant over the propagator of the fields as detailed in sect. 3.2.2 and
thus like to be able to evaluate the path integrals over the momenta.
Our next goal is thus to reformulate (3.5.10) in terms of a local Hamilton density. First we reintroduce
the field A3 satisfying the constraint (3.5.9) with help of the functional δ distribution

δ(Π3− E3[Π1,Π2]) = δ( ~∇ · ~A)det

�
δ ~∇ · ~A
δA3

�
= δ( ~∇ · ~Π)det(∂3). (3.5.11)

This gives

Z(β) =N
∫

KMS
DA1DA2

∫
DΠ1DΠ2DΠ3δ( ~∇ · ~Π)det(∂3)

×δ(∂ jΠ j )exp
�
i
�
Π1∂t A1+Π2∂t A2−H 	

CV

�
.

(3.5.12)

The functional δ distribution we can express as a functional Fourier transform

δ( ~∇ · ~Π) =N
∫

KMS
DA0 exp

�¦
iA0 ~∇ · ~Π

©
CV

�
. (3.5.13)

After an integration by parts and introducing another functional δ distibution to also reintroduce an
integral over an auxilliary field A3 this gives

Z(β) =N
∫

KMS
D4Aµ

∫
D3Π j det(∂3)δ(A

3)

× exp
�
i
§
Π j∂t Aj − (∂ j A

0)Π j −
1
2
Π jΠ j −

1
2
~B2
ª
CV

�
.

(3.5.14)

Now one can do the momentum integrals, which finally leads back to the Lagrangian version of the
path integral with

Z(β) =N ′(β)
∫

KMS
D4Aµ det(∂3)δ(A

3)exp
�
iSγ ,CV

[A]
�

. (3.5.15)

Here, Sγ ,CV
is the action functional along the vertical part of the contour with the Lagrange density

(3.5.1), and the N ′(β) is our formal notation for the correctly normalized integral measures D4Aµ as
described in detail in Sect. 3.2.2.
Now we still are not able to evaluate the partition sum because of the remaining functional δ distribu-
tion in the path integral (3.5.15). To cure this, we use the fact that (3.5.15) is a gauge-invariant expression
since we have completely fixed the gauge from the very beginning. Thus, if we write

Aµχ =Aµ− ∂ µχ (3.5.16)
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with an arbitrary scalar function χ (3.5.15) cannot change. Thus, because of D4Aµ = D4Aµχ we have

Z(β) =N ′(β)
∫

KMS
D4Aµχ det(∂3)δ(A

3
χ − ∂ 3χ )exp

�
iSγ ,CV

[Aχ ]
�

(3.5.17)

Since this is independent of χ we can take an arbitrary functional of ∂ 3χ and weight the path integral
over it without changing Z(β) by more than another indefinite temperature independent factor, which
we lump into N ′(β). In order to have a well-defined propagator in the corresponding effective action,
we use a weighting factor

exp
�
− i

2

¦
Λ2(A3

χ )
2
©�

(3.5.18)

(with Λ an arbitrary scale factor of mass dimension 1) and integrate over ∂ 3χ , which gives

Z(β) =N ′(β)
∫

KMS
D4Aµ det(∂3)exp

�
iSGF,CV

[A]
�

(3.5.19)

with the gauge-fixed action functional

SGF,CV
[A] =

�
−1

4
FµνF

µν − Λ
2

2
(A3)2

�
CV

. (3.5.20)

Here the functional determinant det(∂3) is independent of all fields and can thus be taken out of the
path integral. From the above calculation it follows that this determinant has to be also understood
in the sense of a bosonic functional determinant, and thus we can formally write it as a path integral
over two bosonic field-degrees of freedom. However, since the determinant must be in the numerator
we need Grassmann fields for this purpose. This technique is borrowed from the analogous analy-
sis by Faddeev and Popov for the non-Abelian case. The corresponding Grassmann fields are thus
called Faddeev-Popov ghosts. Also Feynman has given such an idea before Faddeev and Popov for
the Abelian case, and thus for QED the ghosts are sometimes called Feynman ghosts. Thus our final
path-integral expression for the path integral reads

Z(β) =N ′(β)
∫

KMS
D4Aµ

∫
KMS

DηDηexp
�
iSFP,CV

[A,η,η]
�

with SFP,CV
[A,η,η]+ {Λη∂3η}CV

.
(3.5.21)

We have written the action for the Faddeev-Popov ghosts with the same scale parameter as we have in-
troduced above. In principle we could have introduced another arbitrary parameter of mass dimension
1, but this would only lead to an additional temperature independent factor for Z(β), which does not
lead to any changes in the physical meaning of the partition function. Now we have achieved our goal
to write the partition sum for the electromagnetic field in terms of a path integral over a local action
functional.
As the derivation shows, we can use any gauge-fixing condition

g [A, x] = 0 (3.5.22)

we like without changing the result, e.g. the Lorenz-gauge condition5

gL[A, x] =
1p
ξ
∂µAµ. (3.5.23)

5Contrary to many older textbooks we name this gauge constraint after the Danish physicists Ludvig Lorenz, who found
this auxilliary condition long before the Dutch physicists Hendrik A. Lorentz and also long before the discovery of the special
theory of relativity [JO01].
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3.5 · Gauge models

The reason for this is that we just rewrite the gauge independent partition function, as given by the path
integral (3.5.10) with another gauge constraint (3.5.23). The final expression for the Faddeev-Popov
action then reads

S (g )FP,CV
[A,η,η] =

§
−1

4
FµνF

µν − 1
2

g 2[A, x]+ηF̂ [g ]η
ª
CV

with F̂ [g ] =
�
δ g [Aχ , x]

δχ

�

χ=0

.
(3.5.24)

For the Lorenz-gauge constraint (3.5.23) we get

F̂ [gL] =−
1p
ξ
�. (3.5.25)

Now it is easy to calculate the partition function, using the short cut explained in sect. 3.2.2. Our
original version of the path integral (3.5.21) within this interpretation is given by the spatial axial
gauge, defined by the constraining functional

gspatial[A, x] =ΛA3 ⇒ F̂ [gspatial] =Λ∂3. (3.5.26)

Using this gauge-fixing prescription, the inverse photon propagator in momentum space is given by

(∆−1)µν
spatial

(k) =−gµνk2+ kµkν −Λ2δµ3 δ
ν
3 . (3.5.27)

The determinant over the tensor indices is given by

det(∆−1) =−Λ2(k3)2(k2)2. (3.5.28)

in an analogous way as in sect. 3.2.2 for the neutral scalar field, from this expression we find for the
contribution of the path integral over the gauge fields to our grand canonical potential

lnZγ (β) =−Trln(�/M 2)−Trln(Λ∂3/M 2). (3.5.29)

The path integral over the Faddeev-popov ghosts also gives a bosonic determinant but with the opposite
sign because the integration is taken over Grassmann fields. That we have the trace over the bosonic
Matsubara frequencies is however due to our above derivation:

lnZFP =+Trln(Λ∂3/M 2), (3.5.30)

and the grand potential becomes, again as shown in sect. 3.2.2

Φ=−T lnZ(β) = T Trln(β2�) = 2T V
∫

d3~k
(2π)3

ln[1− exp(−β|~k|)]. (3.5.31)

This is the expected result: We get the partition function for a noninteracting Bose gas with two in-
ternal degrees of freedom per particle. For the photon these are the two physical spatially transverse
polarization states (e.g., left- and right-circular polarized waves, corresponding to helicity states with
λ ∈ {−1,1}). Here also the less formal reason of the Faddeev-Popov ghosts’ nature becomes clear.
They are precisely present in the path integral to cancel the two unphysical field degrees of freedom
contained in the vector field Aµ.
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3. Path-integral formulation

To check explicitly that the same result also is found with the manifestly covariant Lorenz-gauge fixing
functional (3.5.25), we note that in this case the determinant of the inverse gauge-field propgator is given
by

det(∆−1) =− 1
ξ
(k2)2. (3.5.32)

The contribution from the gauge fields to the grand-canonical potential in this case thus is

lnZγ (β) =−2Tr ln(β2�)+ ln(
p
ξ ), (3.5.33)

and the Faddeev-Popov ghosts contribute

lnZFP(β) = +Trln(β2�)− ln(
p
ξ ) (3.5.34)

This finally leads again to

lnZ(β) =−Trln(β2�) =−2V
∫

d3~k
(2π)3

ln[1− exp(−β|~k|)]. (3.5.35)
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Chapter 4

Self-consistent Φ-derivable approximations

In this chapter we discuss an important technique to evaluate physical quantities in a certain class of
self-consistent approximations that are derivable from a functional principle due to Luttinger and Ward
[LW60], Baym and Kadanoff [BK61, Bay62], and (in the relativistic context) Cornwall, Jackiw and
Tomboulis [CJT74]. These approximation schemes are known under the names “Φ-derivable approxi-
mations”, the CJT formalism and the 2PI formalism. The latter name originates from the fact that the
diagrams, defining the corresponding action as a functional of the mean field (as in the usual action
functional, leading to 1PI diagrams) and the full propagator (two-point function). The equations
of motion are given by the stationarity of this generalized action functional under independent vari-
ations of both the mean fields and the exact propagators, leading to a self-consistent set of equations
for the mean field and the self-energy in terms of the fully dressed Green’s function. As we shall show,
this kind of approximations fulfill a set of important constraints like the obedience of conservation
laws from underlying symmetry principles and thermodynamic consistency, i.e., the bulk properties
of the medium can be derived from both the (approximate) partition sum, defined by the functional
with the mean field an propagator given as the solution of the equations of motion, and directly from
the corresponding expressions of the Green’s function the Green’s function. As has been shown by
Baym [Bay62], only such self-consistent approximations of this kind fulfill all these constraints that are
derivable from an appropriate functional Γ [ϕ, D].

4.1 Necessity of resummations

The most simple example to demonstrate the necessity of resummations is the self-energy or the parti-
tion sum of a massless-boson gas in φ4 theory. The Lagrangian reads

L = 1
2
(∂µφ)(∂

µφ)− λ
4!
φ4. (4.1.1)

In leading order the self-energy is given by the tadpole diagram. Using the real-time formalism this is
a pure temperature-dependent constant mass term contributing to the diagonal matrix elements of the
inverse Keldysh propagator:

Π11
1 =−Π22

1 =
iλ
2

∫
d4 l
(2π)4

D11(l ). (4.1.2)

The vacuum part is, of course, quadratically divergent. Using the “physical renormalization
scheme”, we can subtract this vacuum distribution completely and lump it into the mass-counter term.
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4. Self-consistent Φ-derivable approximations

This is allowed, because there is no vacuum divergence involved in this diagram. The remaining thermal
part is given by

Π11
1,ren =

λ

2

∫
d4 l
(2π)4

2πδ(l 2) fB(|l0|) =
λ

24
T 2. (4.1.3)

Already the contribution at the two-loop level given by the following diagram

(4.1.4)

shows an infrared divergence in the contribution of the one-loop correction to the four-point vertex.
Here, also the regularization of the apparent pinch singularities, as discussed in Sect. 2.2.5, has to be ap-
plied. As we have seen there, a resummation of the constant self-energy insertion leads to a propagator
with a mass given by this tadpole-self-energy insertion.
Thus we can evaluate the one-loop diagram, using this dressed propagator. Due to the now finite ther-
mal mass, no infrared singularities occur anymore. However, we cannot simply subtract the “vacuum
part” anymore since the mass is now a temperature-dependent in-medium contribution. We have to
subtract the UV divergent vacuum parts of the diagramm, which can be found by evaluating the vac-
uum part for an arbitrary mass M 2. It is given by the quadratically divergent contribution

Π11
1,vac =

iλ
2

∫
d4 l
(2π)4

1
l 2−M 2+ i0+

. (4.1.5)

Here, it is most convenient to use dimensional regularization, i.e., to perform the integral in 4− 2ε
space-time dimensions. For the standard formulae see [Hee02]. The result is

Π11
1,vac =−

λ

32π2
M 2

�
1
ε
− γE+ ln

�
M 2

4πµ2

��
. (4.1.6)

Here, µ is the renormalization scale of dimensional regularization. For M 2 → 0 this contribution
vanishes, and thus does not need to be renormalized. Taking the derivative with respect to M 2 leads to
the UV- and IR-divergent sub-diagram in (4.1.4), i.e., the one-loop correction to the four-point vertex
for 0 momenta:

∂M 2Π11
1,vac =−

λ

32π2

�
1
ε
− γE+ ln

�
M 2

4πµ2

��
. (4.1.7)

Using the “modified minimal-subtraction scheme”, we renormalize this UV subdivergence by just set-
ting

�
∂M 2Π11

1,vac

�
ren
=− λ

32π2
ln
�

M 2

4πµ2

�
. (4.1.8)

Integrating this again with respect to M 2, demanding that the expression should vanish for M 2 → 0
leads to �

Π11
1,vac

�
ren
=

λ

32π2
M 2

�
1− ln

�
M 2

4πµ2

��
. (4.1.9)

Now we can set M 2 = λT 2/24. This is a contribution at order λ2 at the two-loop level.
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4.1 · Necessity of resummations

The temperature-dependent part is given by the analogous expression (4.1.3) with finite mass

Π11
1,T =

λ

2

∫
d4 l
(2π)4

2πδ(l 2−M 2) fB(|l0|) =
λ

4π2

∫ L

0
dL

L2

p
M 2+ L2

fB(
p

M 2+ L2). (4.1.10)

We want to derive a series expansion in powers of M 2 = λT 2/24. Using the Matsubara-summation
formula (B.1.9), we find

T
∑
ωn

1
E2+ω2

n
=

1
2E
[1+ 2 fB(E)] (4.1.11)

or
1
E

fB(E) =
T
E2
− 1

2E
+ 2T

∞∑
n=1

1
E2+ω2

n
. (4.1.12)

Plugging this into (4.1.10), defining E =
p

L2+m2 and introducing a regularizing factor (µ/L)ε leads
to

Π(ε)1,T =
λ

4π2

∫ ∞
0

dLL2
�µ

L

�2ε
�

T
E2
− 1

2E
+ 2T

∞∑
n=1

1
E2+(2πnT )2

�
. (4.1.13)

To obtain a formal series in powers of M/T we have to evaluate the first term and then Laurent expand
around ε= 0. This is the infrared-sensitive part of the integral, leading to

Π(IR)1,T :=
λ

4π2

∫ ∞
0

dLL2
�µ

L

�2ε 1
L2+M 2

=−λM T
8π

+O (ε). (4.1.14)

This is already the surprising contribution we are after. Although one might expect that the expansion
should go with even powers of M , here we get a contribution with power M . Since in our context
M 2 = λT /24, we find a contribution of order λ3/2 in the expansion of the thermal self-energy with
respect to powers in the coupling λ which shows that λ= 0 is not an analytical point if the self-energy
is interpreted as function of λ.
The second term gives a contribution

Π(1)1,T :=− λ

8π2

∫ ∞
0

dL
L2

p
L2+M 2

�µ
L

�2ε
=
λM 2

32π2

�
1
ε
− 1+ ln

�
4µ2

M 2

��
+O (ε). (4.1.15)

The rest we can treat as a formal expansion in powers of M since the non-zero-Matsubara frequencies
in the denominator prevent any infrared singularities. Thus we write

1
E2+ω2

n
=

1
L2+ω2

n

∞∑
k=0

(−1)k
�

M 2

L2+ω2
n

�k

. (4.1.16)

In the integral the only UV divergent pieces are those for k = 0 and k = 1. For k = 0 we find

Π(rest,k=0)
1,T :=

λ2

2π
T
∞∑

n=1

∫ ∞
0

dLL2
�µ

L

�2ε 1
L2+ω2

n
=
λT 2

24
+O (ε). (4.1.17)

This shows that after summation over n no UV divergence remains.
For k = 1 we find

Π(rest,k=1)
1,T :=−λ

2M 2T
2π

∞∑
n=1

∫ ∞
0

dL
L2

(L2+ω2
n)2

�µ
L

�2ε

=
λM 2

32π2

�
−1
ε
+ 2− 2γE− ln

�
µ2

(2πT )2

��
+O (ε).

(4.1.18)
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4. Self-consistent Φ-derivable approximations

All other contributions from (4.1.16) to the integral (4.1.13) are UV finite and after some algebra lead
to

Π(rest,k≥2)
1,T =

λT 2

4
p
π

∞∑
k=2

(−1)k

k!

� M
2πT

�2k
Γ
�

k − 1
2

�
ζ (2k − 1). (4.1.19)

Adding up all contributions (4.1.14-4.1.19) leads to the UV- and IR-convergent expression

Π1,T =
λT 2

24
− λT 2

8π
M
T
+
λM 2

32π2

�
1− 2γE− 2 ln

� M
4πT

��

+
λT 2

4
p
π

∞∑
k=2

(−1)k

k!

� M
2πT

�2k
Γ
�

k − 1
2

�
ζ (2k − 1).

(4.1.20)

With M 2 = λT 2/24 we see that due to the λ3/2 and the lnλ contribution, the self-energy is not an
anlytic function around λ= 0.
This implies that a resummation of the kind employed here is in order: The propagator should be
dressed with the thermal self-energy contributions in order to lead to the parametrically correct power
expansion in λ (including non-integer powers and logarithmic contributions). This further suggests
that the use of (approximate) self-consistent propagators might be in order. Here, first one has to
ensure that any double counting is avoided. If we use a self-consistently dressed propagator, we must
only use skeleton diagrams for the self-energies, which are expressed not in terms of the perturbative
(free) propagator but in terms of the self-consistent one. Another important point is to obey conser-
vation laws for energy, momentum, and various charges (if applicable). Last but not least, one would
like to ensure thermodynamical consistency, i.e., the approximation should be defined in terms of an
effective action with the meaning of the grand-canonical thermal potential as the action functional de-
fined above, so that all bulk thermodynamical properties like energy and particle densisties, pressure,
entropy, etc. obey the usual thermodynamical rules and that the particle density obtained from the one-
body Green’s function coincides with the definition from the grand-canonical potential. It has been
shown by Baym and Kadanoff that such self-consistent approximations are exactly those given by the
socalled Φ-derivable approximations [LW60, BK61, Bay62] which are known in the relativistic many-
body-theory community also under the names 2PI or CJT (after Cornwall, Jackiw, and Tomboulis
[CJT74]). In the following Section we shall derive these approximations following the modern path-
integral treatment in ([CJT74]) and then give proofs for the above mentioned properties concerning
the validity of conservation laws and thermodynamic consistencies. Then we also prove the renormal-
izability of Φ-derivable approximations and discuss some problems concerning symmetries.

4.2 Φ-derivable approximations

Following ([CJT74]) we use the path-integral formalism to define theΦ-derivable approximations, lead-
ing to self-consistent equations of motion for the mean fields and self-energy in terms of the full propa-
gator. The idea is very similar to the techniques presented in Section 3.3.2 to derive the loop-expansion
of the usual effective action, which is the generating functional for one-particle irreducible (1PI) ampu-
tated vertex function.
The new idea compared to these 1PI techniques is the introduction of an additional bilocal source into
the partion sum,

Z[J ,K] =
∫

KMS
Dφexp

�
iS[φ]+ i{J1φ1}1+

i
2
{K12φ1φ2}

�
. (4.2.1)
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4.2 · Φ-derivable approximations

Then W [J ,K] =−i lnZ[J ,K] is, read as a functional of the local source J with a fixed bilocal source K ,
the generating functional for connected Green’s function for an action given by

SK[φ] = S[φ]+
1
2
{K12φ1φ2}12 . (4.2.2)

Particularly the mean field and connected Green’s function at presence of both local and bilocal sources
is given by

ϕ1 =
δW
δJ1

= 〈φ1〉J ,K , G12 =−
δ2W
δJ1δJ2

= i (ϕ1ϕ2−〈TCφ1φ2〉) . (4.2.3)

Using the path-integral representation for Z (4.2.1) leads to

δW
δK12

=
1
2
(ϕ1ϕ2+ iG12) . (4.2.4)

The 2PI-action functional is then defined as the functional double-Legendre transform of W ,

Γ [ϕ,G] =W [J ,K]−{ϕ1J1}1−
1
2
{K12(ϕ1ϕ2+ iG12)} . (4.2.5)

Upon variation with respect to the external sources J and K , using (4.2.3) and (4.2.4) to define ϕ and
G as functionals of J and K leads indeed to the conclusion that the natural variables for Γ are indeed ϕ
and G and that

δΓ

δϕ1
=−J1,

δΓ

δG12
=− i

2
K12. (4.2.6)

Following the same strategy as with the 1PI-action functional, we substituteφ=φ′+ϕ in (4.2.1). Due
to the translation invariance of the path integral measure we get

Z[J ,K] = exp
�

iS[ϕ]+ i{J1ϕ1}1+
i
2
{K12ϕ1ϕ2}12

�
Z1[J

′
1,K], (4.2.7)

where the new functional Z1 is defined by

Z1[ j ,K] =
∫

KMS
Dφ′ exp

�
i
2

�
(D−1

12 +K12)φ
′
1φ
′
2

	
12+ iS̃I [φ

′,ϕ]+ i
�

j1φ
′
1

	�
. (4.2.8)

In (4.2.7) we have further introduced the abbreviations

D−1
12 =

δ2S[ϕ]
δϕ1δϕ2

=
�
−∆1−m2− λ

2
ϕ2

1

�
δ (4)(x1− x − 2), (4.2.9)

S̃I [φ
′,ϕ] = S[ϕ]−

�
δS[ϕ]
δϕ1

φ′1

�

1
− 1

2

�D−1
12 φ

′
1φ
′
2

	
12 , (4.2.10)

J ′1 =
δS[ϕ]
δϕ1

+ J1+ {K12ϕ2}2 . (4.2.11)

Now we want to prove that the expectation value of φ′ of the quantum-field theory defined by the
action functional Z1[ j ,K]must vanish if we demand that

ϕ1 =
δW
δJ1

(4.2.12)
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4. Self-consistent Φ-derivable approximations

should hold. To that end we take the functional derivative of (4.2.7) with respect to J . Here it is
important that J ′1 is a functional of J , K and ϕ, but ϕ is still to be taken as an independent background
field. This leads to

δZ[J ,K]
δJ1

= iϕ1Z +
δZ1[ j ,K]
δ j1

�����
j1=J ′1

exp
�

iS[ϕ]+ i{J1ϕ1}1+
i
2
{K12ϕ1ϕ2}12

�

= iϕ1Z + i


φ′1
�

J ′1 Z .

(4.2.13)

Now, if we demand that (4.2.12) holds, we must indeed have


φ′1
�

J ′1 = 0. (4.2.14)

Thus we can find approximations for Γ [ϕ,G] by evaluating Z1[ j ,K] for such a j that δZ1/δ j = 0 in
the sense of a loop expansion. Now we use the techniques explained in Sect. 3.2.2 to write

Z1[ j ,K] = exp(iW1[ j ,K]) = exp
�

1
2

Tr ln(iGM 2)+ iΓ2[ϕ,G]
�

, (4.2.15)

where M 2 is an arbitrary constant, which is irrelevant for the derivation of the equations of motion and
can be used to define the normalization of the partition sum in the vacuum. The functional Γ2 consists
of all two-loop diagrams with vertices defined by S̃[ϕ,φ′] and the propagator G given by

G−1
12 =D−1

12 +K12. (4.2.16)

This determines K as a functional of G and ϕ, while j is already determined as a functional of these
quantities throught the demand (4.2.14). Putting this result into (4.2.5) using (4.2.7) leads to

Γ [ϕ,G] = S[ϕ]− i
2

Tr ln(iGM 2)+
i
2

�D−1
12 (G12−D12)

	
12+ Γ2[ϕ,G]. (4.2.17)

Now we are interested in the theory at vanishing of the original sources J and K . According to (4.2.6)
this determines the equations of motion through the Baym variational principle

δΓ

δϕ
= 0,

δΓ

δG
= 0. (4.2.18)

Using (4.2.17), the second equation becomes

D−1
12 −G−1

12 :=Σ12 = 2i
δΓ2
δG12

. (4.2.19)

This gives a self-consistent equation for the self-energy, relative to the free propagator D12 (which de-
pends on the mean field ϕ!), given as a set of diagrams with lines representing exact propagators and
vertices determined from S̃[ϕ,φ′].
Diagrammatically taking the derivative of iΓ2 with respect to iG means to open each propagator line of
a diagram and summing the result, leaving behind a truncated self-energy diagram. This must not only
be one-particle irreducible, i.e., cutting through the diagram separating the external points must hit
more than one propagator but also there must not be any self-energy insertions in the internal lines of
the diagram, because the lines already represent the full propagator. In other words, Γ2 as a functional
of G must be the generating functional for 1PI truncated self-energy skeleton diagrams. For iΓ2 this
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4.3 · Renormalization of Φ-derivable approximations

means all diagrams must not get disconnected by cutting one or two lines, i.e., it should be two-particle
irreducible (2PI).
Thus, iΓ2 is diagrammatically represented by all closed diagrams without external points with propa-
gator lines representing the full propagator, G, and with perturbative point vertices from the classical
action S̃I (ϕ,φ′), where ϕ is the external background field, represented by a “needle” and external trun-
cated lines representing the quantum fields, φ′, attached to the corresponding space-time vertex point.
The equation for the mean field is given by the first equation in (4.2.18):

−
�
�1+m2+

iλ
2
ϕ2

1G11

�
ϕ1−

λ

3!
ϕ3

1 +
δΓ2
δϕ1

= 0. (4.2.20)

As an illustration we give the Γ functional for φ4 theory up to the order λ2:

iΓ [ϕ,G] =iS[ϕ]− 1
2

�D−1
12 (G12−D12)

	
12+

1
2

Tr ln(M 2iG)

+ + + +O (λ3).
(4.2.21)

Here the last row gives the diagrammatic representation of Γ2 up to O (λ2).

4.3 Renormalization of Φ-derivable approximations

To illustrate the renormalization technique applicable for self-consistent Φ-derivable approximations
[HK02a, HK02b] in this Section we first treat the model first to order λ at vanishing mean field (m2 > 0)
and for the case ϕ = const and m2 < 0. Then we also discuss the somewhat more complicated case up
to order λ2. We work in the real-time formalism.

4.3.1 Order λ, m2 > 0

We begin our discussion with the most simple case of φ4 theory up to order λ in the 2PI functional
Γ [ϕ,G]. As we shall see, already this approximation is not trivial, but gives rise to a self-consistently
determined temperature-dependent correction to the particle mass, which includes the non-trivial con-
tribution to order λ3/2 discussed in Sect. 4.1 but in fact resums infinitely many perturbative diagrams.
We start with the most simple case of an unbroken field-reflection symmetry, i.e., the symmetry of the
action under the transformation φ→ ϕ, assuming m2 > 0 and the solution ϕ = 0. Then D = D is the
usual free propagator, and the self-energy is given by the tadpole diagram with the full propagator. Due
to translation invariance this is a constant temperature-dependent correction to the effective squared
mass of the particles. It is diagonal in the Keldysh-matrix formalism with

Σ11 =−Σ22 =
iλ
2

. (4.3.1)

Since this is effectively only a one-point function and the equilibrium state is translation invariant in
space and time, it is also a constant. This means that in this case the full propagator has the same form
as the free propagator but with the temperature dependent mass

M 2 = m2+Σ11. (4.3.2)
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4. Self-consistent Φ-derivable approximations

Thus we have
G11(p) =

1
p2−M 2+ i0+

− 2πiδ(p2−M 2) fB(|p0|). (4.3.3)

From the diagram rules we find for the dimensionally regularized tadpole self-energy

Σ11 =
iλ
2

∫
R2ω

d2ω l
(2π)4

µ2ε

l 2−M 2+ i0+
+
λ

2

∫
R3

d3~l
(2π)3

1
ωM

fB(ωM ). (4.3.4)

We have written d = 2ω = 4− 2ε and ωM =
Æ
~l 2+M 2. Of course, we have regularized only the

divergent part,

Σ11
div =−

λM 2

32π2

�
1
ε
− γE+ 1+ ln

�
µ2

M 2

�
+O (ε)

�
. (4.3.5)

Here, we cannot simply subtract the divergent part∝ 1/ε, because M 2 is temperature dependent. We
can, however demand that for T = 0 the physical mass should be given by MT=0 = m, i.e., we have to
subtract the mass counter term

δm2 =− λm2

32π2

�
1
ε
− γE+ 1+ ln

�
µ2

m2

�
+O (ε)

�
, (4.3.6)

but this is insufficient to render the tadpole finite:

Σ11
div−δm2 =− λΣ

11

32π2ε
+finite terms. (4.3.7)

To show that also the remaining divergence can be subtracted with vacuum counter terms we remember
that from a perturbative perspective we resum infinitely many diagrams, also containing one looking
like (4.1.4), and this contains a logarithmically diverging vacuum-subdiagram contributing to the four-
point function. This piece can thus be renormalized by an appropriate part of the coupling-constant
counter term.
To extract this piece we split the full Green’s function in our present approximation at finite tempera-
ture in the vacuum piece and the rest:

G(p) =
1

p2−m2+ i0+
+
�

1
p2−M 2+ i0+

− 1
p2−m2+ i0+

�
− 2πiδ(p2−M 2) fB(p0)

=
1

p2−m2+ i0+
+

Σ11

(p2−m2+ i0+)2
+O

�
1

(p2−m2+ i0+)3

�

− 2πiδ(p2−M 2) fB(p0).

(4.3.8)

Plugging this into (4.3.4), we see that despite the pure vacuum piece, which we have already renormal-
ized, the remaining divergent part is due to a logarithmically divergent one-loop contribution to the
four-point function in the vacuum:

i

Σ11

=Σ11
2 =

λΣ11

2

∫
R2ω

d2ω l
(2π)4

µ2ε

(l 2+m2+ i0+)2
=−λΣ

11

32π2

�
1
ε
− γE+ ln

�
µ2

m2

��
. (4.3.9)
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Figure 4.1: Left panel: The numerical solution of Eq. (4.3.10). We show the self-consistent result (solid
red line) in comparison to the perturbative one-loop result. As parameters we have chosen m = 0.2 GeV
and λ= 40; right panel: the same but for m = 0, λ= 0, Λ= 0.1 GeV.

Taking as a renormalization condition that in the vacuum the four-point coupling is given by λ at
vanishing four-momenta, we have to subtract also this contribution from (4.3.5). Also adding the finite
piece with the explicit temperature dependence, we finally get the gap equation

M 2 = m2+
λ

32π2

�
M 2 ln

�
M 2

m2

�
+m2−M 2

�
+

λ

4π2

∫ ∞
0

dL
L2

ωM
fB(ωM ). (4.3.10)

This equation is easily solved numerically by fixed-point iteration (see left panel in Fig. 4.1).

4.3.2 Order λ, m2 = 0

Now we investigate the same case as in the previous section but with m2 = 0, considering solutions of
the self-consistent equations with vanishing mean field, ϕ = 0. The whole calculation is analogous as
for m2 > 0. The only difference is that for T = 0 the vacuum-tadpole diagram vanishes in dimensional
regularization automatically. Thus we only have to renormalize the logarithmic divergence from the
four-point function, but at m = 0 we cannot subtract at vanishing four-momenta on the external legs.
Instead in the vacuum we subtract the vacuum-four-point function at the symmetric space-like point
s = t = u = −Λ2, where s , t , and u denote the usual Mandelstam variables for four-point scattering.
The corresponding renormalized gap equation then reads

M 2 =Σ11 =
λ

32π2
M 2

�
1+ ln

�
M 2

Λ2

��
+

λ

4π2

∫ ∞
0

dL
L
ωM

fB(ωM ). (4.3.11)

Again this equation can be solved numerically by iteration. The result is shown in the right panel of
Fig. 4.1.

4.4 Symmetry analysis of the 1PI and 2PI action functionals
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Chapter 5

Classical transport theory

As a preparation for the quite abstract treatment of the non-equilibrium quantum field theory, in
this chapter we give a self-contained overview about classical transport theory. We start with the
derivation of the non-relativistic Boltzmann equation for a dilute gas of interacting particles and
further approximations like ideal and viscous hydrodynamics with applications to the basic phenom-
ena of electromagnetic plasmas. Finally we discuss the basic properties of relativistic transport theory.
We follow in this chapter mainly [LL81] and [dvv80]. As we shall see, our derivation is not completely
classical, but we have to refer to some basic quantum-theoretical input at characteristic places of our
treatment of many-body theory.

5.1 Hamiltonian dynamics and Liouville’s theorem

Classical statistical physics deals with the treatment of systems of many point particles. Here we con-
strain ourselves to the most simple example for such a system that can be described by the Hamilton
function

H =
N∑

j=1

~p2
j

2m
+

1
2

N∑
j=1

∑
k 6= j

V (|~x j − ~xk |), (5.1.1)

i.e., the particles are interacting via forces between particle pairs that have a central potential. We also
assume that this potential is short-ranged, i.e., that V (r ) is a function, rapidly going to 0 for r →∞.
As will become clear later, long-range potentials like the Coulomb potential require special treatment
in many-body theory.
With this Hamilton function we aim to describe a gas within a cubic box of length L as a system of
interacting classical point particles. Of course, since in this case the number of particles is in the order
of Avogadro’s number, i.e., N ' 1024, we have no chance to solve the equations of motion in phase
space, which are given by Hamilton’s canonical equations,

~̇x j =
∂ H
∂ ~p j

=
~p j

m
, ~̇p j =−

∂ H
∂ ~x j

=−∑
k 6= j

~x j − ~xk

|~x j − ~xk |
V ′(|~x j − ~xk |). (5.1.2)

On the other hand, such a detailed description of the gas is not even sensible. What we like to describe
are macroscopic observables like the gas’s density and flow as a function of time and position for
some given initial condition of such parameters. Transport theory aims to derive equations for such
macroscopic observables.
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5. Classical transport theory

The idea for this treatment goes back to Bernoulli, Maxwell, and Boltzmann. The basic ansatz is
to describe the behavior of the many-body system by statistical phase-space distribution functions.
Formally the picture behind this is to define an ensemble of many realizations of the many-body system
by preparing each of this realizations in a way, such that the microscopic initial conditions (fixing ~x j

and ~p j at the initial time) fitting some given macroscopic parameters like the density and flow of the
gas.
For a complete description of this kind, one would have to give some distribution of the 6N phase-space
variables (~x1, ~p1; ~x2, ~p2; . . . ; ~xN , ~pN ) = (τ1, . . . ,τN ) at an initial time and calculate the time evolution of
this distribution from the Hamiltonian dynamics1. This, of course is as impossible as the microscopic
approach, because it is equivalent to it. In order to solve this problem, one would have to solve the
Hamiltonian equations of motion (5.1.2) for many different initial conditions to define the ensemble
and then calculating the N -body phase-space distribution function

f (N )(t ,τ1, . . . ,τN ) =
¬
δ (6N )(τ1− τ̃1(t ), . . . ,τN − τ̃N (t ))

¶
, (5.1.3)

where the average is over the ensemble defined by the initial conditions. The τ̃ j (t ) is the solution of
the Hamiltonian equations of motion for the N particles in phase space with initial conditions τ̃ j (t =
t0) = τ̃ j 0, which are given in a statistical sense by the corresponding initial distribution

f (N )(t = t0,τ1, . . . ,τN ) = f (N )0 (τ1, . . . ,τN ). (5.1.4)

As a probability distribution (5.1.3) fulfills
∫
Γ

d6τ1 · · ·d6τN f (N )(t ,τ1, . . . ,τN ) =
∫
Γ

d6τ1 · · ·d6τN f (N )(t ,τ1, . . . ,τN ) = 1. (5.1.5)

Here Γ denotes the integration domain over the box volume V for each particle’s position vector and
R3 for each particle’s momentum vector.
On the other hand for each initial condition the Hamilton equations of motion lead to a unique solution
in phase phase space at any later time t . Thus the phase-space distribution must be given from the initial
distribution via this flux in phase space:

f (N )(t ,τ1, . . . ,τN ) = f (N )0

�
τ̃(0)1 (t ;τ1, . . .τN ), . . . , τ̃

(0)
N (t ;τ1, . . .τN )

�
. (5.1.6)

Here τ̃(0)j (t ;τ1, . . . ,τN ) are those initial conditions for the N particles leading to a configuration of this
system at time t given by the phase-space point (τ1, . . .τN ).
We shall now prove that this dynamics of the N -particle distribution function is consistent with the
normalization condition (5.1.5). Indeed, taking the time derivative of (5.1.5) taking into account that
the phase-space points move with time according to the Hamiltonian dynamics leads to

∫
Γ

d6τ1 · · ·d6τN


∂t f (N )(t ,τ1, . . . ,τN )+

N∑
j=1

∂

∂ τ j
[τ̇ j f (N )(t ,τ1, . . . ,τN )]


= 0. (5.1.7)

but now we have
N∑

j=1

∂

∂ τ j
(τ̇ j f (N )) =

N∑
j=1

�
∂

∂ ~x j

�
∂ H
∂ ~p j

f (N )
�
− ∂

∂ ~p j

�
∂ H
∂ ~x j

f (N )
��
=
¦

H , f (N )
©

pb
, (5.1.8)

1Here we have introduced the abbreviation τ j = (~x j , ~p j ) for the six components of position and momentum vectors of
the j th particle.
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where we have used the definition Poisson bracket of two phase-space functions A and B :

{A,B}pb =
N∑

j=1

�
∂ A
∂ ~x j
· ∂ B
∂ ~p j

− ∂ A
∂ ~p j

· ∂ B
∂ ~x j

�
. (5.1.9)

This means that ∫
Γ

d6τ1 · · ·d6τN

h
∂t f (N )+

¦
H , f (N )

©
pb

i
= 0. (5.1.10)

Now, for a classical system of particles, we also assume that there are no particles destroyed or created
in the dynamics. This means that the fraction of particles contained in a phase-space element at initial
time will not change when this phase-space element is moving according to the equations of motion.
This means that the phase-space distribution function must fulfill even the stronger local condition,

∂t f (N )(t ,τ1, . . . ,τN )+
N∑

j=1

∂

∂ τ j
[τ̇ j f (N )(t ,τ1, . . . ,τN )] = ∂t f (N )+

¦
H , f (N )

©
pb
= 0. (5.1.11)

This continuity equation of the flow in phase space for a closed system of classical particles is known
as Liouville’s theorem.

5.2 The BBGKY Hierarchy

Of course, a solution of the full Liouville equation of motion for the N -body phase-space distribution
function (5.1.11) is as demanding as to solve the complete set of Hamilton’s equations of motion of
the N -particle system itself. The aim thus must be to find approximate equations for the reduced
distribution functions

f (k)(t ,τ1, . . . ,τk ) =
∫

d6τk+1 · · ·d6τN f (N )(t ,τ1, . . . ,τN ). (5.2.1)

We note that, since the particles are assumed all to be of the same kind, they are indistinguishable, the
full N -body distribution function is symmetric under arbitrary changes of the order of phase-space
arguments, and thus the choice of the first N − k phase-space variables in the above integral is just
convenient. We are particularly interested in an equation for the one-body phase-space distribution,
f (1)(t ,τ1) which describes the probability distribution to find a particle in a neighborhood of the one-
particle phase-space position τ1.
To find an equation of motion for f (1), we have to integrate the Liouville equation (5.1.11) over
τ2, . . . ,τN . Writing out the Poisson bracket and bringing the terms with the interactions to the right-
hand side of the equation , we find

∂t f (1)1 +
~p1

m
· ∂ f (1)1

∂ ~x1
= (N − 1)

∫
d6τ2

∂ f (2)12

∂ ~p1
· ∂ V12

∂ ~x1
'N

∫
d6τ2

∂ f (2)12

∂ ~p1
· ∂ V12

∂ ~x1
, (5.2.2)

where we have used the abbreviations V12 := V (|~x1− ~x2|) and f (2)(t ,τ1,τ2) = f (2)12 . On the left-hand
side we have used Gauss’s theorem to the integrals over the total divergences with respect to ~x j and
~p j and assumed that the distribution functions vanish at the boundary of the corresponding one-body
phase space. On the right-hand side we have used the approximation that N � 1 and have set the factor
to N instead of (N − 1).
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5. Classical transport theory

The general structure of the equations for the reduced phase-space distributions f (k) is already clear
from this calculation for f (1): The equation for f (k) will always depend on the next distribution f (k+1).
Thus, one finds a hierarchy of coupled integro-differential equations for all f (k) with k ∈ {1, . . . ,N}.
These equations are known as the BBGKY hierarchy, named after the physicists Bogolyubov, Born,
Green, Kirkwood, and Yvon. It is clear that again this set of equations leads to a full description of the
N -body Hamiltonian dynamics since so far we haven’t made any approximations. The aim now must
be to truncate the hierarchy by making assumptions on f (2) to find a closed equation for f (1). To that
end we look at the equation for f (2),

∂t f (2)12 +
∂ f (2)12

∂ ~x1

~p1

m
+
∂ f (2)12

∂ ~x2

~p2

m
− ∂ V12

∂ ~x1

∂ f (2)12

∂ ~p1
− ∂ V12

∂ ~x2

∂ f (2)12

∂ ~p2

'N
∫

d6τ3

 
∂ f (3)123

∂ ~p1

∂ V13

∂ ~x1
+
∂ f (3)123

∂ ~p2

∂ V23

∂ ~x2

!
,

(5.2.3)

where again we have set the factor (N − 2) on the right-hand side of the equation to N due to N � 1.

5.3 The Boltzmann equation for a dilute gas

In this Section we shall derive the famous Boltzmann transport equation for the one-body phase-
space distribution for a dilute gas. To that end we make the following assumptions to truncate the
BBGKY hierarchy:

1. The interaction potential is only relevant for a finite range d , i.e., the forces−∂~x1
V (|~x1− ~x2|) can

be neglected for inter-particle distances r12 = |~x1− ~x2|> d .

2. The mean distance r := 〈r12〉 of two particles is large compared to the range of the potential, i.e.,
r � d .

The truncate the BBGKY hierarchy on the level of the one-particle phase-space distribution, we have to
first consider the equation (5.2.3) for the two-particle distribution. The idea has to make an assumption
such as to express f (2) approximately with f (1). This is achieved by making a formal expansion of the
integrals on the right-hand side of Eqs. (5.2.2) and (5.2.3) with respect to the small quantity d/r � 1.
For the first term on the right-hand side of the equation, we need to consider only the small sphere
|~x3| ® d in the integral over position space, and within this small volume we can approximate the
interaction force by

∂ V13

∂ ~x1
' ∂ V (|~x1|)

∂ ~x1
(5.3.1)

and thus take this factor out of the integral. This leads to

N
∫

d3~x3d3~p3
∂ f (3)123

∂ ~p1

∂ V13

∂ ~x1
'N

∂ V (|~x1|)
∂ ~x1

∂ f (2)12

∂ ~p1

d 3

V
, (5.3.2)

where V is the total volume of the container of the gas. Further V 'N r 3 and thus

N
∫

d3~x3d3~p3
∂ f (3)123

∂ ~p1

∂ V13

∂ ~x1
' ∂ V (|~x1|)

∂ ~x1

∂ f (2)12

∂ ~p1

d 3

r 3 . (5.3.3)
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5.3 · The Boltzmann equation for a dilute gas

The same kind of approximations we can also apply to the second term on the right-hand side of (5.2.3).
These estimates show that the right-hand side of (5.2.3) is parametrically smaller than the left-hand
side by a factor d 3/r 3 � 1. Thus we can neglect this right-hand side completely, which leads to the
approximate validity of the Liouville equation for the two-body distribution function,

∂t f (2)12 +
∂ f (2)12

∂ ~r1

~p1

m
+
∂ f (2)12

∂ ~r2

~p2

m
− ∂ V12

∂ ~x1

∂ f (2)12

∂ ~p1
− ∂ V12

∂ ~x2

∂ f (2)12

∂ ~p2
= 0. (5.3.4)

This we can also write as
d
dt

f (2)12 = ∂t f (2)12 +
¦

f (2)12 , H (2)
©

pb
= 0, (5.3.5)

where the two-body Hamilton function is given by

H (2) =
~p2

1 + ~p
2
1

2m
+V12. (5.3.6)

The physical interpretation of (5.3.4) is now clear: (5.3.5) tells us that in leading order of the expansion
in terms of the “gas parameter” (d/r )3 the two-body phase-space distribution is time independent along
the phase-space flow of these two interacting particles. This is, because the range of the interaction, d ,
of the two particles with a third particle is much smaller than the mean distance between the particles.
So the mean time between two collisions is very large compared to the duration of the collision itself,
and thus in leading order of (d/r )3, the change of f (2) due to three-particle collisions can be neglected
and thus the three-body collision integral on the right-hand side of (5.2.3) can be neglected.
Let us come back to the equation for f (1) (5.2.2). To close this equation, we have to express the collision
term on the right-hand side in terms of f (1). To that end we consider a time t0 at which any two
particles, described by the two-body distribution f (2) have a large distance from each other compared to
the range of the potential, d . Then we can make the second assumption due to Boltzmann that these two
particles are stochastically independent of each other, i.e., that f (2)(t0,τ1,τ2) = f (1)(t0,τ1) f

(1)(t0,τ2).
Now according to (5.1.6) we have

f (2)(t ,τ1,τ2) = f (2)12 [t0, τ̃(0)1 (t ,τ1,τ2), τ̃
(0)
2 (t ,τ1,τ2)]

= f (1)[t0, τ̃(0)1 (t ,τ1,τ2)] f
(1)[t0, τ̃(0)2 (t ,τ1,τ2)] := f (1)10 f (1)20 ,

(5.3.7)

where the flow in two-body phase space can be evaluated with the two-body Hamiltonian (5.3.6), be-
cause of our above discussed approximations, leading to (5.3.5). This is known as Boltzmann’s hy-
pothesis of molecular chaos.
We note that at this point we have tacitly assumed that time is a directed quantity in the sense of the
causality principle.
According to (5.3.4) and (5.3.7) we have

d
dt

�
f (1)10 f (1)20

�
=
�
~p1

m
∂

∂ ~x1
+
~p2

m
∂

∂ ~x2
− ∂ V12

∂ ~x1

∂

∂ ~p1
− ∂ V12

∂ ~x2

∂

∂ ~p2

�
f (1)10 f (1)20 = 0. (5.3.8)

This we solve for the expression with ∂ /∂ ~p1 and substitute this into (5.2.2). Since the contributions
with the derivatives with respect to ~x2 and ~p2 can be written as total divergences, the corresponding
integrals vanish, and we find the following approximation for the collision term2

1
N

C [ f ] :=N
∫

d3~x2d3~p2

�
~p1

m
∂

∂ ~x1
+
~p2

m
∂

∂ ~x2

�
f (1)10 f (1)20 . (5.3.9)

2The factor 1/N in the definition of the collision term will become clear in a moment.
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5. Classical transport theory

Due to the spatial translation invariance of the two-particle Hamiltonian (5.3.6) the expression
f (1)10 f (2)20 can only depend on the relative coordinates ~r = ~x1− ~x2, and thus we have

1
N

C [ f ] =N
∫

d3~x2d3~p2 ~vrel
∂

∂ ~r
f (1)10 f (1)20 (5.3.10)

with the relative velocity

~vrel =
~p1− ~p2

m
(5.3.11)

of the two particles. Now we introduce cylinder coordinates (ρ,ϕ, z) for ~r with the z axis pointing
into the direction of ~vrel. Then the integral (5.3.10) simplifies to

1
N

C [ f ] =N
∫

d3~x2d3~p2 ~vrel,z
∂

∂ z
f (1)10 f (1)20 =

∫
d3~p2dρdϕρvrel

�
f (1)10 f (1)20

�z→∞
z→−∞ , (5.3.12)

where we have symbolically written z →±∞ that the component of the relative coordinate in direc-
tion of ~vrel of the two particles at time t is large compared to the interaction range, d . Thus “z→−∞”
describes the case that at time t the particles still move towards each other, and thus they have been
even farther away from each other at time t0. This implies that no collision between these two parti-
cles has occurred between t0 and t , and this implies that ~p (0)1 = ~p1 and ~p (0)2 = ~p2 since the momenta of
the particles are conserved, if there is no interaction, i.e., collision between them. The case z →∞,
however describes the situation that at time t the particles are moving away from each other, and thus
there must have been a collision of the two particles on each other. So at time t0 the two particles must
have had momenta ~p ′1 and ~p ′2 such that due to the collision they have momenta ~p1 and ~p2 at time t .
The area element ρdρdϕ perpendicular to ~vrel has the meaning of a classical differential cross section
for elastic two-body collisions, where the one term (“z → −∞”) has the meaning of a scattering of
two particles with momenta ~p ′1, ~p ′2 into momenta ~p1, ~p2 and the other (“z→−∞”) has the meaning
of scattering two particles with momenta ~p ′1, ~p ′2 to other momenta ~p ′1, ~p ′2. This leads to gain and
loss of particles with momentum ~p1 due to elastic two-particle collisions, respectively. As soon as the
particles move away from each other after a collision, they become free again, i.e., total kinetic energy
and momentum are conserved during a collision process:

~p1+ ~p2 = ~p
′
1+ ~p

′
2,

~p2
1

2m
+
~p2

2

2m
=
~p ′1

2

2m
+
~p ′2

2

2m
. (5.3.13)

Now vrelρdρdϕ = vreldσ is the transition probability per unit time and per projectile and target particle
w f i , for a collision scattering a two particles from an initial momentum state i to a final momentum
state f . In this way we finally get for the collision term

1
N

C [ f ] =N
∫

d3~p2

∫
d3~p ′1

∫
d3~p ′2

�
w(~p1, ~p2← ~p ′1, ~p ′2) f

(1)(t , ~x1, ~p ′1) f
(1)(t , ~x1, ~p ′2)

−w(~p ′1, ~p ′2← ~p1, ~p2) f
(1)(t , ~x1, ~p1) f

(1)(t , ~x1, ~p2)
�
.

(5.3.14)

Here we also have neglected the small variation of the positions, neglecting the finite range of the
potential against the large inter-particle distances and assumed a local collision at the position ~x1 of the
particle under consideration in f (1)(t ,τ1).
Now we write (5.2.2) in a more custom form by multiplying the whole equation by N , expressing ev-
erything in terms of the single-particle phase-space number density f (t ,τ1) =N f (1)(t ,τ1). It has the
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5.3 · The Boltzmann equation for a dilute gas

meaning that at time t the phase-space element d6τ1 contains on average dN = d6τ1 f (t ,τ1) particles,
where the average is taken as an ensemble average in the sense described in the previous section. This
leads to the final form of the Boltzmann transport equation:

�
∂

∂ t
+
~p1

m
∂

∂ ~x1

�
f (t , ~x1, ~p1) =

∫
d3~p2

∫
d3~p ′1

∫
d3~p ′2

× �w(~p1, ~p2← ~p ′1, ~p ′2) f (t , ~x1, ~p ′1) f (t , ~x1, ~p ′2)
−w(~p ′1, ~p ′2← ~p1, ~p2) f (t , ~x1, ~p1) f (t , ~x1, ~p2)

�
.

(5.3.15)

The physical interpretation of the collision integral on the right-hand side is now very simple: It de-
scribes the rate of elastic two-body collisions which either scatter one of the two particles from one
arbitrary momentum into the momentum ~p1 (gain term) or kick a particle with momentum ~p1 out
of this momentum state (loss term).
We can simplify the collision integral further by using the fact that the Hamilton operator (5.4.1) is
symmetric under time reversal, T (~xi , ~pi ) = (~xi ,−~p j ), as well as under spatial reflection, P (~xi , ~pi ) =
(−~xi ,−~pi ), transformations. This implies the corresponding symmetries for the scattering rates, i.e.,

w(~p1, ~p2← ~p ′1, ~p ′2) = w(−~p ′1,−~p ′2←−~p1,−~p2) (time-reversal symmetry),

w(~p1, ~p2← ~p ′1, ~p ′2) = w(−~p1,−~p2←−~p ′1,−~p ′2) (space-reflection symmetry).
(5.3.16)

In the first equation we have taken into account that the time-reversal transformation not only flips
the momenta but also initial and final states of the particles. Using also space-reflection symmetry, we
finally get

w(~p1, ~p2← ~p ′1, ~p ′2) = w(~p ′1, ~p ′2← ~p1, ~p2). (5.3.17)

This relation is usually known as the detailed-balance principles, because it states that the collision
rates for a transition f → i equal the one for the opposite transition i → f . As we shall see in the next
Section, this relation leads to a universal equilibrium distribution, i.e., under the here considered
circumstances the Maxwell-Boltzmann distribution for an ideal gas. Using (5.3.17) in (5.3.15) the
Boltzmann equation simplifies to

�
∂

∂ t
+
~p1

m
∂

∂ ~x1

�
f (t , ~x1, ~p1) =

∫
d3~p2

∫
d3~p ′1

∫
d3~p ′2w(~p ′1, ~p ′2← ~p1, ~p2)

× � f (t , ~x1, ~p ′1) f (t , ~x1, ~p ′2)− f (t , ~x1, ~p2) f (t , ~x1, ~p2)
�
.

(5.3.18)

We close this Section with the important remark that this form of the Boltzmann equation also holds
without the assumption of time-reversal and space-reflection symmetry of the Hamiltonian. For that
we have to use a quantum theoretical argument [LL81]. In quantum theoretical scattering theory the
transition rates w f i are given in terms of the scattering-matrix elements by

w f i = |S f i |2, (5.3.19)

where the scattering operator describes the unitary quantum-theoretical time evolution from an
asymptotically free initial state to a asymptotically free final state in the interaction picture. To sim-
plify the further line of arguments, we assume that the particles are constrained to a large cubic box,
assuming periodic boundary conditions for the corresponding wave functions. Then the possible mo-
menta become discrete, and the unitarity condition for the scattering operator,

S†S = SS† = 1 (5.3.20)
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translates into the form
∑

f

S∗f i S f i =
∑

i

S f i S∗f i ⇒
∑

f

w f i =
∑

i

w f i (5.3.21)

for the matrix elements with respect to momentum space. In the limit of an infinite volume, the sums
become integrals in the usual way, and the relation reads

∫
d3~p ′1d3~p ′2w(~p1, ~p2← ~p ′1, ~p ′2) =

∫
d3~p ′1d3~p ′2w(~p ′1, ~p ′2← ~p1, ~p2). (5.3.22)

This is known as the weak principle of detailed balance. In the original form of the Boltzmann
equation (5.3.15) the integral with respect to ~p ′1 and ~p ′2 only affects the transition rate w, and we can
thus apply (5.3.22) directly to bring the Boltzmann equation into the simpler form (5.3.18). Thus,
the universality of the equilibrium distribution follows already from the weaker form (5.3.22) which
is a direct consequence of the unitarity of quantum theoretical time evolution and not on the strong
principle of detailed balance which needs the assumption of the symmetry of the interaction under the
combined time-reversal and space-reflection transformation. As is well known, the weak interaction
violates this PT symmetry.

5.4 The entropy and the H -Theorem

Even to define entropy in a classical way, the cleanest way is to consider quantum theory. To this end,
again we assume a cubic volume of length L and periodic boundary conditions for the wave functions
of the particles, which we also assume to be indistinguishable. Then the momentum eigenvalues for a
single particle within this box are3

~p =
2πħh

L
~n, ~n ∈Z. (5.4.1)

Now we consider classical phase space as separated into phase-space cells∆6τwhich are microscopically
large, i.e., as containing many states. Here ∆3~x can be seen as a box in position space of the type just
considered above. On the other hand the phase-space cell is considered macroscopically small, i.e., we
assume that the single-particle phase-space distribution f (t ,τ) does not change considerably over each
of these phase-space cells. Then according of (5.4.1) each of these phase-space cells corresponds to

G j =
∆6τ j

(2πħh)3
(5.4.2)

quantum states. For a dilute gas, i.e., if the number N j of particles contained in the phase-space element
∆6τ j is on average small compared to the number of quantum states, G j , we can neglect the degener-
acy according to quantum (Bose-Einstein or Fermi-Dirac) statistics. Then the statistical weight of the
corresponding phase-space distribution is estimated as

∆Γ j =
1

N j !
G

N j

j . (5.4.3)

The factorial in the denominator takes into account the indistinguishability of particles, i.e., it does not
matter which individual particle of the N j particles populates one of the G j quantum states. So any

3Here we explicitly introduce Planck’s constant ħh, which is important in the argument.
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5.4 · The entropy and the H -Theorem

distribution of the N j particles which differs from one such states only by permutation of all particles
must be considered as the same N j -particle state, and this is taken into account by the factorial in the
denominator.
Following Boltzmann and Planck the entropy of the system for a given distribution of the N particles
in phase space, given by the numbers N j of particles in the phase-space cells∆6τ j , is defined as

S =
∑

j

ln∆Γ j =
∑

j

[N j lnG j − ln(N j !)]'
∑

j

[N j lnG j −N j (lnN j − 1)]. (5.4.4)

In the last step we have used Stirling’s approximation, ln(N !)∼=N→∞N j (lnN j−1). Now we introduce
the average number of particles per quantum state

n j =
N j

G j
. (5.4.5)

Then we can write (5.4.4) as

S =
∑

j

N j ln

�
eG j

N j

�
=
∑

j

n j G j ln

�
e

N j

�
=
∑

j

∆6τ j

(2πħh)3
n j ln

�
e

n j

�
. (5.4.6)

Now in the limit of macroscopically small phase-space cells we can write

n j =
(2πħh)3N j

∆6τ j
' (2πħh)3 f (t ,τ). (5.4.7)

Thus the entropy of a dilute gas is given in terms of phase-space by the semiclassical expression

S(t ) =−
∫

d3~x d3~p f (t , ~x, ~p){ln[(2πħh)3 f (t , ~x, ~p)]− 1}. (5.4.8)

The above consideration shows that for a detailed foundation of classical statistical mechanics one needs
quantum-theoretical arguments in order to give a proper definition of entropy in terms of the phase-
space distribution function. The reason is that in classical physics there is no “natural measure” for
the size of phase-space cells, i.e., one cannot unambiguously count the number of microscopic states
leading to a given macroscopic distribution of particles in phase space. As we have shown above, this
problem is quite simply solved by using basic concepts of quantum theory. The factor (2πħh)3 in the
logarithm in (5.4.8) is important in order to make this argument dimensionless as it must be.
Now we want to prove Boltzmann’s H theorem4, which is a very important general result of kinetic
theory and thermodynamics. Often one reads the statement that this theorem, which states that the
entropy of a system cannot decrease as a function of time. As we have seen above, this is not entirely
true, since the derivation of the Boltzmann equation, which we shall use to prove this statement, in-
cluded the assumption of a direction of time as defined by causality. The H theorem thus only proves
that the so-called “thermodynamical arrow of time”, defined as the time direction, in which the entropy
grows, is the same as the “causal arrow of time”, i.e., the time direction defined by causality, which is a
more or less explicitly stated assumption behind all physical theories.

4Here H stands for the Greek letter Eta, which was Boltzmann’s label for the entropy.
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To derive the H theorem we take the time derivative of (5.4.8),

Ṡ(t ) =−
∫

d3~x d3~p
∂ f (t , ~x, ~p)

∂ t
ln[ f (t , ~x, ~p)(2πħh)3]. (5.4.9)

Using the Boltzmann equation (5.3.18) to substitute ∂t , taking into account that the term containing
the spatial derivatives is a total divergence and thus vanishes upon integration over space, leads to

Ṡ(t ) =−
∫

d3~x d3~p C [ f ; t , ~x, ~p] ln[ f (t , ~x, ~p)(2πħh)3]. (5.4.10)

Since we need expressions of this times frequently, we define the collision functional

Coll[φ; t , ~x1] :=
∫

d1C [ f ; 1]φ1 =
∫

d1d2d1′d2′w(1′2′← 12)φ1( f1′ f2′ − f1 f2) (5.4.11)

for an arbitrary one-particle phase-space function with the abbreviations d1 = d3~p1,
φ1 = φ(t1, ~x1, ~p1), etc. In the second term we can interchange the momentum-integration variables
(12) and (1′2′) and use (5.3.17). Then we find

Coll[φ; ~x1, ~p1] =
∫

d2d1′ d2′ w(1′2′← 12)(φ1−φ1′) f1′ f2′ . (5.4.12)

On the other hand we deal with identical particles, we can interchange in this equation the momen-
tum pairs (11′) and (22′) without changing the result. Thus adding the corresponding expression and
dividing by 2 leads to the following symmetric form for the collision functional:

Coll[φ] =
1
2

∫
d2d1′ d2′ w(1′2′← 12)(φ1+φ2−φ1′ −φ2′) f1′ f2′ . (5.4.13)

Setting φ= ln[ f (2πħh)3], according to (5.4.10) we get

Ṡ =
1
2

∫
d1d2d1′ d2′ d3~x1 w(1′2′← 12) f1′ f2′ ln

�
f1′ f2′
f1 f2

�
. (5.4.14)

This we can write in the form

Ṡ =
1
2

∫
d1d2d1′ d2′ d3~x w(1′2′← 12) f1 f2

f1′ f2′
f1 f2

ln
�

f1′ f2′
f1 f2

�
. (5.4.15)

Setting φ= 1 in (5.4.13) leads to
1
2

∫
d3~p C [ f ; t , ~x, ~p] = 0. (5.4.16)

Adding this to (5.4.15) we find

Ṡ =
1
2

∫
d1d2d1′ d2′ d3~x w(1′2′← 12) f1 f2

�
f1′ f2′
f1 f2

�
ln
�

f1′ f2′
f1 f2

�
− 1

�
+ 1

�
. (5.4.17)

Now we investigate the real function f (α) = 1+ α(lnα− 1) for α > 0. Obviously f (1) = 0, and we
have f ′(α) = lnα and f ′′(α) = 1/α, which implies that at α = 1 the function has its only minimum,
and this shows that f (α)≥ 0 and f (α) = 0⇔ α= 1.
From this from (5.4.17) we can indeed conclude that the total entropy is never decreasing,

Ṡ ≥ 0, Ṡ = 0⇔ f1′ f2′ = f1 f2. (5.4.18)
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5.5 · Local equilibrium

5.5 Local equilibrium

Now we look for (approximate) solutions of the Boltzmann equation (5.3.18), which are of general
meaning for kinetic theory. We shall also see, how classical continuum-mechanical descriptions like
the Euler equation for ideal fluids and the Navier-Stokes equations for viscous fluids can be derived
from the underlying microscopic dynamics.
For that purpose we first look for distributions which lead to adiabatic motion of the fluid, i.e., which
fulfill Ṡ = 0. As we have just derived in the previous Section, this implies (5.4.18). Writing the distri-
bution function as

f (t , ~x, ~p) = exp[φ(t , ~x, ~p)], (5.5.1)

this equation reads
φ1′ +φ2′ =φ1+φ2, (5.5.2)

which should hold for all scattering processes 1′2′← 12, under the constraint of energy and momentum
conservation,

~p1+ ~p2 = ~p
′
1+ ~p

′
2,

~p1
2

2m
+
~p2

2

2m
=
~p ′1

2

2m
+
~p ′2

2

2m
. (5.5.3)

To solve the functional equation (5.5.2) under these constraints we use Lagrange multipliersβ~v andβ
for these four constraints, respectively. Then we can vary (5.5.2) independently with respect to ~p1, ~p2,
~p ′1, and ~p ′2. This leads to

∂~pφ+β~p/m+β~v = 0 (5.5.4)

with the general solution

φ(t , ~x, ~p) =−β(t , ~x)
�
~p2

2m
− ~v(t , ~x) · ~p

�
−Ω(t , ~x). (5.5.5)

It is important to note that the Lagrange multipliers ~v andβmust be momentum independent. Using
this in our ansatz leads to

f (t , ~x, ~p) =A(t , ~x)exp
�
−β(t , ~x)

~p2

2m
− ~v(t , ~x)~p

�
(5.5.6)

with
A(t , ~x) = exp[−Ω(t , ~x)]. (5.5.7)

Obviously A(t , ~x) is related to the spatial particle distribution

n(t , ~x) =
∫
R3

d3~p f (t , ~x, ~p) =A(t , ~x)exp
�
β(t , ~x)m

2
~v2(t , ~x)

��
2πm
β(t , ~x)

�3/2

. (5.5.8)

This implies that we can write

f (t , ~x, ~p) =
�
β(t , ~x)
2πm

�3/2

n(t , ~x)exp
�
−β(t , ~x)

2m

�
~p −m ~v(t , ~x)

�2� . (5.5.9)

This is the Maxwell-Boltzmann distribution of local thermal equilibrium.
Global thermal equilibrium is the stationary solution of the Boltzmann equation
feq(t , ~x, ~p) = feq(~x, ~p). Of course then also Ṡ = 0 and thus the distribution is given by the Maxwell-
Boltzmann distribution with n = n(~x), β=β(~x), and ~v = ~v(t , ~x).
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5. Classical transport theory

We can read off immediately from (5.5.9) that the mean momentum for a particle in the gas located
around ~x is given by 


~p
�

t ,~x =
1

n(t , ~x)

∫
d3~p f (t , ~x, ~p) = m ~v(t , ~x). (5.5.10)

This means that the collective motion of the fluid is described by the velocity field ~v(t , ~x).
Next we derive the equations of motion for the functions n, ~v andβ, assuming the initial values of these
fields as given, from the Boltzmann equation. They follow from the conservation laws for particle
number, energy, and momentum.
To that end we multiply the Boltzmann equation (5.3.18) with the corresponding single-particle quan-
tities 1, E = ~p2/(2m), and ~p and integrate over ~p. Using the form (5.4.13) for the collision functional
gives always 0 for the contribution from the collision integral, because energy and momentum are
conserved in the elastic two-particle collisions considered here.
So integrating the Boltzmann equation (5.3.18) simply over ~p gives the continuity equation,

∂t n(t , ~x)+ ∂~x

�
~p
m

�
~p
= ∂t n(t , ~x)+ ∂~x[n(t , ~x) ~v(t , ~x)] = 0. (5.5.11)

In the second step we have used (5.5.9) for the phase-space distribution in local thermal equilibrium.
Defining the mass density by

ρ(t , ~x) = mn(t , ~x), (5.5.12)

this can be written as
∂tρ(t , ~x)+ ∂~x[ρ(t , ~x) ~v(t , ~x)] = 0, (5.5.13)

which is the local form of the conservation of mass, which holds in non-relativistic mechanics.
Multiplying the Boltzmann equation by ~p, integrating over ~p and using again (5.5.9) gives

∂t (vkρ)+
∂

∂ xl
Πl k = 0 (5.5.14)

with the stress tensor

Πl k (t , ~x) =
1
m

∫
R3

d3~p
p l

pk f (t , ~x, ~p) = ρ(t , ~x)
�

vl (t , ~x)vk (t , ~x)+
1

β(t , ~x)m
δl k

�
. (5.5.15)

Defining the pressure of the gas as

P (t , ~x) =
ρ(t , ~x)
β(t , ~x)m

=
n(t , ~x)
β(t , ~x)

(5.5.16)

leads to the ideal-gas equation of state

P (t , ~x) = n(t , ~x)T (t , ~x) (5.5.17)

when we identify

T (t , ~x) =
1

β(t , ~x)
(5.5.18)

with the temperature of the gas, measured in units of energy, i.e., setting the Boltzmann constant
kB = 1. The stress tensor (5.5.15) thus reads

Πl k (t , ~x) = ρ(t , ~x)vl (t , ~x)vk (t , ~x)+ P (t , ~x)δl k . (5.5.19)
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The equation (5.5.14) thus reads

ρ∂t ~v)+ ~v[∂tρ+ ∂~x · (ρ~v)]+ρ( ~v · ∂~x ) ~v =−∂~x P. (5.5.20)

Using (5.5.13) leads to the Euler equation for the ideal fluid,

ρ∂t ~v +ρ( ~v · ∂~x ) ~v =−∂~x P. (5.5.21)

This is just the local form of Newton’s equation of motion, where the potential for the force per unit
volume is given by momentum. On the left-hand side the material time derivative

Dt ~v = ∂t ~v +( ~v · ∂~x ) ~v (5.5.22)

occurs. This gives the time derivative of the velocity of a fluid element moving against the inertial
reference frame.
The equation describing energy conservation follows from the Boltzmann equation (5.3.18) by multi-
plying with E = ~p2/(2m) and integrating over ~p. Again with (5.5.9) this gives

∂tε(t , ~x)+ ∂~x · ~S(t , ~x) (5.5.23)

with the energy density

ε=
∫
R3

d3~p
~p2

2m
f (t , ~x, ~p) =

1
2

3∑
j=1

Π j j
(5.5.19)
=

ρ

2
~v 2+

3
2

P (5.5.24)

and the energy flow

~S =
∫
R3

d3~p
~p
m

~p2

2m
f (t , ~x, ~p) = ~v

�ρ
2
~v 2+

5
2

nT
�
= ~v(ε+ P ). (5.5.25)

Both expressions consist of a contribution due to the collective motion and the local thermal fluctua-
tions (heat): In (5.5.24) ρ~v 2/2 is the kinetic energy of the fluid element per unit volume and according
to (5.5.17) 3/2P = 3/2nT is the energy due to the fluctuating thermal motion of the particles in the
fluid element. In (5.5.25) one has the flow of the collective part of the energy out of the volume element
and the enthalpy density h = ε+ P = 3/2nT + nT = 5/2nT . The second form of writing the energy
flow shows the reason why the enthalpy rather the inner thermal energy has to occur in the energy
flux: Part of the energy flux is that additionally to the energy the particles carry as kinetic energy from
their collective motion and heat energy with them, which gives the term ~vε, there acts also a force on
the particles given as the (negative) gradient of the pressure P , and that has to be added in the energy
balance as a flow of the corresponding kind of potential energy out of this fluid element, and that’s
taken account of by the contribution ~vP .
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Appendix A

Noether’s Theorem

In this chapter we consider the very important connection between symmetries and conservation
laws. As we shall see, any continous Symmetry of the action functional defines a quantity that is con-
served with time under the dynamical evolution of the system. This allows an elegant definition of
observables like energy, momentum, and angular momentum, which arise as the conservation laws
from the Poincaré symmetries of Minkowski space under temporal and spatial translations, and rota-
tions, respectively. As we also shall prove, the symmetry under boosts is equivalent to the conservation
of the center-of-energy velocity.

A.1 Symmetries of the action

Let’s consider an arbitrary set of fields φ j and an infinitesimal symmetry transformation of the space-
time coordinates and fields of the

x ′µ = xµ+δηa tµa (x), φ′j (x
′) =φ j (x)+δη

aTa j (φ). (A.1.1)

Therein the δηa are some infinitesimal independent parameters of the transformation (e.g., angles for
a rotation). To evaluate the variation of the action, we first have to calculate the variation of the field
derivatives, which do not commute the the derivatives as in Hamilton’s principle, because here the
spactime coordinates are varied. We find

δ(∂νφ j ) = ∂
′
ν φ
′

j (x
′)− ∂νφ j (x) =

∂ xρ

∂ x ′ν
∂ρφ j (x

′)− ∂νφ j (x). (A.1.2)

Up to O (δη2)
∂ xρ

∂ x ′ν
= δρν −δηa∂ν t

ρ
a , (A.1.3)

which follows from
∂ xρ

∂ x ′ν
∂ x ′ν

∂ xσ
= δρσ . (A.1.4)

Using (A.1.1) and (A.1.3) in (A.1.2) we finally get

δ(∂νφ j ) = δη
a
¦
∂νT

µ
j [φ(x)]− [∂ν t

ρ
j (x)]∂ρφ j (x)

©
. (A.1.5)
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Then we need the variation of the four-volume element,

δd4x = d4x ′− d4x =
�
det

�
∂ x ′

∂ x

�
− 1

�
d4x. (A.1.6)

To find the Jacobian of the symmetry transformation up to O (δη2), we use its defining expression in
terms of the matrix elements and skip any contribution of higher than first order in the δη’s. This
gives (check!)

δd4x ′ = δηa∂µ tµa d4x. (A.1.7)

Using (A.1.3), (A.1.5), and (A.1.7) we find after some elementary manipulations and integration by
parts

δS =
∫
R4

d4x δηa

¨�
∂L
∂ φ j

− ∂ν
∂L

∂ (∂νφ j )

�
Ta j + ∂ν

�
∂L

∂ (∂νφk )
∂µφk −Lδνµ

�
tµa

«
. (A.1.8)

Since the δηa are independent variables by assumption, the integral must vanish separately for each a.
This means that the expression in the curly bracket is a total four-divergence of a current,

�
∂L
∂ φ j

− ∂ν
∂L

∂ (∂νφ j )

�
Ta j + ∂ν

�
∂L

∂ (∂νφk )
∂µφk −Lδνµ

�
tµa = ∂σ j σa . (A.1.9)

Using the functional derivative of the action,

δS
δφ j

:=
∂L
∂ φ j

− ∂ν
∂L

∂ (∂νφ j )
(A.1.10)

We find after working out the ∂ν derivative that (A.1.9) takes the form

δS
δφ j

�
Ta j − (∂µφ j )t

µ
a

�
= ∂ν j νa . (A.1.11)

A.2 Noether currents and conserved quantities

Since further the field equations of motion are given by the stationarity of the action functional un-
der variations of the φ j , i.e., the vanishing of the functional derivative (A.1.10), we conclude for any
solution of the field equations

∂ν j νa = 0, (A.2.1)

which is Noether’s Theorem [Noe18]:
For each one-parameter subgroup of a Lie-group representation on the fields and spacetime coordinates, for
which the action is invariant, there exists a conserved current.
It is important to note that the Noether currents, defined by (A.1.11), are not unique, but we can
always define a new current,

j ′a
µ = jµa + ∂νωa

µν (A.2.2)

whereωa
µν are arbitrary antisymmetric 2nd-rank tensor fields. Obviously if jµa is a conserved current,

the j ′a
µ are are also conserved and define the same conserved quantities (why?)

∫
R3

d3~x∂νω
0ν
a = 0. (A.2.3)
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Appendix B

Imaginary-time formalism

B.1 Bosons

B.1.1 Bosonic Matsubara sums

The imaginary-time formalism leads to Feynman rules that are even more similar to the vacuum case
than the real-time Feynman rules. Up to some changes in factors i, the most profound difference be-
tween the vacuum and the imaginary-time Feynman rules at finite temperature is that instead of energy
integrals but sums over the discrete Matsubara frequencies. These can be evaluated as a integral in the
complex energy plane by making use of the theorem of residues. Our task is to calculate sums of the
form

H (β) =
1
β

∞∑
n=−∞

h(iωn) with ωn =
2πn
β

. (B.1.1)

Usually in the physical calculations one can find a complex function h(z) which is identical to the
series for z = iωn and is analytic in an open strip around the complete imaginary axis and has poles
and branch points1 only along the real axis. Then the usual trick is to use the function

SB(p0) =
1
2

coth
�
βp0

2

�
, (B.1.2)

which has simple poles at p0 = iωn with residuum 1/β and is analytic everywhere else in the complex
p0 plane. Thus we can write the series in the form

H (β) =
∫

C

d p0

2πi
SB(p0)h(p0). (B.1.3)

The integration path is given in (B.1). Since both, the function h and the function (B.1.2), have no
singularities in the open four sectors of the p0 plane the integral along the red paths is 0. Now only the
parts parallel and close to the real axis contribute to this integral since h has to go to zero for z →∞
faster than 1/z. Thus, the integral along the four red lines close to the real axis gives−[H (β)−h(0)]/β).
Due to the residuum theorem the integral along the little green path around the point p0 = 0, which
has to be chosen such, that its vertical parts do not intersect a possibly existing branch cut of h along
the real axis, gives−h(0)/β. The vertical parts of the green box cancel the corresponding vertical parts

1the branch cuts start usually away from z = 0
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B. Imaginary-time formalism

p0

C

Figure B.1: The contour to calculate the Matsub-
ara sums. The original contour C in (B.1.3) is
given by the red vertical lines parallel to the imag-
inary axis surrounding counterclockwise the sim-
ple poles at p0 = iωn of the Bose-Einstein func-
tion (B.1.2).

of the original contour C . Finally we deformed the original path C to the paths along the real axis,
one a little below and one a little above the real axis. So the real-time integral is given by

H (β) =
∫
R

d p0

2πi
SB(p0)[h(p0+ i0+)− h(p0− i0+)]. (B.1.4)

Now

SB(p0) =
1
2

exp(βp0/2)+ exp(−βp0/2)
exp(βp0/2)− exp(−βp0/2)

=
1
2
[1+ 2 fB(p0)]. (B.1.5)

So finally we get

H (β) =
1
2

∫
R

d p0

2πi
[1+ 2 fB(p0)] [h(p0+ i0+)− h(p0− i0+)]. (B.1.6)

This form of the Matsubara sum is convenient, if we have to evaluate closed diagrams without external
lines, which have the meaning of correction factors to the partition sum. Such diagrams can with help
of real-time quantities making use of the analytic properties of two-point functions (see the end of
Sect. 2.2.5).
For imaginary-time quantities it is often more convenient to simplify (B.1.3) in a different way. We
start with (B.1.6)

H (β) :=
1
β

∑
ωn

h(iωn) =
1
2

∫
C

d p0

2πi
[1+ 2 fB(p0)]h(p0) with ωn =

2πin
β

, n ∈Z. (B.1.7)

Instead of deforming the contour to one along the real axis we do a simple substitution p0 = −p ′0 for
the contour part left to the imaginary axis:

∫ i∞−0+

−i∞−0+
d p0SB(p0)h(p0) =−

∫ i∞+0+

−i∞+0+

d p0

2πi
SB(p0)h(−p0). (B.1.8)

The part ofC going down parallel to the imaginary axis with, shifted slightly to the left is thus written
in terms of an integral along the other branch of C . This gives

1
β

∑
ωn

h(iωn) =
1
2

∫ i∞+0+

−i∞+0+

d p0

2πi
[1+ 2 fB (p0)][h(p0)+ h(−p0)]. (B.1.9)

Often the integral can be evaluated by closing the contour with a large semi-circle to the right half-
plane. Possibly special care has to be taken to the “zero-mode contribution” which is not multiplied
by a Bose distribution factor.
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B.1.2 Imaginary time Green’s function

With help of (B.1.9) it is easy to give a simplified expression for (3.1.57) with t along the vertical part
of the modified Schwinger-Keldysh contour (see Fig. 2.2). From (3.1.56) we read off

A(p) =−2ImGR(p). (B.1.10)

Now we use the spectral representation to define the analytic Green’s function

Ga(p) =
∫ d p ′0

2π

A(p ′0, ~p)
p0− p ′0

, p0 ∈C \R. (B.1.11)

It is clear, that the retarded and advanced Green’s functions are given as limits of p0 to the real axis

GR(p) =Ga(p0+ i0+, ~p), GA(p) =Ga(p0− i0+, ~p); p0 ∈R. (B.1.12)

The Matsubara Green’s function is defined by Eq. (3.1.33) for times t =−iτ with τ ∈ [0,β):

GM (τ1, ~x1;τ2, ~x2) =−
¬
Tτφ(−iτ1, ~x1)φ

†(−iτ2, ~x2)
¶

. (B.1.13)

From translation invariance in space and time GM is a function of the difference x1− x2 only and due
to the time evolution along the imaginary time axis periodic in time with period β.
For 0< τ <β we have

GM (τ, ~x) =−
¬
φ(−iτ, ~x)φ†(0,0)

¶
. (B.1.14)

Now we expand GM in a Fourier series in time and a Fourier integral in space:

GM (τ, ~x) =
1
β

∞∑
n=−∞

∫
d3~p
(2π)3

G̃M (iωn , ~p)exp(−iωnτ+ i~p~x) (B.1.15)

Due to the KMS-condition GM (τ +β, x) = GM (τ, x) the Matsubara frequencies are given by ωn =
2πn/β.
The next step is to show, that

G̃M (iωn , ~p) =−Ga(iωn , ~p) =
∫ d p ′0

2π

A(p ′0, ~p)
p ′0− iωn

. (B.1.16)

For that, it is sufficient to use (B.1.14) and the fact, that the Wightman function

W (t , ~x) =−
¬
φ(t , ~x)φ†(0,0)

¶
(B.1.17)

is analytic in the open strip −β < Im t < 0, which we call S. Along the real axis W is identical with
−iG+−(t , ~x). Thus, we obtain W from the real time function G+− by analytic continuation from real
t to complex t with values restricted to the open strip S. Thus, we can use (3.1.54) to obtain

G̃M (iωn , ~p) =−
∫ β

0
dτ
∫

d p0

2π
A(p0, ~p)[1+ fB(p0)]exp(−p0τ+ iωnτ) =

∫
d p0

2π
A(p)

p0− iωn
, (B.1.18)

where we have evaluated the τ-integral and used exp(iωnβ) = 1 and 1+ fB(p0) = − fB(−p0). This
proves (B.1.16).
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B.1.3 Mills representation in imaginary time

We can also give a general formula for the Mills representation of the Matsubara propagator, i.e., as
function of imaginary time τ and momentum:

G′M (τ, ~p) =
1
β

∞∑
n=−∞

exp(−iωnτ)G̃M (iωn , ~p). (B.1.19)

With help of (B.1.16) this can be written as

G′M (τ, ~p) =
∫

d p0

2π
K(τ, p0)A(p0, ~p) =

∫ ∞
0

d p0

2π
K̃(τ, p0)A(p0, ~p). (B.1.20)

Here we have defined the kernels

K(τ, p0) =
1
β

∞∑
n=−∞

exp(−iωnτ)
p0− iωn

, K̃(τ, p0) =K(τ, p0)−K(τ,−p0). (B.1.21)

To obtain the second form in (B.1.20) the property A(−p ′0, ~p) =−A(p ′0, ~p) has been used.
Now we apply (B.1.9) to calculate the kernel K from (B.1.21). In this case we have to set

h(z) =
exp(−zτ)

p0− z
. (B.1.22)

Since p0 ∈R, it fulfils the properties needed to apply (B.1.9). To evaluate the integral we split it in two
parts, the one with a Bose-Einstein distribution factor, and the other. The first part reads

K1(τ, p0) =
∫ i∞+0+

−i∞+0+

dz
2πi

1
exp(βz)− 1

�
exp(zτ)
z + p0

− exp(−zτ)
z − p0

�
. (B.1.23)

For 0< τ <β we can close the contour with a big semicircle in the right plane, since its contribution
to the integral vanishes, when we take the radius to infinity. This path contains only the residua from
the denominators 1/(z ± p0). So we find

K1(τ, p0) =−[Θ(p0)+ fB(−βp0)]exp(−p0τ), 0< τ <∞. (B.1.24)

The second part is

K2(τ, p0) =
∫ i∞+0+

−i∞+0+

dz
2πi

exp(zτ)
p0+ z

(B.1.25)

For τ > 0 this integral can be evaluated by closing the contour in the left plane with a big semicircle,
whose contribution vanishes when taking its radius to infinity:

K2(τ, p0) =Θ(p0)exp(−p0τ), τ > 0. (B.1.26)

Together with (B.1.24) this finally yields

K(τ, p0) =
exp(−p0τ)

1− exp(−p0β)
, 0< τ <β. (B.1.27)

From this we get, cf. (B.1.21)

K̃(τ, p0) =
cosh

�
p0τ− p0β

2

�

sinh
� p0β

2

� . (B.1.28)
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B.1.4 Finite chemical potential

In the same way as we have derived (B.1.16) from (B.1.14), we can use (B.1.14) together with the bound-
ary conditions (3.1.26) to derive the same for finite chemical potential:

GM (τ, ~x) =
1
β

∞∑
n=−∞

exp[−(iωn +µ)τ]
∫

d3~p
(2π)3

exp(i~p~x)G̃M (iωn +µ, ~p), (B.1.29)

where

G̃M (iωn +µ, ~p) =
∫

d p0

2π
A(p0, ~p)

p0− (iωn +µ)
. (B.1.30)

We have used again the Wightman function (B.1.17), its connection to −iG+− and (3.1.54)2.
The analytic Green’s function is thus given by

Ga(p) =
∫ d p ′0

2π

A(p ′0, ~p)
p0+µ− p ′0

(B.1.32)

and the retarded Green’s function is

GR(p) =Ga(p0+ i0+, ~p), A(p) =−2ImGR(p0−µ, ~p). (B.1.33)

B.1.5 Imaginary-time Feynman rules

For the derivation of the imaginary-time Feynman rules one has to integrate along the vertical part of
the modified Schwinger-Keldysh contour only. The Feynman rules in imaginary time are nearly the
same as in the vacuum. First of all, since there is only one imaginary time line, no doubling as along
the real axis, we have only one type of vertices coming from the interaction part of the action:

SI [φ] =
∫

d4xL (x) =−i
∫ β

0
dτd3~xLI (−iτ, ~x). (B.1.34)

The −i in front of the integral, coming from the substitution t =−iτ, cancels the +i in the exponent
of the path integral. Thus, the vertex, corresponding to a certain monomial in LI , is given by the
vacuum expression without the i. In the case of derivative couplings one has to set p0 = iωn+µ. E.g.,
for the simple φ4-theory we have only the four-point vertex Γ4 = −λ/(4!) (of course in this case we
have neutral particles and thus necessarily µ= 0).
The free propagator can be derived much simpler directly from the Lagrangian than by doing the disper-
sion integral (B.1.30). One only needs to invert the quadratic form, defined by S0 along the imaginary
time axis.

∆M (iωn +µ, ~p) =− 1
(iωn +µ)2− ~p2−m2

. (B.1.35)

A line in a Feynman diagram then stands for∆M (iωn+µ, ~p), as can be derived from (3.1.68), with the
time coordinates specialised to imaginary times −iτ1 and −iτ2.

2Note, that the inverse of the Fourier transform (B.1.29) in this case reads

G̃M (iωn +µ, ~p) =
∫ β

0
dτ
∫

d3~x exp[(iωn +µ)τ− i~p~x]GM (τ, ~x). (B.1.31)
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B. Imaginary-time formalism

At each vertex both, energy and momentum conservation, i.e.,
∑

p0 =
∑
(iωn +µ) = 0 and

∑
~p = 0,

where the sum is taken over all momenta running into the vertex have to hold. Over all “energies” and
momenta corresponding to inner lines, which are not fixed by these conditions, has to be summed or
integrated, respectively. That means, to each loop four-momentum l the operator

1
β

∞∑
nl=−∞

∫
d3~l
(2π)3

(B.1.36)

has to be applied.
For the sums one can use (B.1.9). With this formula it is also easy to separate the “vacuum parts” from
the parts depending onβ and µ, which is important for renormalisation issues: One can show, that all
UV-divergences can be renormalised by subtracting counterterms, which are independent ofβ and µ.

B.2 Fermions

B.2.1 Fermionic Matsubara sums

The Matsubara sums over fermions are evaluated with an analogous technique as explained for bosons
in Sect. B.1.1. In order to pick up the Matsubara frequencies ω̃n = (2n+ 1)T we use the function

SF(p0) =
1
2

tanh
� p0

2T

�
=

1
2
[1− 2 fF(p0)], (B.2.1)

which has simple poles with residuum T at p0 = iω̃n , and the Fermi-Dirac distribution is given by

fF(p0) =
1

1+ exp(βp0)
. (B.2.2)

Thus the fermionic Matsubara sums can be written as the contour integral

H = T
∑
ω̃n

h(iω̃n) =
∫

C

d p0

2πi
SF(p0)h(p0). (B.2.3)

The contour is the same as shown in (B.1), and we have assumed that h is analytic in an entire open
strip around the imaginary p0 axis. By the same argument as for the bosons (somewhat simplified by
the fact that there is no zero Matsubara frequency for fermions) leads to the analogue of (B.1.4):

H =
1
2

∫
R

d p0

2πi
[1− 2 fF(p0)][h(p0+ i0+)− h(p0− i0+)] (B.2.4)

For later use we note the usefull identity

fF(p0)+ fF(−p0) = +1, (B.2.5)

which is derived by some simple algebra.

158



Appendix C

Wigner representation of two-point functions

In this chapter we give some purely mathematical properties of Wigner transformations of two-point
functions.

C.1 Definition and analytical properties

In general two-point functions along the Schwinger-Keldysh contour are defined as the expectation
values of contour-ordered field-operator products,

iF (x, y) = 〈TCA(x)B(y)〉 . (C.1.1)

In the following it is convenient to express the contour function in the matrix representation as func-
tions of the usual time

iF̂ (x, y) = i
�

F 11(x, y) F 12(x, y)
F 21(x, y) F 22(x, y)

�
=
�〈TcA(x)B(x)〉 〈B(y)A(x)〉
〈A(x)B(y)〉 〈TaA(x)B(y)〉

�
. (C.1.2)

For simplicity we have assumed that the field operators are of bosonic nature. In the case of fermionic
field operators, one has to include the signs when changing the order due to the contour or time order-
ing prescription. The upper indices refer to the location of the time arguments on the branch of the
contour (1: time-ordered, 2: anti-time-ordered branches, respectively).
Obviously the various two-point functions in the matrix (C.1.2) are not independent from each other
but fulfill

F 11+ F 22 = F 12+ F 21 = 〈{A(x), B(y)}〉 . (C.1.3)

One can also work with other, sometimes more convenient, linear combinations of the two-point
functions. Most important are the retarded and advanced combinations

Fret(x, y) = F 11(x, y)− F 12(x, y) = F 21(x, y)− F 22(x, y)

=Θ(x0− y0)[F
21(x, y)− F 12(x, y)],

Fadv(x, y) = F 11(x, y)− F 21(x, y) = F 12(x, y)− F 22(x, y)

=−Θ(y0− x0)[F
21(x, y)− F 12(x, y)].

(C.1.4)

The Wigner transform of the two-point functions is defined as the Fourier transform with respect to
the relative coordinates ξ = x − y. If the situation is not translation invariant in space and time as in
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C. Wigner representation of two-point functions

thermal equilibrium, as is the case in general non-equilibruium function, this Fourier transform will
also depend on the center-momentum coordinates X = (x + y)/2. Thus the Wigner transform reads

F̃ i j (X , p) =
∫
R4

d4ξ F i j
�

X +
ξ

2
,X − ξ

2

�
exp(i p · ξ ). (C.1.5)

Using the Fourier representation of the Heaviside-unitstep function,

Θ(x0− y0) =
∫
R

d p0

2π
i

p0+ i0+
exp(−i p0 t ), (C.1.6)

using the convolution theorem, one can write the Wigner transform of the retarded Green’s function
(C.1.4) as

F̃ret(X , p) =
∫
R

d p ′0
2π

F̃S (X , p ′)
p0− p ′0+ i0+

�����
~p ′=~p

, (C.1.7)

where the spectral function, related with the two-point function under consideration, is defined as

F̃S (X , p) = i[F̃ 21(X , p)− F̃ 12(X , p)]. (C.1.8)

This shows that the complete two-point function is determined, if the spectral function and one of the
Wightman functions F̃ 21 and F̃ 12 is known. In the case of thermal equilibrium it is already sufficient
to know the spectral function, because then also the Wightman functions are known, because then in
addition the Martin-Kubo-Schwinger relation is valid (for details see Sect. 3.1.2).
In the special case that B =A†, which is the case for the important example of the propagator of a scalar
field one has the additional relations

[iF 12(x, y)]∗ = iF 12(y, x), [iF 21(x, y)]∗ = iF 21(y, x),

[iF 11(x, y)]∗ = iF 11(y, x), [iF 22(x, y)]∗ = iF 22(y, x),
[Fret(x, y)]∗ = Fadv(y, x).

(C.1.9)

These relations are found by using the hermitean conjugate under the defining expectation values of
the various Green’s functions (C.1.2). For the Wigner transforms it follows

iF̃ 12(X , p), iF̃ 21(X , p) ∈R, [iF̃ 11(X , p)]∗ = iF̃ 22(X , p), [iF̃ 22(X , p)]∗ = iF̃ 11(X , p),

[F̃ret(x, p)]∗ = F̃A(x, p).
(C.1.10)

This implies that in this case the spectral function (C.1.8) is real, and

F̃S = i[F̃ret− F̃adv] =−2Im F̃ret, (C.1.11)

and from (C.1.7) one finds the Kramers-Kroenig relation,

Re F̃ret(X , p) =−P
∫
R

d p ′0
π

Im F̃ret(X , p ′)
p ′0− p0

�����
~p ′=~p

, (C.1.12)

for the retarded Green’s function.
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C.2 Convolution theorem for Wigner transforms

The convolution of two two-point functions (with ordinary time arguments) is defined by

(A�B)(x1, x3) =
∫
R4

d4x2A(x1, x2)B(x2, x3). (C.2.1)

Now we want to express this expression in terms of the Wigner transforms of A and B . Using the
inverse Fourier transformations, we find

(A�B)(x1, x3) =
∫
R4

d4x2

∫
R4

d4 p
(2π)4

∫
R4

d4q
(2π)4

Ã(X12, p)B̃(X23, q)exp(−i p · ξ12− iqξ23), (C.2.2)

where we define

X j k =
x j + xk

2
, ξ j k = x j − xk . (C.2.3)

Now we expand the Wigner transforms both Wigner transforms under the integral (C.2.2) around X13:

Ã(X12, p) = Ã
�

X13+
ξ23

2
, p
�
= exp

�
1
2
ξ23 · ∂X13

�
Ã(X13, p),

B̃(X23, q) = B̃
�

X13−
ξ12

2
, q
�
= exp

�
−1

2
ξ12∂X13

�
B̃(X13, q).

(C.2.4)

Plugging this in (C.2.2) we find

ä(A�B)(X13, p13) =
∫
R4

d4x2

∫
d4 p
(2π)4

∫
d4q
(2π)4

exp(i p13 · ξ13− i p · ξ12− iq · ξ23)

× exp
�

i
2
∂ (A)p ∂ (B)X13

− i
2
∂ (A)X13

∂ (B)q

�
A(X13, p)B(X23, q),

(C.2.5)

where the bracketed superscripts on the differentiation operators indicate which of the two functions
in the product to the right has to be differentiated. We have performed a partial integration with respect
to p and q to apply the derivatives to the Wigner transforms of the two-point functions rather than the
exponential. Now the argument of the exponential is

i p13 · ξ13− i p · ξ12− iq · ξ23 = p13 · ξ13+ x2 · (p − q)+ q · x3− p · x1. (C.2.6)

This enables us to perform the integral over x2 leading to a factor (2π)4δ (4)(p−q) and then the integral
over q which gives

ä(A�B)(X13, p13) =
∫
R4

d4 p
(2π)4

∫
R4

d4ξ13 exp[i(p13− p)ξ13]exp(i�)A(X13, p)B(X13, p). (C.2.7)

Finally we can also perform the remaining integrals to get

ä(A�B)(X13, p13) = exp(i�)A(X13, p13)B(X13, p13). (C.2.8)

Above we have introduced the generalized Poisson-bracket operator

�A(X , p)B(X , p) =
1
2
[∂pA(X , p) · ∂xB(X , p)− ∂X A(X , p) · ∂pB(X , p)] =

1
2
{A,B}pb . (C.2.9)
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For the special case of two-point functions in homogeneous systems, where both A and B are indepen-
dent of X , (C.2.8) leads to the usual convolution theorem of Fourier tranformations: The convolu-
tion in the space-time domain maps simply to the product in the energy-momentum domain. In the
non-equilibrium case the expansion of the exponential operator in this equation leads to the gradient
expansion of the Kadanoff-Baym equations and in turn to semi-classical transport equations.

162



C.2 · Convolution theorem for Wigner transforms

163



C. Wigner representation of two-point functions

164



Bibliography

[A+08] C. Amsler et al. (Particle Data Group), Review of Particle Physics, Phys. Lett. B 667, 1
(2008), https://dx.doi.org/10.1016/j.physletb.2008.07.018.

[Abb81] L. F. Abbott, The background field method beyond one loop, Nucl. Phys. B 185, 189
(1981), http://www-lib.kek.jp/cgi-bin/img_index?198012137.

[Abb82] L. F. Abbott, Introduction to the background field method, Acta Phys. Polon. B 13, 33
(1982), http://www-lib.kek.jp/cgi-bin/img_index?198107383.

[AGS83] L. F. Abbott, M. T. Grisaru and R. K. Schaefer, The background field method and the S
Matrix, Nucl. Phys. B 229, 372 (1983),
http://www-lib.kek.jp/cgi-bin/img_index?8308278.

[Bar64] V. Bargmann, Note on Wigner’s Theorem on Symmetry Operations, Journ. Math. Phys.
5, 862 (1964), http://dx.doi.org/10.1063/1.1704188.

[Bay62] G. Baym, Self-Consistent Approximations in Many-Body Systems, Phys. Rev. 127, 1391
(1962), http://link.aps.org/abstract/PR/v127/i4/p1391.

[Ber02] J. Berges, Controlled nonperturbative dynamics of quantum fields out of equilibrium,
Nucl. Phys. A 699, 847 (2002), http://de.arxiv.org/abs/hep-ph/0105311.

[BK61] G. Baym and L. Kadanoff, Conservation Laws and Correlation Functions, Phys. Rev.
124, 287 (1961), http://link.aps.org/abstract/PR/v124/i2/p287.

[BM90] W. Botermans and R. Malfliet, Quantum transport theory of nuclear matter, Phys. Rept.
198, 115 (1990), http://dx.doi.org/10.1016/0370-1573(90)90174-Z.

[Cas09] W. Cassing, From Kadanoff-Baym dynamics to off-shell parton transport, Eur. Phys. J.
ST 168, 3 (2009), 0808.0715, http://dx.doi.org/10.1140/epjst.

[CH08] E. A. Calzetta and B. L. Hu, Nonequilibrium Quantum Field Theory, Cambridge
University Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,
Sao Paulo, Delhi (2008).

[CJT74] M. Cornwall, R. Jackiw and E. Tomboulis, Effective Action for Composite Operators,
Phys. Rev. D 10, 2428 (1974), http://link.aps.org/abstract/PRD/v10/i8/p2428.

[Col85] S. Coleman, Aspects of Symmetry, Cambridge University Press, Cambridge, New York,
Melbourne (1985).

165

https://dx.doi.org/10.1016/j.physletb.2008.07.018
http://www-lib.kek.jp/cgi-bin/img_index?198012137
http://www-lib.kek.jp/cgi-bin/img_index?198107383
http://www-lib.kek.jp/cgi-bin/img_index?8308278
http://dx.doi.org/10.1063/1.1704188
http://link.aps.org/abstract/PR/v127/i4/p1391
http://de.arxiv.org/abs/hep-ph/0105311
http://link.aps.org/abstract/PR/v124/i2/p287
http://dx.doi.org/10.1016/0370-1573(90)90174-Z
0808.0715
http://dx.doi.org/10.1140/epjst
http://link.aps.org/abstract/PRD/v10/i8/p2428


Bibliography

[CSHY85] K. Chou, Z. Su, B. Hao and L. Yu, Equilibrium and Nonequilibrium Formalisms made
unified, Phys. Rept. 118, 1 (1985),
http://dx.doi.org/10.1016/0370-1573(85)90136-X.

[Dan84] P. Danielewicz, Quantum Theory of Nonequilibrium Processes I, Ann. Phys. 152, 239
(1984), http://dx.doi.org/10.1016/0003-4916(84)90092-7.

[dvv80] S. R. de Groot, W. A. van Leeuwen and C. G. van Weert, Relativistic kinetic theory:
principles and applications, North-Holland (1980).

[Gel96] F. Gelis, The Effect of the vertical part of the path on the real time Feynman rules in
finite temperature field theory, Z. Phys. C 70, 321 (1996),
http://dx.doi.org/10.1007/s002880050109.

[Gel99] F. Gelis, A new approach for the vertical part of the contour in thermal field theories,
Phys. Lett. B 455, 205 (1999), http://dx.doi.org/10.1016/S0370-2693(99)00460-8.

[GL98] C. Greiner and S. Leupold, Stochastic interpretation of Kadanoff-Baym equations and
their relation to Langevin processes, Ann. Phys. 270, 328 (1998),
http://dx.doi.org/10.1006/aphy.1998.5849.

[Hee02] H. v. Hees, Introduction to Quantum Field Theory (2002),
http://th.physik.uni-frankfurt.de/~hees/publ/lect.pdf.

[HK02a] H. v. Hees and J. Knoll, Renormalization of self-consistent approximations I: theoretical
concepts, Phys. Rev. D 65, 025010 (2002),
http://dx.doi.org/10.1103/PhysRevD.65.105005.

[HK02b] H. v. Hees and J. Knoll, Renormalization of self-consistent approximations II:
applications to the sunset diagram, Phys. Rev. D 65, 105005 (2002),
http://dx.doi.org/10.1103/PhysRevD.65.105005.

[Hob87] A. Hobson, Concepts in Statistical Mechanics, Gordon and Breach Science Publishers, 2
edn. (1987).

[IKV99] Y. B. Ivanov, J. Knoll and D. N. Voskresensky, Self-consistent approximations to
non-equilibrium many-body theory, Nucl. Phys. A 657, 413 (1999),
http://arxiv.org/abs/hep-ph/9807351.

[IKV00] Y. B. Ivanov, J. Knoll and D. N. Voskresensky, Resonance Transport and Kinetic
Entropy, Nucl. Phys. A 672, 313 (2000), http://arxiv.org/abs/nucl-th/9905028.

[Jac74] R. Jackiw, Functional Evaluation of the Effective Potential, Phys. Rev. D 9, 1686 (1974),
http://link.aps.org/abstract/PRD/v9/i6/p1686.

[Jay57a] E. Jaynes, Information Theory and Statistical Mechanics, Phys. Rev. 106, 620 (1957),
http://link.aps.org/doi/10.1103/PhysRev.106.620.

[Jay57b] E. Jaynes, Information Theory and Statistical Mechanics. II, Phys. Rev. 108, 171 (1957),
http://link.aps.org/doi/10.1103/PhysRev.108.171.

[JO01] J. D. Jackson and L. B. Okun, Historical roots of gauge invariance, Rev. Mod. Phys. 73,
663 (2001), http://link.aps.org/doi/10.1103/RevModPhys.73.663.

166

http://dx.doi.org/10.1016/0370-1573(85)90136-X
http://dx.doi.org/10.1016/0003-4916(84)90092-7
http://dx.doi.org/10.1007/s002880050109
http://dx.doi.org/10.1016/S0370-2693(99)00460-8
http://dx.doi.org/10.1006/aphy.1998.5849
http://th.physik.uni-frankfurt.de/~hees/publ/lect.pdf
http://dx.doi.org/10.1103/PhysRevD.65.105005
http://dx.doi.org/10.1103/PhysRevD.65.105005
http://arxiv.org/abs/hep-ph/9807351
http://arxiv.org/abs/nucl-th/9905028
http://link.aps.org/abstract/PRD/v9/i6/p1686
http://link.aps.org/doi/10.1103/PhysRev.106.620
http://link.aps.org/doi/10.1103/PhysRev.108.171
http://link.aps.org/doi/10.1103/RevModPhys.73.663


[Kam11] A. Kamenev, Field Theory of Non-Equilibrium Systems, Cambridge University Press,
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo, Delhi,
Tokyo, Mexico City (2011).

[Kap81] J. I. Kapusta, Bose-Einstein Condensation, Spontaneous Symmetry Breaking, and Gauge
Theories, Phys. Rev. D 24, 426 (1981),
http://link.aps.org/doi/10.1103/PhysRevD.24.426.

[Kat67] A. Katz, Principles of Statistical Mechanics, W. H. Freeman and Company, San Francisco
and London (1967).

[KB61] L. Kadanoff and G. Baym, Quantum Statistical Mechanics, The Benjamin/Cummings
Publishing Company, New York (1961).

[Kel64] L. Keldysh, Diagram Technique for Nonequilibrium Processes, Zh. Eksp. Teor. Fiz. 47,
1515 (1964), [Sov. Phys JETP 20 1965 1018],
http://www.jetp.ac.ru/cgi-bin/e/index/e/20/4/p1018?a=list.

[KG06] J. I. Kapusta and C. Gale, Finite-Temperature Field Theory; Principles and Applications,
Cambridge University Press, 2 edn. (2006).

[KIV01] J. Knoll, Y. B. Ivanov and D. N. Voskresensky, Exact conservation laws of the gradient
expanded Kadanoff-Baym equations, Ann. Phys. 293, 126 (2001),
http://dx.doi.org/10.1006/aphy.2001.6185.

[Kug77] T. Kugo, Symmetric and mass-independent renormalization, Prog. Theor. Phys. 57, 593
(1977), http://dx.doi.org/10.1143/PTP.57.593.

[Kug97] T. Kugo, Eichtheorie, Springer-Verlag, Heidelberg (1997).

[KV96] J. Knoll and D. Voskresensky, Classical and Quantum Many-Body Description of
Bremsstrahlung in Dense Matter (Landau-Pomeranchuk-Migdal Effect), Ann. Phys. (NY)
249, 532 (1996), http://dx.doi.org/10.1006/aphy.1996.0082.

[LeB96] M. LeBellac, Thermal Field Theory, Cambridge University Press, Cambridge, New York,
Melbourne (1996).

[LL81] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics Volume X, Pergamon Press
(1981).

[LM96] M. Le Bellac and H. Mabilat, Real time Feynman rules at finite temperature, Phys. Lett.
B 381, 262 (1996), http://dx.doi.org/10.1016/0370-2693(96)00604-1.

[Lv87] N. P. Landsmann and C. G. van Weert, Real- and Imaginary-time Field Theory at Finite
Temperature and Density, Physics Reports 145, 141 (1987),
http://dx.doi.org/10.1016/0370-1573(87)90121-9.

[LW60] J. M. Luttinger and J. C. Ward, Ground state energy of a many fermion system. 2, Phys.
Rev. 118, 1417 (1960), http://dx.doi.org/10.1103/PhysRev.118.1417.

[Mab97] H. Mabilat, Derivation of the real time formalism from first principles in thermal field
theory, Z. Phys. C 75, 155 (1997), http://dx.doi.org/10.1007/s002880050457.

167

http://link.aps.org/doi/10.1103/PhysRevD.24.426
http://www.jetp.ac.ru/cgi-bin/e/index/e/20/4/p1018?a=list
http://dx.doi.org/10.1006/aphy.2001.6185
http://dx.doi.org/10.1143/PTP.57.593
http://dx.doi.org/10.1006/aphy.1996.0082
http://dx.doi.org/10.1016/0370-2693(96)00604-1
http://dx.doi.org/10.1016/0370-1573(87)90121-9
http://dx.doi.org/10.1103/PhysRev.118.1417
http://dx.doi.org/10.1007/s002880050457


Bibliography

[Mil69] R. W. Mills, Propagators for many-particles systems, Gordon and Breach Science
Publishers, New York (1969).

[Noe18] E. Noether, Invariante Variationsprobleme, Nachr. Ges. Wiss. Göttingen, Math.-Phys.
Kl. 235 (1918), http://dx.doi.org/10.1080/00411457108231446.

[PS95] M. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory,
Addison-Wesley Publ. Comp., Reading, Massachusetts (1995).

[Sch61] J. Schwinger, Brownian Motion of a Quantum Oscillator, J. Math. Phys 2, 407 (1961),
http://link.aip.org/link/doi/10.1063/1.1703727.

[Wei95] S. Weinberg, The Quantum Theory of Fields, vol. 1, Cambridge University Press (1995).

[Wei96] S. Weinberg, The Quantum Theory of Fields, vol. 2, Cambridge University Press (1996).

168

http://dx.doi.org/10.1080/00411457108231446
http://link.aip.org/link/doi/10.1063/1.1703727

	Contents
	I Equilibrium Theory
	Introduction to quantum-field theory: Free fields
	Poincaré invariance
	Free scalar bosons
	Free Dirac fermions
	The classical Dirac field
	Quantization of the free Dirac field
	Poincaré symmetry of the quantized Dirac theory
	The discrete symmetry transformations P, C and T
	Sesquilinear forms of Dirac-field operators


	The real-time formulation of equilibrium quantum-field theory
	The general Schwinger-Keldysh contour
	States and observables in the Heisenberg picture
	The interaction picture
	The entropy principle
	Thermal equilibrium and thermodynamic potentials

	Perturbation theory in thermal equilibrium
	The canonical statistical operator
	Thermal perturbation theory
	The generating functional for Green's functions
	The free contour propagator
	Feynman rules
	Renormalization


	Path-integral formulation
	Definition of the path integral
	Two-point functions along the real-time contour
	The two-point Green's function in equilibrium
	The free equilibrium propagator

	Thermodynamics of ideal Bose gases
	Path-integral evaluation of the partition sum
	The partition sum as functional determinant and the heat-kernel method
	Functional treatment of Bose-Einstein condensation

	Interacting field theory
	Generating functionals
	Loop expansion and effective action
	Perturbative evaluation of the effective potential and renormalization

	Fermions
	Path integrals for Dirac fermions
	Partion sum for non-interacting Dirac fermions
	The free propagator

	Gauge models
	The electromagnetic field


	Self-consistent Phi-derivable approximations
	Necessity of resummations
	Phi-derivable approximations
	Renormalization of Phi-derivable approximations
	Order lambda, m**2>0
	Order lambda, m**2>0

	Symmetry analysis of the 1PI and 2PI action functionals
	Linear O(N)-sigma model


	II Nonequilibrium Theory
	Classical transport theory
	Hamiltonian dynamics and Liouville's theorem
	The BBGKY Hierarchy
	The Boltzmann equation for a dilute gas
	The entropy and the H theorem
	Local equilibrium

	Noether's Theorem
	Symmetries of the action
	Noether currents and conserved quantities

	Imaginary-time formalism
	Bosons
	Bosonic Matsubara sums
	Imaginary time Green's function
	Mills representation in imaginary time
	Finite chemical potential
	Imaginary-time Feynman rules

	Fermions
	Fermionic Matsubara sums


	Wigner representation of two-point functions
	Definition and analytical properties
	Convolution theorem for Wigner transforms

	Bibliography


