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Chapter 1

Kinematics

1.1 Introduction

While the didactics of quantum theory is difficult, because its interpretation is difficult and partially still
controversial and one thus often has to use historical heuristic arguments and then teaches historically
interesting but overcome concepts, in the case of Special Relativity Theory (SRT) no such excuse can
be found. Here, the didactic sin is just due to the inertia of textbook authors to invent a better way
of teaching the subject instead of inventing a new way to introduce it and thus go back to the very
early original and textbook literature. This leads to an overemphasis of the “paradoxical” aspects of the
theory. Instead of concentrating on the naturalness of the theory, emerging from simple empirical facts
about electromagnetic phenomena as in Einstein’s original paper [Ein05], which is a masterpiece not
only in theoretical physics but also in scientific prose, one investigates the problems of parking a length
contracted car in too short garages or the different aging of twins, depending on their travel habits.
Also some other problems, long overcome due to the detailed mathematical analysis of the theory
by Minkowski [Min09], are overemphasized or unnecessarily introduced, among them the idea of a
“relativistic mass”, depending on the velocity of the particle or the Lorentz-transformation properties
of thermodynamic quantities like temperature and chemical potential of a gas.
In this article I try to give an introduction into SRT which is as simple as possible and try to avoid
an overemphasis of the unintuitive features by treating them with the full machinery of the covariant
Minkowski-space formulation. First, the space-time structure is postulated, using the arguments in
Einstein’s paper but formulating everything in modern four-vector notation a la Minkowski. The usual
kinematic effects (relativity of simultaneity, time dilation, and length contraction) will be discussed
within this framework and finally also the Lorentz boosts are derived. Minkowski diagrams with the
correct geometry, leading to apparently different scales on the temporal and spatial axes of different
inertial observers’ reference frames, based on the indefinite Minkowski product are introduced and the
kinematic effects illustrated with their help.
In the next Sect. the basic classical mechanics of a point particle is treated in a manifestly covariant way,
leading to the introduction of proper time and constraints to force laws.
After this, the classical statistics of many-particle systems and the ideal gas is introduced, leading to a
clear description of the thermodynamic quantities like temperature, entropy, chemical potential, etc.
Finally also the basics of relativistically covariant electrodynamics is introduced by “translating” the
(microscopic) Maxwell equations to the framework, showing that the original Maxwell equations have
already been a relativistic theory and thus must have lead inevitably to the discovery of the special-
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1. Kinematics

relativistic space-time structure.

1.2 The special-relativistic space-time model

Around 1900 one of the most pressing questions in theoretical physics was the question, how to deter-
mine the rest frame of the ether. The ether was thought to be a substance through which electromag-
netic waves, as very successfully described by Maxwell’s equations, should propagate as sound waves
through air. The only problem was that this ether should have very strange properties and that no-
body could find a clear empirical evidence for its existence. From a mathematical point of view the
problem was that Maxwell’s equations are not invariant under Galilei transformations, which describe
the change from one inertial reference frame to another, moving with constant relative velocity within
Newtonian mechanics. Various transformations, keeping the Maxwell equations of the free field in-
variant, were known already since the 19th century1, but only Einstein drew that conclusion that one
must reformulate the description of space and time in a comprehensive way, i.e., that the space-time
structure of all of physics is different from the Galilei-Newton space-time model successfully used for
almost 300 years before.
He started with two postulates:

1. The physical laws look the same in any inertial reference. An inertial reference frame is a frame,
where a body stays at rest or moves with constant velocity, if there are no forces acting on that
body.

2. The velocity of electromagnetics waves (particularly including light) in a vacuum is independent
of the velocity of the light source and that of the observer.

The first postulate is valid in Newtonian physics as well. Since Einstein considered the equivalence of
all inertial frames to be valid also for electromagnetic phenomena, which are correctly described by
Maxwell’s theory, the second postulate must hold true, since any inertial observer will describe the
same situation of emission of electromagnetic waves by the same Maxwell equations, and the Maxwell
equations contain the speed of light in the vacuum as a parameter2 [Jac98]. Tacitly, he also made another
assumption: Any inertial observer will find that in the physical space the laws of Euclidean geometry is
valid, which is true in Newtonian mechanics too. In a way this is also implicit in the assumption of the
invariance of Maxwell’s equations, which is formulated in terms of vector calculus in three-dimensional
Euclidean space.
With these postulates, we can infer the correct space-time description without using the full math of
the Maxwell equations. To this end we consider an inertial observer, Alice, sending a short light signal
from a point source. According to the above postulates the corresponding spherical wave propagates
with a constant speed c around the light source, which we locate at the origin of Alice’s Cartesian
coordinate system. If she sent her light signal at t = 0, the wave packet obeys the equation

c2 t 2− x⃗2 = 0. (1.2.1)

Here x⃗ is any point at the wave packet.
Now according the Einstein’s 2nd theorem another observer, Bob, moving with the constant velocity
v⃗ = cβ⃗with respect to Alice will also describe this light wave as a spherical wave from his origin, when

1see, https://en.wikipedia.org/wiki/History_of_Lorentz_transformations
2Here and in the following I use Heaviside-Lorentz units to discuss the Maxwell equations, which are the most natural

system of units, particularly in the context of the theory of relativity.
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1.2. The special-relativistic space-time model

we assume that he meets Alice at t = 0 at the origin of here Cartesian coordinate system, and the wave
packet will also travel with the same speed c as in Alice’s frame. This, however, can only be true if
not only the spatial coordinates change when transforming from Alice’s to Bob’s coordinates (and vice
versa) but also the time. If we thus denote Bob’s time and space coordinates with t and x⃗ respectively,
he will also describe the wave packet by the same equation (1.2.1), as Alice, but of course using his
space-time coordinates:

c2 t 2− x⃗
2
= 0. (1.2.2)

Further due to the first postulate, the transformations between Alice’s coordinates and Bob’s must be
linear, because the motion of any force-free body in her inertial reference frame with constant velocity
must be also described as such a motion in his inertial reference frame.
Now the most simple way to achieve this, is to use Minkowski’s idea of 1908 to describe space and time
together as a four-dimensional affine space with four-dimensional vectors. Alice uses her coordinates
to map these four-dimensional vectors to R4: (xµ) = (c t , x1, x2, x3). For reasons, which will become
clear in a moment we use upper indices µ ∈ {0,1,2,3} to label the time and space coordinates. The
four-vector itself is then given with help of the corresponding basis vectors eµ (with a lower index),
x = xµeµ, where we define that one has to sum over any pair of indices appearing twice in an equation
from 0 to 3 (Einstein’s summation convention). When now Alice defines a bilinear form with her
coordinates (xµ) as

x · y = x0y0− x⃗ · y⃗, (1.2.3)

then the Eq. (1.2.1) can be written as
x · x =: x2 = 0. (1.2.4)

Obviously for the here introduced “pseudo-Cartesian” basis vectors eµ the bilinear form is uniquely
defined by

eµ · eν = ηµν :=











1 for µ= ν = 0,
−1 for µ= ν, µ, ν ∈ {1,2,3},
0 for µ ̸= ν, µ, ν ∈ {0,1,2,3}.

(1.2.5)

With this definition we can write (1.2.3), using the Einstein summation convention again,

x · y = ηµν xµyν . (1.2.6)

Then (1.2.2) holds true, if we assume that Bob simply also uses pseudo-Cartesian basis vectors eµ, for
which also (1.2.5) holds. Then the linear transformation between Alice’s and Bob’s coordinates is given
by a matrix (Λµν ) ∈R4 such that

eν = eµΛ
µ
ν (1.2.7)

and the requirement that also Bob’s basis vectors are pseudo-Cartesian yields

ηρσ = eρ · eσ =Λµρeµ ·Λνσeν =Λ
µ
ρΛ
ν
σηµν . (1.2.8)

This is very similar to the definition of an orthogonal matrix in a four-dimensional Euclidean vector
space. The only difference is that in the above introduced bilinear form, the Minkowski product,
the spatial coordinates occur with a − sign, i.e., the Minkowski product is not positive definite as the
Cartesian product. We shall come back to the concrete form of these so-called Lorentz transformations
Λµν , but first it is worth to consider the “geometry” of the now defined affine space-time continuum,
the Minkowski space.
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1. Kinematics

To this end we consider the motion of point particles along the 1 axis of Alice’s reference frame. These
motions we can describe in a t -x1 or better, measuring time in terms of x0 = c t , in an x0-x1 plane.
We draw the corresponding axes for Alice’s frame in a Cartesian coordinate system, i.e., with the axes
perpendicular to each other, but one must keep in mind that this Euclidean angle in this plane has no
proper geometrical meaning in Minkowski space. This is so, because instead of the idea of a “distance”
between two points in the Euclidean plane, here we must use the Minkowski product to define a kind
of “distance” between points. However, this distance is not a proper one, because using the Minkowski
product (x− y) · (x− y), where x and y are arbitrary vectors in Alice’s x0-x1 plane, this “square of the
distance” can be positive, negative, and also vanish even, if x ̸= y. Obviously a light signal as introduced
above will always travel along such a null vector. For a light signal started at t = 0 in the origin, it
is described by the vector x ̸= 0 with x · x = 0. For the spacial basis vectors we have e j · b j = −1 for
j ∈ {1,2,3}. Thus we call any vector x with x ·x < 0 a space-like vector. The time axis is described by the
basis vector e0, which fulfills e0 ·e0 = 1, and thus any vector x with x · x > 0 is called a time-like vector.
Now any motion of a point-like object, moving along the e1 direction including the observer (which
we idealize as a point-like object as well) is described as a “world line” in the x0-x1 plane. Particularly
Alice’s world line is defined as being at rest at x1 = 0, and thus her world line is described by xA= λe0
with λ ∈R, i.e., Alice’s world line is just the vertical axis in our Minkowski diagram.
Now, the same arguments can be made with respect to Bob, whose world line is along his time-like
basis vector! In Alice’s reference frame, he is however moving with constant velocity v = βc along
Alice’s x1-axis, i.e., for Alice, his world line is given in terms of her space-time coordinates by

�

x0
B

x1
B

�

=
�

c t
βc t ,

�

(1.2.9)

where we assume that at t = 0 Bob is located at Alice’s origin, x1 = 0.
On the other hand, we can write this in a coordinate-independent way as

xB = λe0 = λuB, λ ∈R. (1.2.10)

The unit vector

(uµB ) = γ
�

1
β

�

with γ =
1

p

1−β2
(1.2.11)

is Bob’s four-velocity, and in (1.2.11) we have written the components with respect to Alice’s basis.
We can also easily construct Bob’s spacial basis vector in Alice’s 01-plane. It should fulfil the constraints

e1 · e0 = 0, e1 · e1 =−1 (1.2.12)

In Alice’s coordinates it is obviously given by

eµ1 = γ
�

β
1

�

. (1.2.13)

The unit vectors eµ particularly define Bob’s space-time units in the (c t , x1) plane, which can also be
found by drawing the temporal (upper sign) and spatial (lower sign) unit hyperbolas (c t )2− (x1)

2 =±1
in the corresponding Minkowski diagram (cf. Fig. 1.1)
Now it is already easy to discuss some simple kinematic effects. We begin with two events x and y
happening at the same place for Alice at times tx and ty . The time difference according to Alice and
Bob is given by

∆tA =
1
c

uA · (y − x) = ty − tx , ∆tB =
1
c

uB · (y − x) = γ∆tAlice, (1.2.14)
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1.2. The special-relativistic space-time model

Figure 1.1: Minkowski diagram, illustrating the construction of Bob’s space-time coordinates: The thick red
lines are Bob’s c t and x1 axis. The corresponding units are given by the blue hyperbolas (c t 2)−(x1)2 =±n2

with n ∈ {1,2, . . .}. We also draw the corresponding coordinate grid (light dotted red lines). The orange lines
c t =±x1 define the light cone in this space-time plane.

i.e., according to Bob’s clock the time between the two events is longer by a Lorentz-γ factor. This
phenomenon is known as time dilation. It is also clear that for Bob the events do not occur at the
same position. The distance can be calculated from Bob’s spatial coordinates of these events

(ȳ − x̄)1 =−e1 · (y − x) =−βcγ∆tA =−βc∆tB. (1.2.15)

This is indeed trivial, because during the time∆tB between the events Bob travels the distance βc∆tB
along the Alice’s 1-axis.
Next we consider a rigid rod at rest in Alice’s reference frame located in her 1-direction. The ends of
the rod are described in terms of Alice’s coordinates as

(xµ) =
�

λ1
x

�

, (yµ) =
�

λ2
y

�

, λ1,λ2 ∈R. (1.2.16)

She measures the spacial distance by reading off the coordinates at the same time tA, i.e., for λ2 = λ1,
and she finds

(y − x)µ =
�

0
y − x

�

⇒ LA = |y1− x1|. (1.2.17)

Now, Bob will measure a different length, if we define the length of the rod, which of course moves
with respect to his frame in the negative 1 direction, to be measured in the analogous way as for the

9



1. Kinematics

Figure 1.2: Left: Minkowski diagram illustrating the time-dilation effect. The time between two events at
the same place x1 = 0 in Alice’s frame appears longer as measured by Bob, for whom the events are of course
also not taking place at the same position. Right: Minkowski diagram illustrating the length-contraction
effect: The blue lines are the world lines of the end points of the rod, being at rest with respect to Alice’s
reference frame. She measures the length to be LA = 2 a.u. In Bob’s frame the rod moves, and its length is
measured by Bob by marking his coordinates of the endpoints simultaneously at his time t̄ = 0. Comparing
the corresponding length LB to the 2a.u. mark, labeled as 2̄ in his reference frame, one realizes that LB < 2 a.u.
One should realize that the unit length in the different reference frames are given by the intersection of the
corresponding observers temporal and spatial axes with the corresponding unit hyperbolae.

rod at rest: Bob reads off the spatial coordinates of the rod at the same time as measured by his clock!
To figure this out in terms of Alice’s coordinates (1.2.16), we first evaluate the time interval in terms of
the parameters λ1, λ2, and LA (assuming that y − x = LA> 0):

∆tB = uB · (y − x) = γ [(λ2−λ1)−βLA]
!= 0

⇒ λ2−λ1 =βLA.
(1.2.18)

The condition employed is that Bob measures the length by marking the spatial coordinates at the same
time. Now Bob’s spatial coordinate of the difference vector with this constraint on λ2−λ1 leads to

LBob =−ē1 · (y − x) = γLA(1−β2) =
LA

γ
=
Æ

1−β2LA. (1.2.19)

This phenomenon is known as length contraction, because Bob measures the length of the moving
rod to be shorter by an inverse Lorentz factor 1/γ =

p

1−β2.
Usually it is more convenient to define the length of an object as the length in its rest frame, i.e., LA in
our case. For an arbitrarily moving rod this proper length can be expressed in covariant terms. If the
four-velocity of the rod is u, in Alice’s coordinates its coordinates are obviously given by (uµ) = (1,0)T,
and thus the proper length can be evaluated with help of the Minkowski product between four-vectors,
because the spatial part of the difference vector in the rest frame of the rod (which is in our case Alice’s
reference frame) is given by

(y − x)S, proper = (y − x)− u[u · (y − x)] (1.2.20)

10



1.2. The special-relativistic space-time model

and thus the proper length of the rod by

L2
proper = L2

A =−(y − x)S, proper · (y − x)S, proper = [u · (y − x)]2− (y − x) · (y − x). (1.2.21)

We can also generalize Bob’s measurement of the length of a rod that is not oriented along Alice’s 1-axis
(assuming again the rod being at rest in Alice’s frame). In Alice’s frame the world lines of the end points
of the rod are now given by

(xµ) =
�

λ1
x⃗

�

, (yµ) =
�

λ2
y⃗

�

. (1.2.22)

The length of the rod in Alice’s frame is given by the proper distance (1.2.20), i.e., by

L2
A= (y⃗ − x⃗) · (y⃗ − x⃗). (1.2.23)

For Bob we have to repeat the calculation from above. In terms of Alice’s coordinates the time differ-
ence between the location of the endpoint of the rod is

uB · (y − x) = γ [(λ2−λ1)−β(y1− x1)] != 0 ⇒ (λ2−λ1) =β(y
1− x1), (1.2.24)

and the spatial components as measured by Bob by

y1− x1 =−e1 · (y − x) = γ [(y1− x1)−β(λ2−λ1)] =
y1− x1

γ
,

y2− x2 =−e2 · (y − x) =−e2 · (y − x) = y2− x2,

y3− x3 =−e3 · (y − x) =−e3 · (y − x) = y3− x3.

(1.2.25)

Here we have made use of the fact that we can choose as the additional two spatial vectors e2 and e3
for Bob Alice’s spatial vectors e2 and e3, because they are perpendicular to both e0 and e1. This choice
is in some sense natural, because we just don’t rotate the axes perpendicular to the direction of Bob’s
motion relative to Alice. From (1.2.25) we can evaluate the length of the rod as measured by Bob as

L2
B =
(y1− x1)2

γ 2
+(y2− x2)2+(y3− x3)2. (1.2.26)

This just means that for Bob the projection of the rod perpendicular to Bob’s velocity relative to Alice
is the same length as measured by Alice (i.e., in the rest frame of the rod), while the part parallel to
Bob’s velocity gets length contracted by an inverse Lorentz factor.
Finally also the simultaneity of events is a frame-dependent notion. Suppose from Alice’s point of view
there are two events at different places at the same time, t , i.e.,

(xµ) =
�

c t
x⃗

�

, (yµ) =
�

c t
y⃗

�

. (1.2.27)

Then Bob finds that the events are not simultaneous, but the time difference is given by

t =
1
c

uB · (y − x) =
γβ

c
(y1− x1). (1.2.28)

11



1. Kinematics

1.3 The twin “paradox”

The twin paradox is simply an example for the time dilation effect. Suppose Alice stays at rest within
her inertial reference frame and consider Bob traveling with a large speed. After some time t (as mea-
sured by Alice) they meet again and compare their clocks. Because of the time-dilation effect Bob’s
clock, measuring Bob’s proper time, is behind Alice’s, which means that Bob has aged less than Alice
during his travel. As an example, assume that Bob starts at t = 0 traveling on a circle in the x1x2-plane
with constant angular velocity. In Alice’s inertial frame this motion is given by the world line, which
we parametrize with Alice’s time, t , as a parameter,

[xµ(t )] =











c t
R[cos(ωt )− 1]

R sinωt
0











. (1.3.1)

Now it is easy to calculate Bob’s proper time as a function of Alice’s time,

τ =
1
c

∫ t

0
dt ′
√

√

√dxµ(t ′)
dt ′

dxµ(t ′)
dt ′

=
∫ t

0
dt ′
√

√

√

1− ω2R2

c2
= t

√

√

√

1− ω2R2

c2
. (1.3.2)

This means that Bob is aging slower than Alice during his travel by a factor given by the square route
which is 1/γ =

p

1− v2/c2 with Bob’s speed v =ωR.
Of course, this treatment implies that the time-dilation effect can be calculated by adding the incremen-
tal proper-time elements, using a sequence of instantaneous inertial reference frames also for accelerated
motion. Indeed, this assumption has been verified by comparing the lifetime of various instable par-
ticles running at relativistic speeds in storage rings to their lifetime when they are at rest. Lifetime
measurements for unstable particles flying with constant velocity also confirm the relativistic time-
dilation factor3.

1.4 General Lorentz transformations

Now we go back to the question, how to transform Alice’s to Bob’s coordinates. We start with the
rotation free boosts, which we have already employed in the previous section. Suppose again that Bob
is moving with a constant speed βc along Alice’s x1-axis. Then by definition a rotation-free Lorentz
transformation is defined as the linear map from Alice’s to Bob’s frame, when Bob uses the basis vectors,
given in terms of Alice’s coordinates

(eµ0 ) = γ











1
β
0
0











, (eµ1 ) = γ











β
1
0
0











, (eµ2 ) =











0
0
1
0











, (eµ3 ) =











0
0
0
1











. (1.4.1)

3For references, see the Wikipedia entry on this subect:
https://en.wikipedia.org/wiki/Time_dilation_of_moving_particles
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1.4. General Lorentz transformations

Assuming that the origin of Bob’s spatial reference frame coincides at Alice’s at Alice’s time t = 0 and
that then also Bob’s time t = 0, we then find for the Bob’s coordinates of the event x

(xµ) =











e0 · x
−e1 · x
−e2 · x
−e3 · x











=











γ (c t −βx1)
γ (x1−βc t )

x2

x3











. (1.4.2)

This can be written with help of the Lorentz-transformation matrix as

xµ =Λµν x
ν with (Λµν ) = Λ̂=









γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1









. (1.4.3)

It is easy to see that we can generalize this to a motion with a velocity cβ⃗ in a a self-explaining (1+3)-
dimensional notation as

B̂(β⃗) =
�

γ −γβ⃗T

−γβ⃗ (γ − 1)β̂β̂T+13

�

(1.4.4)

Here β̂= β⃗/|β⃗|, and one should note that

(β̂β̂T) j k = β̂
j β̂k . (1.4.5)

These so-called rotation-free Lorentz boosts are still not the complete set of Lorentz transformations,
which can be defined as the entire matrix group that leaves the Minkowski product invariant, i.e., for
which

ηµν x
µxν = ηµν x

µxν with xρ =Λρµxµ. (1.4.6)

Since this must hold true for any (xµ) ∈R4, the sufficient and necessary condition is

ηρσΛ
ρ
µΛ
σ
ν = ηµν (1.4.7)

or in matrix notation
Λ̂Tη̂Λ̂= η̂. (1.4.8)

This implies that all these matrices build a group, the Lorentz group, because if one has two Lorentz-
transformation matrices, fulfilling (1.4.8) also its product fulfills this equation. Indeed, because of η̂2 =
1 we have

(Λ̂1Λ̂2)
Tη̂(Λ̂1Λ̂2)η̂= Λ̂

T
2 Λ̂

T
1 η̂Λ̂1Λ̂2 = Λ̂

T
2 η̂Λ̂2 = η̂. (1.4.9)

Now obviously, despite the general boosts (1.4.4) also all the spatially orthogonal matrices (rotations
and space reflections) that are of the form

R̂=
�

1 0⃗T

0⃗ Ô

�

, (1.4.10)

where 0⃗T = (0,0,0) and Ô ∈ O(3) is an orthogonal R3×3 matrix and also all combinations of such
matrices.
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1. Kinematics

One can show that any Lorentz matrix can be decomposed in two orthogonal spatial transformations
and a boost in 1-direction in the form

Λ̂= R̂1B̂(βe⃗1)R̂2. (1.4.11)

At the first glance one might think that thus the Lorentz transformations are parametrized by 7 pa-
rameters, because any rotation matrix is parametrized with an angle and an R3-unit vector, giving the
direction of the rotation according to the right-hand rule and there is an additional parameter β, the
boost velocity, but that is not true.
To see this, we give a geometric proof of (1.4.11). To that end we think again about two inertial ob-
servers, Alice and Bob, using their Minkowski-space basis vectors. Compared to the derivation of the
rotation-free boosts above we just have to generalize to the case that both use arbitrary spatial Cartesian
basis vectors for their three space-like basis vectors. The only invariant quantity in the game is Bob’s
four-velocity vector uB with respect to Alice. Now we can construct the corresponding Lorentz matrix
of the form (1.4.11) by transforming her basis vectors successively in Bob’s: First Alice uses a rotation
matrix R̂−1

1 such that Bob’s three-velocity vector β⃗B = u⃗B/u
0
B points along her new 1-Axis, leading to

the new basis system, where Alice is still at rest

e′µ = (R
−1
2 )
ρ
µeρ. (1.4.12)

Obviously one only needs only two angles to parametrize this rotation, namely the polar and azimuthal
angle of Alice’s old 1-axis with respect to the direction β̂ of Bob’s three-velocity.

Then she performs a boost B̂−1(βe⃗ ′1) to transform into Bob’s rest frame, leading to another Lorentz
basis

e′′µ =
�

B−1(βe⃗ ′1)
�ρ
µ

e′ρ. (1.4.13)

In the corresponding reference frame Bob is at rest, but the spatial vectors of this basis can be in an
arbitrary orientation relative to the spatial axes he has chosen. Thus he needs to perform another
rotation, parametrized by the three Euler angles between the spatial e′′µ vectors (perhaps followed by a
space reflection, if Bob chooses another orientation than Alice for his spatial Cartesian basis system)
to get to his originally chosen basis vectors

eµ = (R
−1
1 )
ρ
µe′′ρ . (1.4.14)

Carefully putting the three steps (1.4.12-1.4.13) together, one finally gets

eµ = (R̂
−1
2 B̂(βe⃗1)R̂

−1
1 )
ν
µeν ⇒ eµ = (R̂1B̂(βe⃗1)R̂2)

ν
µe =Λνµe. (1.4.15)

We see that we need only two parameters for the rotation to adjust Alice’s spatial basis vectors such that
Bob’s velocity points in Alice’s new 1-direction, then the boost speedβ and a full (proper or improper)
rotation, characterized by three parameters like the Euler angles, to get Bob’s spatial basis vectors in
the ones he has arbitrarily chosen. Thus the most general Lorentz transformation is characterized by
6 parameters.
Another way to characterize a boost is with help of the so-called rapidity. The idea is based on the
point of view that the boost is a kind of “hyperbolic rotation” in the 01-plane (for a boost in Alice’s 1
direction), directly reflecting the demand that Alice’s and Bob’s reference frames are “orthonormalized”
in the sense of the Minkowski product. This is reflected by the property of the Lorentz matrix that
its columns as well as its rows can be read as the components of the corresponding four vectors being
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1.5. Addition of velocities

orthonormalized in the sense of the Minkowski product. For the boost (1.4.3) that means we can
parametrize the matrix with help of the rapidity η via

Λ0
0 = γ = coshη, Λ0

1 =Λ
1

0 =−βγ =− sinhη, Λ1
1 = coshη. (1.4.16)

For the three-velocity v = βc of Bob with respect to Alice’s frame of reference this parametrization
leads to

β=
Λ1

0

Λ0
0
=

sinhη
coshη

= tanhη, (1.4.17)

and the Lorentz matrix reads

(Bµ1 ν ) =









coshη − sinhη 0 0
− sinhη coshη 0 0

0 0 1 0
0 0 0 1









(1.4.18)

It is easy to show that two Lorentz boosts in the same direction leads again to a Lorentz boost in this
direction. Multiplying two Lorentz-boost matrices of the form (1.4.17) indeed leads to

B̂1(η1)B̂2(η2) = B̂1(η1+η2), (1.4.19)

where we have made use of the identities

sinh(η1+η2) = coshη1 sinhη2+ sinhη1 coshη2, cosh(η1+η2) = coshη1 coshη2+ sinhη1 sinhη2.
(1.4.20)

The boosts in a fixed direction thus build an Abelian subgroup of the Lorentz group group, because
obviously not only is the composition of two such boosts another boost but according to (1.4.19) one
also has

B̂1(η1)B̂1(η2) = B̂1(η2)B̂1(η1) = B̂1(η1+η2). (1.4.21)

We note without derivation that this does not hold true for the composition of boosts with boost
velocities in different directions! Such boosts are neither commutative nor do they lead to another pure
boost in whatever direction, but there is always an additional rotation, the so-called Wigner rotation
involved.

1.5 Addition of velocities

Here we investigate the question of the velocity of a point particle in different frames of reference. Let
us consider a point particle moving with three-velocity

−→
w with respect to Bob’s frame of reference and

ask the question, which velocity Alice will measure. Again we assume that Bob moves with constant
velocity v⃗ =βc e⃗1 along Alice’s 1 axis and the origin of space and time coordinates coincide in the two
reference frames. The most easy way to answer this question obviously is to translate everything into
manifestly covariant four-vectors and apply the Lorentz boost. To characterize the particle’s velocity
we again use the idea of its four-velocity, given by its components with respect to Bob’s reference frame

(W
µ
) = γw

 

1−→
β w

!

, with
−→
β w =

1
c
−→
w , γw =

1
p

1−β2
w

. (1.5.1)
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1. Kinematics

The components of this four-vector with respect to Alice’s frame is found by applying (1.4.6) with
Λ̂= B̂1(v)

(W µ) = Λ̂−1(W
µ
) = B̂1(−v)W

µ
= γw















γv (1+βvβ
1
w )

γv (βv +β
1
w )

β
2
w

β
3
w















. (1.5.2)

Thus for the three-velocity with respect to Alice’s frame of reference we find

w⃗ = c
W⃗
W 0
=

c

1+βvβ
1
w









βv +β
1
w

β
2
w/γv

β
3
w/γv









. (1.5.3)

As we can see that is a pretty complicated law of “addition of two velocities”. This is due to the fact
that for the component in direction of the Bob’s velocity we have the effect of all three basic kinematic
effects, i.e., time dilation, length contraction and relativity of simultaneity, while for the perpendicular
component there is no length contraction.
We can write (1.5.3) with help of the three-vectors in the form

β⃗w =
1
c

w⃗ =
1

1+ β⃗v ·
−→
β w



β⃗v +
1
γv

−→
β w +

�

1− 1
γv

�

β⃗v
β⃗v ·
−→
β w

β2
v



 , (1.5.4)

which can be rewritten after some algebra as

β⃗w =
1

1+ β⃗v ·
−→
β w

�

β⃗v +
−→
β w +

γv

1+ γv
β⃗v × (β⃗v ×

−→
β w )

�

. (1.5.5)

For the magnitude we find, again after some algebra,

|β⃗w |=
1

1+ β⃗v ·
−→
β w

√

√

√

�

β⃗v +
−→
β w

�2

−
�

β⃗v ×
−→
β w

�2

. (1.5.6)

1.6 Relative velocity

Closely related to the addition theorem of velocities, detailed in the previous section, is the definition
of relative velocity between two point particles. This is needed later to give a Poincaré-invariant defini-
tion of cross sections for two-particle collisions and a covariant formulation of the Boltzmann transport
equation in the relativistic kinetic theory of gases.
The relative velocity of a particle 2 relative to a particle 1 is defined as particle 2’s velocity in the rest-
frame of particle 14. To obtain the relative velocity we use the same idea as in the previous section. Let

4Of course, we have to assume that particle 1 has a mass m1 > 0, because a massless particle has no rest frame.
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1.7. The Lorentz group as a Lie group

the four-velocities of particle 1 and particle 2 with respect to an arbitrary inertial reference frame be
given as

uµ1 =
1

Ç

1− β⃗2
1

�

1

β⃗1

�

, uµ2 =
1

Ç

1− β⃗2
2

�

1

β⃗2

�

. (1.6.1)

Then the rotation-free Lorentz bost to the rest frame of particle 1 is given by

(Λµν ) = B̂(β⃗1) =
�

γ1 −γ1β⃗
T
1

−γ1β⃗1 13+(γ1− 1)β̂1β̂
T
1

�

. (1.6.2)

Indeed, it is easily seen by direct calculation that

(Ũµ) = (ΛµνU
ν ) = (1,0,0,0)T. (1.6.3)

This means we can use the result of the previous section by setting W
µ
= uµ2 or

⃗
βw = β⃗2 and β⃗v =

−β⃗1. Then we get from (1.5.5)

β⃗rel =
1

1− β⃗1 · β⃗2

�

β⃗2− β⃗1+
γ1

1+ γ1
β⃗1× (β⃗1× β⃗2)

�

(1.6.4)

and from (1.5.6)

|β⃗rel|=
1

1− β⃗1 · β⃗2

È

�

β⃗2− β⃗1

�2−
�

β⃗1× β⃗2

�2
. (1.6.5)

1.7 The Lorentz group as a Lie group

In this section we investigate the question, how to build finite Lorentz transformations successively
from “infinitesimal ones”. For that purpose we consider a general Lorentz transformation, which de-
viates from the unity matrix only by a small matrix

Λµν = δ
µ
ν +δω

µ
ν . (1.7.1)

Now we apply the characterization of the Lorentz transformation as a “pseudo-orthonormal transfor-
mation”, which keeps the Minkowski product invariant (1.4.7) up to first order in the δω̂:

ηµνΛ
µ
ρΛ
ν
σ = ηρσ +(δωρσ +δωσρ)+O (δ2) != ηρσ , (1.7.2)

where we have used the usual rule for lowering indices,

δωρσ = ηρµδω
µ
σ . (1.7.3)

So from (1.7.2) up to first order we must have

δωρσ =−δωσρ. (1.7.4)

So an infinitesimal Lorentz transformation is characterized by an anti-symmetric matrix δωρσ with
(4 · 4− 4)/2= 6 independent real parameters.
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1. Kinematics

For the original infinitesimal matrices with an upper first and a lower second index we have

δωµν = η
µρδωρν =−ηµρδωνρ. (1.7.5)

Now we split these matrices into temporal and spatial components. Obviously we have

δω0
j = η

0ρδωρ j = δω0 j , δω j
0 = η

jρδωρ0 = η
j kδωk0 =−ω j 0 =+ω0 j . (1.7.6)

This means that δω0
j = δω

j
0. Thus we can build the mixed temporal-spatial components of the

matrix as linear combinations of the three symmetric matrices

�

(K̂1)µν
�

=









0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0









,
�

(K̂2)µν
�

=









0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0









,
�

(K̂3)µν
�

=









0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0









. (1.7.7)

Putting these matrices formaly in a three-vector with matrix-valued components
ˆ⃗
K we see that the

spatio-temporal part of the infinitesimal Lorentz-transformation matrix can be written as

B̂(δβ⃗) = 14−δβ⃗ · ˆ⃗K . (1.7.8)

It is intuitively clear that this corresponds to an infinitesimal boost with the boost-velocity vector δβ⃗.
To verify this we need to expand (1.4.4) up to first order around β⃗= 0:

B̂(δβ⃗) = 14+δβ⃗ ·
 

∂

∂ β⃗
B̂(β⃗)

!

β⃗=0

+O (δ2). (1.7.9)

It is, however simpler, to directly look at the full matrix itself instead of calculating the cumbersome
matrix-valued gradient in (1.7.10). Since

γ =
1

q

1−δβ⃗2
= 1+O (δ2) (1.7.10)

we indeed simply have

B(δβ⃗) =
�

1 −δβ⃗T

−δβ⃗ 13

�

+O (δ2)≡ 14−δβ⃗ · ˆ⃗K +O (δ2). (1.7.11)

For the purely spatial components of the infinitesimal matrix δω̂ we find

δω j
k = η

jρδωρk =−δω j k , ⇒ δω j
k =−δω j k = δωk j =−δωk

j , (1.7.12)

i.e., the spatial part is antisymmetric and of course refers to rotations. It can be built from the three
antisymmetric matrices

�

(J 1)µν
�

=









0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0









,
�

(J 2)µν
�

=









0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0









,
�

(J 3)µν
�

=









0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0









. (1.7.13)
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1.7. The Lorentz group as a Lie group

To see that one creates general rotations from that we investigate, how to obtain the finite transforma-
tions from the infinite ones. It is suggestive to think that a finite rotation of a three-vector around an
axis given by a unit vector n⃗ by a rotation angle ϕ can be built by successive infinitesimal rotations

−δϕn⃗ · ˆ⃗J . This we can write in terms of a differential equation for

x ′(ϕ) = R̂(ϕn⃗)x. (1.7.14)

Assuming that our idea is correkt this differential equation should read

d
dϕ

x ′ =−n⃗ · ˆ⃗J x. (1.7.15)

Given the initial-value condition x⃗ ′(ϕ = 0) = x⃗ the formal solution reads

x ′(ϕ) = exp(−ϕn⃗ · ˆ⃗J )x. (1.7.16)

The matrix-exponential function is defined by the corresponding series

exp M̂ =
∞
∑

k=0

1
k!

M̂ k , M̂ 0 = 1. (1.7.17)

To get this series for (1.7.16) we need the matrix (n⃗ · ˆ⃗J )k . We note that all the matrix multipilications
deal only with the purely spatial 3×3-submatrices of the 4×4 Minkowski matrices (1.7.13). For these
submatrices we can write

(n⃗ · ˆ⃗J ) j k = n iεi j k , (1.7.18)

where εi j k is the usual three-dimensional Levi-Civita symbol, ε123 = 1 and totally antisymmetric under
permutation of its indices. Then we have

[(n⃗ · ˆ⃗J )2] j
k = n iεi j k ′n i ′εi ′k ′k =−δ j k + n i n j . (1.7.19)

So we have

(n⃗ · ˆ⃗J )2k = (−1)k
�

0 0
0 13− n⃗n⃗T

�

= (−1)k P̂⊥(n⃗), k ∈ {1,2,3, . . .} (1.7.20)

and
(n⃗ · ˆ⃗J )k = (−1)k+1n⃗ · ˆ⃗J , k ∈ {0,1,2, . . .}. (1.7.21)

Plugging this into (1.7.16) and writing out the series (1.7.17) for the matrix exponential for this case,
one finally obtains

D̂(ϕ⃗) = exp(−ϕn⃗ · ˆ⃗J ) = P̂∥(n⃗)+ cosϕP̂⊥(n⃗)− sinϕ(n⃗ · ˆ⃗J ). (1.7.22)

Applying this to a four-vector,

D̂(ϕ⃗)x =
�

x0

n⃗(n⃗ · x⃗)+ cosϕ[x⃗ − n⃗(n⃗ · x⃗)]− sinϕ(n⃗× x⃗)

�

, (1.7.23)

which indeed describes the change of coordinates when one rotates the spatial basis around the axis n⃗
with an rotation angle ϕ.
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1. Kinematics

Now we consider the Lorentz boosts in a direction n⃗ in the analogous way, using the generators (1.7.7).
First we note that

n⃗ · ˆ⃗K =
�

0 n⃗T

n⃗ 03.

�

, (n⃗ · ˆ⃗K)2 = P̂0+ P̂∥(n⃗) (1.7.24)

with

P̂0 =
�

1 0
0 03

�

. (1.7.25)

This implies

(n⃗ · ˆ⃗K)k =
(

n⃗ · ˆ⃗K for k ∈ {1,3,5, . . .},
P̂0+ P̂∥(n⃗) for k ∈ {2,4,6, . . . .}.

(1.7.26)

Then the exponential series for a boost reads

exp(−ηn⃗ · ˆ⃗K) = coshηP̂0− sinhηn⃗ · ˆ⃗K +(coshη− 1)P̂∥(n⃗). (1.7.27)

Setting γ = coshη, β= sinhη, we find indeed the matrix for a rotation-free boost

B̂(β⃗) = exp[−η(|β⃗|)n⃗ · ˆ⃗K] with η(β) = artanhβ. (1.7.28)

It is clear that the rapidity is the natural parameter for the Lorentz boost, when built from successive
infinitesimal Lorentz boosts in the same direction, because the corresponding infinitesimal rapidities
add but not the infinitesimal speeds. However, for an infinitesimal boost we have

η(δβ)n⃗ = artanhδβn⃗ = δβ+O (δβ3)n⃗ = δβ⃗+O (δβ3). (1.7.29)

So up to O (δβ3) we can identify η(|δβ⃗|)n⃗ ≃ δβ⃗.
As we need it in the next section we write down the matrix for an infinitesimal boost followed by an
infinitesimal rotation:

B(δβ⃗)R(δϕ⃗) = (14−δβ⃗ · ˆ⃗K)(14−δϕ⃗ · ˆ⃗J ) = 14−δβ⃗ · ˆ⃗K −δϕ⃗ · ˆ⃗J = R(δϕ⃗)B(δβ⃗), (1.7.30)

where we have only kept expressions in linear order of the infinitesimal parameters δβ⃗ and δϕ⃗. Writ-
ing this out leads to

B(δβ⃗)R(δϕ⃗) = R(δϕ⃗)B(δβ⃗) = 14+
�

0 −δβ⃗T

−δβ⃗ δϕiεi j k e⃗ j e⃗
T
k

�

. (1.7.31)

1.8 Fermi-Walker transport and Thomas precession

Let xµ(s) denote an arbitrary time-like curve in spacetime, where the xµ are components of the space-
time four-vector with respect to an arbitrary inertial Minkowski frame. One can think of this spacetime
curve as the worldline of an arbitrarily moving massive particle. The parameter s is chosen via the in-
variant increment

ds = cdτ =
q

dxµdxµ. (1.8.1)

Then the four-velocity is given by

uµ =
d
ds

xµ. (1.8.2)
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1.8. Fermi-Walker transport and Thomas precession

It is a time-like unit tangent vector along the worldline, i.e., by definition one has uµuµ = 1= const.

The idea of Fermi-Walker transport is to construct a set of local inertial rest frames along the worldline
by a transport prescription for arbitrary vectors along the world line such that

(a) uµ is transported as itself along the curve, since it defines at any instant the time-like basis vector
e′0 = u of the comoving instantaneous inertial restframe of the particle.

Any Minkowski-unit vector nµ with nµuµ = 0 (which is necessarily space-like since it is Min-
kowski orthogonal to the time-like vector, i.e., nµnµ = −1) should be transported along the
worldline from s to s + ds such that it stays

(b) Minkowski-orthogonal to uµ,

(c) stays a spacelike Minkowski-unit vector, and

(d) it is unrotated with respect to the local inertial restframe at s .

The transport prescription fulfilling the properties (a)-(d) defines the Fermi-Walker transport.
Then it is easy to construct the set of instantaneous non-rotating Minkowski bases: One just starts at
the point xµ0 = xµ(s0) with an arbitrary Minkowski basis n′(0)(s0) = u(s0) and n( j )(s0)

′ ( j ∈ {1,2,3})
such that n′(µ)(s0) · n′(ν)(s0) = ηµν and then defines nµ(s) by Fermi-walker transporting this basis along
the curve to obtain a locally rotation free basis along the entire curve.
The differential equation for Fermi-Walker transport of vectors is easily derived making use of the Lie
algebra of the Lorentz group discussed in Sect. 1.7. The unit-tangent vector u within an infinitesimal
step ds changes by

du = dsa, a =
d
ds

u. (1.8.3)

Obviously it obeys
u · a = 0, (1.8.4)

because u · u = 1= const, and thus is spacelike and Minkowski orthogonal to u. Now the vector n(s)
should be transported along the infinitesimal path such that it is not rotated within the local inertial
restframe at the instance s and still stays perpendicular to u. Obviously this is achieved if we demand
that n is transported along the worldline from s to ds such that it undergoes an infinitesimal rotation-
free Lorentz boost in the u-a plane, i.e., according to (1.7.7) and (1.7.8) such that

dnµ = ds(aµuν − uµaν )n
ν (1.8.5)

or
dn
ds
= a(u ·n)− u(a ·n). (1.8.6)

For u · n = 0 it is immediately clear that dn = −ds u(a · n) is along the original time direction of the
local rest frame at instant s , i.e., it doesn’t change its spatial components wrt. this frame, and thus
particularly does not undergo any rotation relative to this frame. Applying (1.8.7) to u itself one gets
du/ds = a as it must be since that is the definition of a. So with Fermi-Walker transporting u(s0) leads
to u(s)when integrating the equation (1.8.6) for n= u. Further for any n Fermi-Walker transport does
not change the Minkowski length of this vector, because multiplying (1.8.6) with n leads to

n · dn
ds
=

1
2

d
ds
(n ·n) = 0. (1.8.7)
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1. Kinematics

Last but not least also the scalar product u · n stays constant for any Fermi-Walker transported vector
n:

d
ds
(n · u) = dn

ds
· u +n · du

ds
= [a(u ·n)− u(a ·n)] · u +n · a. (1.8.8)

Because of (1.8.4) and u · u = 1 this finally indeed gives

d
ds
(n · u) = 0. (1.8.9)

Thus, the Fermi-Walker transport defined for an arbitrary set of vectors n(s) along the worldline via
the differential equation (1.8.6) obeys the properties (a)-(d).
An important application of Fermi-Walker transport is the question, how a classical spin of a particle
behaves, if this particle is moving along an arbitrary time-like curve and if no torque is applied to it.
It is clear that then it should not rotate with respect to the rotation free instantaneous rest frames
defined by Fermi-Walker transport as described above. This implies that the spin itself is Ferm-Walker
transported. Since by definition spin is Minkowski-orthogonal to u its equation of motion is given by
(1.8.6),

dΣ
dτ
=−u

�

du
dτ
·Σ
�

, (1.8.10)

where we used s = cτ to write the equation in terms of proper time rather than Minkowski length of
the curve.
Now we want to show that the spin undergoes rotation with respect to an instantaneous inertial rest
frame that is defined as rotation free with respect to an arbitrary fixed inertial frame. Let us denote
components of the spin-four-vector with respect to this fixed inertial frame as Σ= (Σµ) and that with
respect to this rest frame asΣ∗ = (0, Σ⃗∗), where the latter holds true because of the relativistic definition
of spin in (any!) local rest frame of the particle. Thus we have

u ·Σ= u ·Σ= 0. (1.8.11)

Now we want to evaluate dΣ⃗∗/dτ to see that indeed this three-vector undergoes a rotation. Because
of the constraint (1.8.11) it is sufficient to consider the spatial part of (1.8.10), because we can write
(1.8.11) as

Σ0 =
u⃗
u0
· Σ⃗= β⃗ · Σ⃗, (1.8.12)

where we have used that u0 = γ and u⃗ = γβ⃗, where β⃗ is the three-velocity of the particle in the
fixed intertial frame. Now we want write the spatial part of (1.8.10) in terms of Σ⃗ and β⃗. To simplify
notation, we write a dot for the derivative with respect to proper time, τ:

˙⃗
Σ=−u⃗(γ̇Σ0− ˙⃗u · Σ⃗) =−u⃗(γ̇ β⃗ · Σ⃗− ˙⃗u · Σ⃗). (1.8.13)

We note that

γ̇ =
d

dτ
1

q

1− β⃗2
= γ 3β⃗ · ˙⃗

β, ˙⃗u = γ̇ β⃗+ γ
˙⃗
β. (1.8.14)

Plugging this into (1.8.13) after some algebra one finds

˙⃗
Σ= γ 2(

˙⃗
β · Σ⃗)β⃗. (1.8.15)
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1.8. Fermi-Walker transport and Thomas precession

Now we use (1.4.4) to evaluate Σ⃗∗, i.e., the spin components in the instantaneous rest frame which is
unrotated with respect to the fixed inertial frame. With (1.8.12) we find

Σ∗ =
�

0

Σ⃗∗

�

=
�

γ −γβ⃗T

−γβ⃗ (γ − 1)/β2β⃗β⃗T+1

��

β⃗ · Σ⃗
Σ⃗

�

=
�

0

Σ⃗− γβ⃗(β⃗ · Σ⃗)/(γ + 1)

�

. (1.8.16)

For the final expression we have used

γ − 1
β2
− γ = γ (1−β

2)− 1
β2

=
1/γ − 1
1− 1/γ 2

=−γ (1− γ )
1− γ 2

=− γ

γ + 1
. (1.8.17)

Thus we have with (1.8.15)

˙⃗
Σ∗ =

γ 2β⃗

γ + 1
(

˙⃗
β · Σ⃗)− (β⃗ · Σ⃗) d

dτ

 

γβ⃗

γ + 1

!

=
β⃗γ 2

γ + 1

�

(
˙⃗
β · Σ⃗)− γ

γ + 1
(

˙⃗
β · β⃗)(β⃗ · Σ⃗)

�

− γ

γ + 1
(β⃗ · Σ⃗) ˙⃗

β,

(1.8.18)

where we have used

γ̇ =
d

dτ
γ

1+ γ
=

γ̇

(1+ γ )2
(1.8.14)
=

γ 3

(1+ γ )2
˙⃗
β · β⃗. (1.8.19)

The next step is to express the scalar products involving Σ⃗ as expressions with Σ⃗∗. From (1.8.16) we
find

β⃗ · Σ⃗∗ = (β⃗ · Σ⃗)
�

1− γβ
2

γ + 1

�

= (β⃗ · Σ⃗)1+ 1/γ
γ + 1

=
β⃗ · Σ⃗
γ
⇒ β⃗ · Σ⃗= γ (β⃗ · Σ⃗∗). (1.8.20)

Further we have, again with (1.8.16)

˙⃗
β · Σ⃗∗ = ˙⃗

β · Σ⃗− (β⃗ · ˙⃗
β)(β⃗ · Σ⃗) γ

γ + 1
. (1.8.21)

Now we use this for the bracket in the first term in (1.8.18) and apply (1.8.20) in the second term, and
finally we obtain

˙⃗
Σ∗ =

γ 2

γ + 1
[(

˙⃗
β · Σ⃗∗)β⃗− (β⃗ · Σ⃗∗) ˙⃗

β] =
γ 2

γ + 1
(

˙⃗
β× β⃗)× Σ⃗∗ = Ω⃗T× Σ⃗∗, (1.8.22)

i.e., in the instantaneous restframe that is rotation free to the fixed inertial frame the spin rotates with
the Thomas precession angular velocity,

Ω⃗T =
γ 2

γ + 1
˙⃗
β× β⃗ ∼=

|β⃗|≪1

1
2

˙⃗
β× β⃗. (1.8.23)

The reason for this rotation is that β⃗(τ) and β⃗(τ + dτ) need not be collinear, and thus the Lorentz
boosts ΛB[β⃗(τ)] can be seen built from infinitesimal Lorentz boosts in different directions, but these
lead not to a pure boost again but to a boost followed by a rotation, the socalled Wigner rotation, and
this additional rotation figures into (1.8.22) leading to the Thomas precession with angular velocity
(1.8.23).
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1. Kinematics

This was important to derive the correct gyromagnetic factor of the electron in non-relativistic quan-
tum theory, leading to the correct fine structure (due to spin-orbit interaction) of the spectral lines of
hydrogen with help of the Pauli equation. Although the Thomas precession was already derived by
Silberstein [Sil14], it had to be rediscovered by Thomas to solve the puzzle concerning a factor of 1/2
in the corresponding Hamilton operator of the spin-orbit interaction [Tho26].
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Chapter 2

Mechanics

2.1 Particle dynamics

In this Section we leave the purely kinematic considerations and start to formulate dynamical laws. As
in Newtonian mechanics the most simple dynamical system is the motion of a single particle in some
field. However, in relativistic physics the notion of fields becomes much more important and in some
sense a fundamental issue, while in Newtonian mechanics nothing prevents the assumption of “action
at a distance”, i.e., forces among point particles, depending only on the positions of these particles at
a given instant of time. In the theory of relativity this concepts becomes problematic, because what it
means is that, if one defines the “action at a distance” in Alice’s frame of reference, due to the relativity
of simultaneity, this action is not simultaneous in Bob’s, moving with respect to Alice’s reference frame.
In any case the relation between the particles due to the action at a distance is among space-like separated
events. It is also not clear, in which sense the interaction between the particles is “causal”, because if
in one frame a space-like distance may have a positive time component it can have a negative one in
another frame.
The way out is to assume that forces are acting on a point particle only through the mediation of
fields, i.e., only locally at the space-time position of this point particle. The mutual interaction is then
understood by the creation of the field due to one or more particles at the place of the point particle
under consideration, and the fields themselves are described by dynamical laws, depending on their
various sources.
The paradigmatic example for such a model is Maxwell electromagnetism. As it turned out through
the work of many physicists at the end of the 19th and the beginning of the 20th century, culminating
in Einstein’s famous paper of (1905) [Ein05], Maxwell electrodynamics is a relativistic classical field
theory of “massless four-vector fields” (see Sect. 4.1).
In this Section we restrict ourselves to an approximation, where we consider the motion of a single
particle in a given electromagnetic field. We can assume that the latter is somehow caused by some given
somehow far away charge-current distributions, which can be considered as unaffected by the charge
under consideration. In addition we assume that we can also neglect the radiation of electromagnetic
waves from this “test charge”. This leads to the quite difficult problem of radiation reaction, which is
beyond the scope of this introduction to Special Relativity.
First of all it is convenient to represent the motion of our test particle in a manifestly covariant way.
There are two ways to achieve this goal: The first is to start from a description of the particle as a
trajectory in Minkowski space x(λ), where λ is an arbitrary scalar world-line parameter. The second
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2. Mechanics

is to use Hamilton’s principle and making the action functional a scalar, which then leads to Lorentz
covariant equations, which are however, not manifestly covariant. The third way is to combine both
ideas, leading to manifestly covariant equations of motion.
The first ansatz, however leads to the problem that instead of the usual three spatial components x⃗
with respect to some inertial reference frame we introduce four (apparently independent) degrees of
freedom. On the other hand instead of an arbitrary world-line parameter one can use the particle’s
proper time1. In terms of the coordinate time of an arbitrary inertial reference frame it is defined by

ds = cdτ = dt

√

√

√

ηµν
dxµ

dt
dxν

dt
, (2.1.1)

which is obviously a Lorentz scalar. From its definition it follows that derivatives of x(τ), with respect
to τ always gives four-vectors, but the first derivative is constrained, because

dx
dτ
= c

dx
ds
= cu, (2.1.2)

where u is the normalized four-velocity introduced above. But now we indeed have the constraint

dx
dτ
· dx

dτ
= c2, (2.1.3)

as follows from the definition of the proper time (2.1.1). This shows that of the four components of
the four-velocity only three are independent and thus we can easily formulate equations of motion in
the spirit of Newton’s 2nd law in a covariant way. To this end we define the four-momentum of the
particle as

p = mcu, (2.1.4)

where m is the invariant mass of the particle. Indeed with respect to an arbitrary reference frame its
components read

(pµ) = mcγ

�

1

β⃗

�

, (2.1.5)

where cβ⃗ is the velocity of the particle in the given reference frame and γ = (1− β⃗2)−1/2 the Lorentz
factor. Now we consider the space-like part for a reference frame, where the particle’s speed is very
small compared to the speed of light, i.e., β= |β⃗| ≪ 1 then we have for the spatial components

p⃗ = mv⃗γ = mv⃗
�

1+
β2

2
+O (β4)

�

. (2.1.6)

So up to corrections of orderO (β2) the definition of the momentum merges with the usual Newtonian
one in the limit β≪ 1 as it should be.
Now we can also make sense of the temporal component of (2.1.5):

p0 = mcγ = mc
�

1+
β2

2
+O (β4)

�

(2.1.7)

1Here we restrict ourselves to massive particles. Massless particles are special, of limited importance, and thus will not be
discussed in this manuscripts.
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2.1. Particle dynamics

or defining

E = c p0 = mc2γ = mc2+
m
2

v2+mc2O (β4), (2.1.8)

we see that the spatial component is related to the kinetic energy of the particle in Newtonian physics.
The only difference is that, up to higher corrections in powers of β, it is convenient in relativistic
physics to include a constant rest energy

E0 = mc2 (2.1.9)

into the total energy of the particle. So the generalization of the kinetic energy to relativistically moving
particles is

Ekin = E − E0 = mc2(γ − 1). (2.1.10)

Since γ → ∞ for β → 1 we see that we need an infinite amount of energy to accelerate a particle
from rest to the speed of light, and this is impossible in practice. This is consistent with the notion
that a physically sensible trajectory must be described by a strictly time-like world line, which is tacitly
assumed by using the definition (2.1.1) for proper time, because if the world line would not be time-
like the square root would become imaginary, which does not make sense for the definition of a time
variable.
Now we can formulate Newton’s 2nd Law for the motion of a particle in a four-dimensionally covariant
way as

d
dτ

pµ = mc
d

dτ
uµ = m

d2

dτ2
xµ =Kµ, (2.1.11)

where Kµ describes the force in terms of a four-vector, the Minkowski four-vector.
It is, however not totally arbitrary, because of the constraint (2.1.3). Taking the derivative of this
constraint with respect to τ we find

du
dτ
· u = 0, (2.1.12)

i.e., multiplying (2.1.11) with uµ leads to

K · u = ηµνKµuν = 0. (2.1.13)

Now we can make sense of the time component of the equation of motion (2.1.11), which is automat-
ically fulfilled if the spatial components of this equation is solved and the Minkowski force fulfills the
necessary constraint (2.1.13), because we have

ηµνK
µuν = u0K0− u⃗ · k⃗ = 0 ⇒ u0K0 = u⃗ · k⃗. (2.1.14)

Thus we can rewrite the 0-component of (2.1.11) as

mc
du0

dτ
=K0 =

u⃗
u0
· K⃗ = β⃗ · K⃗ . (2.1.15)

Because of dτ =
q

1− β⃗2dt = dt/u0 we have

mc
du0

dt
= β⃗ · K⃗

u0
(2.1.16)
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2. Mechanics

Multiplying this equation with c and setting K⃗ = u0F⃗ we see that according to the definition of the
energy (2.1.9) and kinetic energy (2.1.10)

dE
dt
=

dEkin

dt
= v⃗ · F⃗ . (2.1.17)

Since from the spatial part of (2.1.11) we have the non-covariant form of the equation of motion

d
dt

p⃗ =
1
u0

d
dτ

p⃗ =
1
u0

K⃗ = F⃗ , (2.1.18)

which shows that F⃗ is a force corresponding to the Newtonian notion of force as the time derivative of
the particle’s three-momentum, and thus (2.1.17) is just the usual work-energy theorem. This shows
that the redundant temporal part of the covariant equation of motion (2.1.11) is just the work-energy
theorem in covariant form.
We end our discussion of elementary one-particle dynamics with a note on “massless particles”. One
should, however, warn the readers that this is a quite academic example, because there is nothing in
nature that corresponds literally to a massless classical particle. Sometimes it is stated that this model
describes photons, but this is a very naive idea about a photon, which is well-defined only within
relativistic quantum field theory, and a careful analysis of this true meaning of photons shows that
there is no really meaningful classical limit in terms of a massless classical particle. Nevertheless it is
an interesting mathematical problem to state possible equations of motion for massless particles. The
definition of a massless classical particle is available through the limit m→ 0, which is not as trivial as
it seems. It is clear that this limit makes only sense if we define it in terms of energy and momentum,
i.e., via

pµ pν = m2c2 = 0 ⇒ p0 =
E
c
= | p⃗|. (2.1.19)

This implies that the three-velocity of a massless particle has the constant magnitude c , because

v⃗ = c
p⃗
p0

(2.1.19)⇒ |v⃗ |= c . (2.1.20)

This shows that for such a particle a four-velocity as it is defined above for massive particles does not
make any sense, because along the trajectory of the particle we have

ds2 = ηµνdt 2 dxµ

dt
dxν

dt
= dt 2(c2− v⃗ · v⃗) = 0 ⇒ dτ = 0, (2.1.21)

i.e., there is no natural definition of a “proper time”. This is also clear from the motivation for the
introduction of “proper time” as the time measured by an observer comoving with the particle, i.e., an
observer for whom the particle is always at rest, but we have just shown that in any inertial reference
frame the particle is moving with the speed of light c , i.e., there cannot be an instantaneous inertial rest
frame for a massless particle.
So to formulate the equations of motion in a manifestly covariant way, we must introduce an arbitrary
scalar parameter λ and state the equation of motion as

d pµ

dλ
=Kµ. (2.1.22)
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2.2. Motion of a particle in an electromagnetic field

Since pµ pµ = 0, the constraint on possible Minkowski forces now reads

pµKµ = 0. (2.1.23)

So again, we only have to solve the equations of motion for the three spatial equations (2.1.22). Since
in general Kµ depends on both pµ and xµ we just need to close these equations of motion with the
relation of the momentum to the spacetime coordinates. Thus it is more convenient to use the time of
the reference frame as a parameter, λ= t and write

d p⃗
dt
= K⃗ (2.1.24)

and close the equations of motion simply via (2.1.20)

dx⃗
dt
= v⃗ = c

p⃗
| p⃗| . (2.1.25)

2.2 Motion of a particle in an electromagnetic field

Now it is pretty simple to guess equations of state in a manifestly covariant way. One important ex-
ample is the equation of motion of a charged point particle in an electromagnetic field. As will be
shown in Sect. 4.1 the electromagnetic field can be described by a antisymmetric tensor field F µν (xρ) =
−F νµ(xρ), here written in terms of its components with respect to an arbitrary inertial frame of ref-
erence (“Alice”). The only property relevant for the discussion in this Section is its behavior under
Lorentz transformations. The here written contravariant (specified by superscript indices) tensor com-
ponents simply transform for each index like contravariant vector components, i.e., Bob will describe
the same field by the components

F
µν
(xρ) =ΛµαΛ

ν
βF αβ(xγ ) with xγ = (Λ−1)γ ρxρ. (2.2.1)

Now it is very easy to postulate the equations of motion of a particle in this field. With the electric
charge q , describing the coupling strength of the particle to the electromagnetic field it reads

m
d2xµ

dτ2
=Kµ = qF µν (xρ)uν with uµ =

1
c

dxµ

dτ
, uν = ηµνu

µ. (2.2.2)

This form shows immediately that it is a covariant equation of motion and because F µν = −F νµ it
fulfills the constraint (2.1.13).
To bring it in a more familiar form we write the antisymmetric tensor components in terms of the
usual three-dimensional electric and magnetic field components E⃗ and B⃗ :

F µν =









0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0









. (2.2.3)

That this is the right choice of the names for the components becomes clear when writing the Min-
kowski force on the right-hand side of Eq. (2.2.2) explicitly

(Kµ) = qF µνuν = q

�

E⃗ · u⃗
u0E⃗ + u⃗ × B⃗

�

. (2.2.4)
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2. Mechanics

This becomes even more familiar, when we rewrite the derivatives of the equation of motion in terms
of the usual coordinate time, t = x0/c . To this end we write the equations of motion in two first-order
equations by introducing the four-momentum (2.1.4). Then the equations of motion read

�

d
dτ

pµ
�

= (Kµ) = q

�

E⃗ · u⃗
u0E⃗ + u⃗ × B⃗

�

, uµ =
1
c

d
dτ

xµ. (2.2.5)

Now we have by definition u0 = u0 = γ = (1−β2)−1/2 with β⃗= v⃗/c , v⃗ = u⃗/u0. Thus the spatial part
of the first equation of motion reads

1
u0

d
dτ

p⃗ =
d
dt

p⃗ = qE⃗ +
v⃗
c
× B⃗ , (2.2.6)

which precisely reads like the equation of motion of a particle in an electromagnetic field (E⃗ , B⃗) in
non-relativistic mechanics. However, one must note that it is not the same equation, because of the ad-
ditional γ factor in the definition of p⃗. For the relation to the coordinates we need the second equation
in (2.2.5):

u⃗ =
1

mc
p⃗ =

1
c

d
dτ

x⃗. (2.2.7)

Dividing this by u0 = p0/(mc) we get
d
dt

x⃗ = c
p⃗
p0

. (2.2.8)

Now we note that the temporal component in (2.2.5) is automatically fulfilled for any solution of the
spatial equation in terms of (2.2.6). To see this we multiply (2.2.6) with v⃗, leading to

v⃗ · d
dt

p⃗ = qv⃗ · E⃗ , (2.2.9)

but this is precisely the temporal component of the first equation in (2.2.5) divided by u0. So the “on-
shell” condition pµ pµ = m2c2 = const is compatible with the equations of motion by construction,

and thus after solving (2.2.6) we can evaluate p0 =
Æ

m2c2+ p⃗2 and then solve (2.2.8). As usual we
just need appropriate initial conditions for p⃗ and x⃗ to make the solutions consistent. Of course, in the
general case the solution is not that easily obtained, because the fields E⃗ and B⃗ depend on t and x⃗. So
it’s a full system of equations of motion as in Newtonian mechanics.

2.2.1 Massive particle in a homogeneous electric field

The most simple example is of course the case of a homogeneous electric field E⃗ = const and B⃗ = 0.
Assume E⃗ = (E , 0, 0)T and suppose we have the initial condition p⃗(0) = 0 and x⃗(0) = 0. Then we can
very easily solve (2.2.6)

d
dt

p1 =
q
m

E ⇒ p1(t ) = qE t . (2.2.10)

The other components of the momentum are conserved and thus we have for our initial conditions
p2 = p3 = 0. Now we have from the on-shell condition

p0(t ) =
p

m2c2+(qE t )2 (2.2.11)
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2.2. Motion of a particle in an electromagnetic field

Figure 2.1: Minkowski diagram for the “hyperbolic motion” of a charged particle due to a homogeneous
electric field. The corresponding world line has a light-like asymptote, which indicates that even a light
signal sent from x1 at a time t > cannot reach an observer being accelerated with the charged particle. In
this sense this light-like asymptote is a horizon, the so-called Rindler horizon.

and thus

v1(t ) =
dx1

dt
=

c p1

p0
=

qcE t
p

m2c2+ q2E2 t 2
. (2.2.12)

This is easily integrated to

x1(t ) =
mc2

qE





√

√

√

1+
q2E2 t 2

m2c2
− 1



 . (2.2.13)

Here we have written the solution in a form, which lets us discuss easily the non-relativistic limit, which
is valid at early times, where |v1| ≪ c which obviously is the case at early times, i.e., for |qE t | ≪ mc
or t ≪ mc/(qE). Then we can expand the square root in (2.2.13), leading to

x1(t ) =
mc2

qE

�

q2E2 t 2

2m2c2
+O

�

�qE t
mc

�4��

=
qE t 2

2m
+ · · · (2.2.14)
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In leading order for the early-time evolution we have the expected parabola of Newtonian mechanics
in the space-time diagram. For large times t ≫ mc/(qE) the world line comes closer and closer to a
light-like world line. To estimate this behavior more accurately we rearrange (2.2.13) to

x1(t ) =
mc2

qE

 

qE t
mc

√

√

√1+
m2c2

q2E2 t 2
− 1

!

∼=
t→∞ c

�

t − mc
qE

�

. (2.2.15)

This also implies that any light signal of the kind discussed in Sect. 1.2 cannot reach the particle, if sent
from the origin later than tH =

mc
qE (see the Minkowski diagram 2.1).

2.2.2 Massive particle in a homogeneous magnetic field

Now we turn to the case of the motion in a homogeneous magnetic field, i.e., E⃗ = 0, B⃗ = Be⃗3 = const.
Here it is more convenient to start from the manifestly covariant equations of motion (2.2.5). We need
to consider only the spatial part of the equation of motion since the temporal equation is then fulfilled
automatically as detailed above. We write the equation of motion in the form

d
dτ

u⃗ =
q

mc
u⃗ × B⃗ =

q
mc





B u2

−B u1

0



 . (2.2.16)

The 3-component is immediately integrated

u3(τ) = u3
0 = const. (2.2.17)

The motion in the (12)-plane can be found by introducing the auxilliary complex variable

ξ = u1+ iu2 ⇒ dξ
dτ
=

qB
mc
(u2− iu1) =−iωξ , (2.2.18)

where we have defined the cyclotron frequency ω = qB/(mc). This equation of motion is easily
integrated by

ξ (τ) = ξ0 exp(−iωτ). (2.2.19)

Separating back into real and imaginary part gives

u1(τ) =Reξ (τ) = u1
0 cos(ωτ)+ u2

0 sin(ωτ),

u2(τ) = Imξ (τ) =−u1
0 sin(ωτ)+ u2

0 cos(ωτ).
(2.2.20)

The temporal component of the four-velocity is given by the constraint uµuµ = 1, i.e.,

u0(τ) =
Æ

1+ u⃗2(τ) =
Æ

1+ |ξ (τ)|2+(u3
0 )2 =

Æ

1+ u⃗2
0 = const. (2.2.21)

This shows that indeed also the temporal equation of motion (2.2.5) is fulfilled, as it must be.
Further integration of (2.2.20) and (2.2.18) leads to

[xµ(τ)] = c











Æ

1+ u⃗2
0τ

−u1
0/ω sin(ωτ)+ u2

0/ω[cos(ωτ)− 1]+ x1
0

u1
0/ω[cos(ωτ)− 1]+ u2

0/ω sin(ωτ)+ x2
0

u3
0τ+ x3

0











. (2.2.22)
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2.3. Bell’s space-ship paradox

To interpret the trajectory in an easier way we can also integrate (2.2.19) to get the projection of the
motion in the (12)-plane

ζ (τ) = x1(τ)+ ix2(τ) =
iξ0c
ω
[exp(−iωτ)− 1]+ ζ0, (2.2.23)

i.e., this projection describes a circle of the radius

R=
c |ξ0|
|ω| =

c
Æ

(u1
0 )2+(u

2
0 )2

|ω| . (2.2.24)

It is also easy to express the solution (2.2.20) in terms of the reference-frame time t , since

dt
dτ
= u0 ⇒ t = τ

Æ

1+ u⃗2
0 = const. (2.2.25)

or in terms of the three-velocity β⃗= v⃗/c = u⃗/u0,

u0 =
1

q

1− β⃗2
= γ =

1
Ç

1− β⃗2
0

⇒ τ = t
Ç

1− β⃗2
0. (2.2.26)

With v⃗ = c u⃗/u0 this leads via substitution in (2.2.17) and (2.2.20)

v⃗(t ) =





v1
0 cos(ωlab t )+ v2

0 sin(ωlab t )
−v1

0 sin(ωlab t )+ v2
0 cos(ωlab t )

v3
0



 with ωlab =ω
Ç

1− β⃗2
0, (2.2.27)

and substitution of (2.2.27) in (2.2.22)

[xµ(t )] =











c t
−v1

0/ωlab sin(ωlab t )+ v2
0/ωlab[cos(ωlab t )− 1]+ x1

0
v1

0/ωlab[cos(ωlab t )− 1]+ v2
0/ωlab sin(ωlab t )+ x2

0
v3

0 t + x3
0











. (2.2.28)

The radius of the circle in the projection of the trajectory in lab-frame parameters is given by

R=

Æ

(v1
0 )2+(v

2
0 )2

|ωlab|
=

mc
Æ

(v1
0 )2+(v

2
0 )2

qB
Æ

1− (β1
0)2+(β

2
0)2

. (2.2.29)

2.3 Bell’s space-ship paradox

Now we can also discuss another famous “paradox”, known as Bell’s spaceship paradox2 [Bel87].
There Bell tells the story that once a discussion started at CERN canteen about the following question:
Suppose there are three space-ships A, B, C initially at rest in A’s inertial frame of reference with B
and C at equal distance from A. Then A sends a light signal, reaching B and C simultaneously at A’s

2I thank the Physics Forums community for a very lively and fruitful discussion on this subject in the thread
https://www.physicsforums.com/threads/bell-spaceship-paradox-quantitatively.828670/
Particularly helpful were the comments by PeterDonis, DaleSpam, and bcrowell.
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2. Mechanics

coordinate time tA= 0, which starts a mechanism in both space ships to accelerate in precisely the same
way along A’s 1-axis. Then, from the point of view of A, they move always staying at the same distance
from each other, because they both move exactly with the same velocity at each time tA. Now suppose
B and C where loosely connected by some “rigid rope” at the beginning. Now the question is whether
the rope will simply stay between B and C as it is or whether it will break. The short answer given
in the book, referring to length contraction is, in my opinion, not very convincing, and thus we shall
look at the problem in a concrete analytical example from an elementary as possible point of view.
To answer this question, we have to look at the situation from the point of view of the instantaneous
restframe of B or C looking not only at the spaceships but also at the attached “rigid rod”. First we
have to define what we understand under a rigid body. Here we refer to Born’s notion of a rigid
body, according to which a rigid body is such that around any of its points there always exists an
instantaneous inertial reference frame, where any infinitesimal volume element does not change its
shape. We note right away that this is, even in this local form, a very restrictive definition, and such
a body cannot really exist according to relativity: Soon after Born has given his definition of a rigid
body in special relativity [Bor09]Herglotz and Noether [Her10, Noe10] have proven that such a body’s
motion is completely determined by the motion of one of its points along an arbitrarily given timelike
worldline. Then the motion is purely translative for all of its points or the body rotates with constant
angular velocity around a point at rest or uniform motion with respect to an inertial reference frame.
Thus such a “Born-rigid” body has only three degrees of freedom rather than six, as expected from the
non-relativistic theory of the spinning top. In fact, Max von Laue has given a simple argument that
a real many-body system in relativistic continuum mechanics must always have an infinite number
of degrees of freedom: Due to the finite limiting speed (the speed of light in vacuo) to determine the
initial state of motion of such a continuous medium one has to give the positions and momenta of each
of its points. Particularly accelerated rigid motion of several point masses (or a continuum of such
points) is only possible, if one carefully preadjusts the acceleration of all points, and as we shall see at
the most elementary example in this section there are severe restrictions on the possibility of such a
preadjustment.
To this end we use the example of constant proper acceleration for both spaceships in Bell’s paradox.
This is the motion, we have already discussed above as the motion of point mass in an electrostatic
homogeneous field. We solve the equation of motion again using the manifestly covariant formalism,
which means we use only four vectors and the proper times of B and C. This simplifies the further
discussion, particularly the Lorentz transformations from A’s observational frame to the instantaneous
rest frames of either B and C.
We define the constant proper acceleration as α, which is in the above given example of the motion of a
charged particle in an external homogeneous electric field α = eE/m. Using the relation pµ = mc uµ

between momentum and four-velocity That means we can write (2.2.5) as

du0

dτ
=
α

c
u1,

du1

dτ
=
α

c
u0. (2.3.1)

For the setting of the Bell space-ship paradox uµ are the components of the four-velocity of both space
ships B and C, and we assume that the proper times of both space ships are τ = 0 when A’s coordinate
time t = 0, and before the acceleration starts, the space ships are at rest wrt. A, i.e., u1(0) = 0, which
implies that u0(0) = 1. To solve (2.4.1) we take the τ-derivative of the 2nd equation (2.4.1) and use the
first one

d2u1

dτ2
=
α

c
du0

dτ
=
α2

c2
u1. (2.3.2)
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2.3. Bell’s space-ship paradox

Figure 2.2: Minkowski diagram illustrating Bell’s space-ship paradox. Left: Comparing the world tube of
a rigid rod of proper length LA attached to the front of spaceship B to that of spaceship C, one sees that the
front end of the rod always stays behind spaceship C, i.e., a real elastic string connecting the spaceships must
stretch and eventually break. Right: Comparing the world tube of a rigid rod of proper length LA attached
to the rear of spaceship C to that of spaceship B one sees that the rear end of the rod drifts further and further
away from spaceship B. At given proper acceleration α of spaceship C the length of the rod is restricted such
that it must not reach or exceed spaceship C’s Rindler horizon, i.e., one has the constraint αLA< c2.

The general solution reads

u1(τ) =C1 cosh
�ατ

c

�

+C2 sinh
�ατ

c

�

. (2.3.3)

Because of the initial condition u1(0) = 0 we have C1 = 0, which implies using the 2nd equation in
(2.4.1)

u0 =
c
α

du1

dτ
=C2 cosh

�ατ

c

�

u0(0) = 1 ⇒ C2 = 1. (2.3.4)

Thus our solution reads
u0(τ) = cosh

�ατ

c

�

, u1(τ) = sinh
�ατ

c

�

. (2.3.5)

We get the components of the position four-vectors by integrating the corresponding initial-value prob-
lem

dxµB
dτ
= c uµ,

dxµC
dτ
= c uµ, [xµB (0)] =

�

0
0

�

, [xµC (0)] =
�

0
LA

�

, (2.3.6)

where we have only written the relevant components x0
B/C and x1

B/C . Using (2.4.5) gives by simple
integration

x0
B = c tB =

c2

α
sinh

�ατ

c

�

, x1
B =

c2

α

h

cosh
�ατ

c

�

− 1
i

,

x0
C = c tC =

c2

α
sinh

�ατ

c

�

, x1
C =

c2

α

h

cosh
�ατ

c

�

− 1
i

+ LA.
(2.3.7)

35



2. Mechanics

Note that all these equations are only valid for τ > 0. For τ < 0 B and C are at rest wrt. A by definition,
i.e.,

(xµB ) =
�

cτ
0

�

, (xµC ) =
�

cτ
LA

�

for τ < 0. (2.3.8)

Now we consider first the case that a Born-rigid rod of proper length LA is fixed with one of its end
at spaceship B. To determine its other endpoint’s world line, we simply have to transform into the
instantaneous restframe of B. Because the four-velocity of B is (2.3.5), obviously the corresponding
Lorentz boost in the (x0x1) plane is given by

Λ̂(τ0) =
�

u0(τ0) −u1(τ0)
−u1(τ0) u0(τ0)

�

. (2.3.9)

Indeed doing the matrix multiplication explicitly, one immediately finds

[ũµ(τ0)] = Λ̂(τ0)[u
ν (τ0)] =

�

1
0

�

. (2.3.10)

Then the world line of the other end of the rod of proper length LA is given as pointing towards the
positive 1̃ direction in this instantneous restframe, i.e.,

[x̃µ
rod
(τ0)− x̃µB (τ0)] =

�

0
LA

�

. (2.3.11)

Thus in A’s frame we have for the endpoint of this rigid rod

[xµ
rod
(τ0)] = [x

µ
B (τ0)]+ Λ̂

−1(τ0)
�

0
LA

�

=
�

(c2/α+ LA) sinh(ατ0/c)
(c2/α+ LA)cosh(ατ0/c)− c2/α

�

. (2.3.12)

We shall show now that this is again a motion with a constant proper acceleration. Using a dot as
derivative with respect to the world-line parameter τ (the proper time of spaceships B and C) we first
get for the endpoint’s velocity with respect to A’s frame

βrod(τ0) =
ẋ1

rod(τ0)

ẋ1
rod
(τ0)

= tanh
�ατ0

c

�

(2.3.13)

and thus
uµ

rod
(τ0) = uµB (τ0). (2.3.14)

Finally the proper acceleration is given by

αrod(τ0) = c
d
dt

u1
rod(τ0) = c2

u̇1
rod(τ0)

ẋ0
rod
(τ0)

=
c2α

c2+αLA
, (2.3.15)

which is always less than the proper acceleration of the spaceships B and C. Particularly this shows that
the endpoint of the rod never touches spaceship C after B and C started accelerating. This is also clearly
seen in the left space-time diagram of Fig. 2.2.
The very same analysis can now be performed by assuming that the rigid rod of proper length LA is
fixed with one end at spaceship C. For its other end we find the world line of the rod’s endpoint

[xµ
rod
(τ0)] =

�

xµC (τ0)− Λ̂−1(τ0)
�

0
LA

��

=
�

(c2/α− LA) sinh(ατ0/c)
(c2/α− LA)[cosh(ατ0/c)− 1]

�

. (2.3.16)
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In the very same way as above deriving (2.3.15) we find for the proper acceleration of this endpoint

αrod(τ0) =
c2α

c2−αLA
. (2.3.17)

This result shows a remarkable restriction to the possibility of rigid motion: As long as αLA< c2 there
is no problem with the above result, and the proper acceleration of the rigid rod of proper length LA
attached at the rear of spaceship C is always less than the proper acceleration of the rocket. Conse-
quently spaceship B stays more and more behind the rod’s end. For αLA → c2 − 0+ the rod’s end’s
properacceleration αrod→∞, and this is impossible. So one cannot attach a rigid rod of proper length
LA to the rear of spaceship C with αLA ≥ c2, which restricts with given proper length LA the allowed
acceleration of the rod. The constraint αLA < c2 for the acceleration of the rigid rod means that the
endpoint of the rod must always stay on the same side of spaceship C’s Rindler horizon, which is given
by the asumptotic form of (2.3.7) for τ→∞. Then we have cosh(ατ/c)∼= sinh(ατ/c)∼=exp(ατ/c)/2
and thus the equation for the Rindler horizon

x1
Rindler(t ) = c t − c2−αLA

α
. (2.3.18)

For t = 0 this becomes positive, when αLA > c2, and then one cannot accelerate a rigid rod initially
connecting B and C, because then it would immediately break when the acceleration starts at t = 0.
This finally resolves the paradox: Using a non-rigid rod of initial proper length LA to connect spaceships
B and C it must break, because it would have to stretch to keep B and C connected.
A coordinate-independent characterization of the stretch of the rope in terms of the timelike congru-
ences, see [Cro15].

2.4 The action principle

The formulation of classical mechanics in terms of the “Hamilton Principle of Least Action” is of
high importance for the development of modern physics since it allows for a detailed analysis of the
equations of motion in terms of symmetries, using Noether’s theorem. This explains, why it is also an
important heuristic tool to find concrete equations of motion. Also above, we have simply stated the
electromagnetic force. In principle, there is not way to somehow rigorously “derive” the fundamental
equations of motion, but has to make an “educated” guess and then compare the resulting predictions
of the model with experiments. The Hamilton Principle is a very clever way to make such educated
guesses.

2.4.1 The frame-dependent (1+3)-formalism

The idea underlying the Hamilton Principle is to formulate the equations of motion as a variational
principle. The equations of motion are then the stationary points of the action functional. In New-
tonian mechanics the action functional for a single particle is defined on the set of trajectories in space
via a Lagrange function

A[q] =
∫ t2

t1

dt L(q , q̇ , t ), (2.4.1)

where q ∈ R3 are an arbitrary set of generalized coordinates (not necessarily cartesian once) and the
q̇ ∈R3 the corresponding generalized velocities. Hamilton’s principle then states that the equations of
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motion are the trajectories q(t ) that make the action stationary, assuming fixed boundary conditions
q(t1) = q1 and q(t2) = q2.
To derive the general equations of motion we assume that q is the solution of these equations and take
small variations δq around this solution. Because the time, t , is not varied, i.e., by assumption we set
δ t = 0, in the Hamilton principle we have

d
dt
δq = δ q̇ . (2.4.2)

We note that in the following taking partial derivatives of functions of q , q̇ , and t means that we treat
the variables t , q̇ , and t as independent variables, while a total time derivatives takes q and q̇ as functions
of time. With this usual notation the variation of the action (2.4.1) up to first order in δq reads

δA=
∫ t2

t1

dt
�

δq
∂ L
∂ q
+δ q̇

∂ L
∂ q̇

�

. (2.4.3)

Now using (2.4.2) we get by integration by parts

∫ t2

t1

dtδ q̇
∂ L
∂ q̇
=
�

δq
∂ L
∂ q̇

�t2

t1

−
∫ t2

t1

dtδq
d
dt

�

∂ L
∂ q̇

�

=−
∫ t2

t1

dtδq
d
dt

�

∂ L
∂ q̇

�

. (2.4.4)

In the final step we have used the assumption that theδq vanish at the boundaries of the integral. Using
this in (2.4.3) gives

δA=
∫ t2

t1

dtδq
�

∂ L
∂ q
− d

dt

�

∂ L
∂ q̇

��

. (2.4.5)

Now the action principle demands that δA = 0 for all δq , and this can be true only, if the square
bracket under the integral itself vanishes along the trajectory of the particle. This leads to the equation
of motion in terms of the Euler-Lagrange equations of the variational principle:

δA
δq
=
∂ L
∂ q
− d

dt

�

∂ L
∂ q̇

�

= 0. (2.4.6)

Now it is clear that we like to derive relativistically covariant equations of motion. As we have already
seen above it is not always necessary or convenient to express the equations of motion in manifestly
covariant form, i.e., to express the trajectories as world lines in terms of the position four-vector and the
derivative with respect to a scalar “world parameter” or the proper time τ of the particle. Of course,
it is reassuring if one can bring the equations of motion in such a covariant form. As we also have seen
above we only have to pay the prize that we need a constraint, because not all four components of a
four-vector are independent quantities but only three. As we have seen above, this constraint can be
formulated by (2.1.12) or, expressed in terms of the four-force by (2.1.13).
One of the advantages of the Hamilton principle is that it is simpler to implement Lorentz invariance
of the equations of motion, be it in manifest or indirect form by simply demanding that the action is a
Lorentz scalar. We can find action functionals by the considering how to build such Lorentz scalars out
of the building position four-vector and its derivative with any world parameter we find convenient.
The most simple choice is to describe everything in terms of the components of the position four-vector
with respect to a fixed inertial frame of reference and use the time of this frame as the world parameter.
This, of course leads to equations of motion in a non-covariant way.
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2.4. The action principle

We start with the kinetic term, i.e., with the action of the “free particle”. Its Euler-Lagrange equation
must of course lead to uniform motion as the solution, and this implies that the free Lagrangian should
be a function of ˙⃗x only. To find a Lorentz-invariant action we can then use the components position-
four vector, xµ, of the particle. Their time derivatives are of course no four-vectors anymore since
time takes part in the Lorentz transformation to another inertial reference frame, but we only need an
expression dt f ( ˙⃗x) that is invariant. Obviously the only covariant expression∝ dt we can build from
the time derivatives of x⃗ is

dt
Æ

ηµν ẋµ ẏµ = dt c
Ç

1− β⃗2, β⃗=
1
c

˙⃗x. (2.4.7)

Since the Lagrangian should have the dimension of an energy, obviously the right choice for the free
particle is

L0 =−mc2
Ç

1− β⃗2. (2.4.8)

The choice of the sign has been taken such that in the non-relativistic limit |β⃗| ≪ 1 we get (up to a
constant additive factor) the non-relativistic expression. Indeed

L0 =−mc2+
m
2

v⃗2+O (β4), (2.4.9)

i.e., up to the constant rest energy E0 = mc2 we obtain the non-relativistic kinetic energy for the free
Lagrangian in the non-relativistic limit.
The Euler-Lagrange equations of motion for the free particle, using (2.4.8) read

d
dt
∂ L0

∂ ˙⃗x
=

d
dt





m ˙⃗x
q

1− β⃗2





!= 0. (2.4.10)

This gives

u⃗ =
˙⃗x

q

1− β⃗2
= const. (2.4.11)

Since then also

u⃗2 =
c2β⃗2

1− β⃗2
= const ⇒ β⃗2 = const (2.4.12)

we find indeed the correct solution v⃗ = ˙⃗x = const for the free-particle motion.
Now it is very simple to find expressions for the motion of the particle in external fields by adding a
corresponding interaction Lagrangian. The most straight-forward one is for the motion in a four-vector
field Aµ. An expression for the interaction part of the Lagrangian, leading to an invariant contribution
to the action, is

Lint =−
q
c

ẋµAµ. (2.4.13)

With the full Lagrangian

L= L0+ Lint =−mc2
q

1− ˙⃗x2/c2− q
c

ẋµAµ =−mc2
q

1− ˙⃗x2/c2− qA0+
q
c

˙⃗x · A⃗. (2.4.14)
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we find the equations of motion via

∂ L

∂ ˙⃗x
=

m ˙⃗x

1− ˙⃗x2/c2
+

q
c

A⃗, (2.4.15)

where A⃗= (Ai )3. Further we get

d
dt
∂ L

∂ ˙⃗x
=

d
dt

 

m ˙⃗x
Æ

1− ˙⃗x2/c2

!

+
q
c
∂t A⃗+

q
c
( ˙⃗x · ∇⃗)A⃗ (2.4.16)

and
∂ L
∂ xk

=−q
∂ A0

∂ xk
+

q
c

3
∑

j=1

ẋ j ∂ Aj

∂ xk
. (2.4.17)

Then the Euler-Lagrange equations (2.4.6) can be brought into the form

d
dt

 

mẋk
Æ

1− ˙⃗x2/c2

!

=−q
�

∂ A0

∂ xk
+

1
c
∂ Ak

∂ t

�

+
q
c

3
∑

j=1

ẋ j
�

∂ Aj

∂ xk
− ∂ Ak

∂ x j

�

. (2.4.18)

Now we can rewrite the 2nd term on the right-hand side by using the definition of the curl of a vector
field

(∇⃗× A⃗)l =: B l =
3
∑

j ,k=1

εl mn ∂ An

∂ x m
. (2.4.19)

By using the relation for the 3D-Levi-Civita symbol
3
∑

l=1

εl mnεl k j = δmkδn j −δm jδnk (2.4.20)

we find
3
∑

l=1

εl k j B l =
∂ Aj

∂ xk
− ∂ Ak

∂ x j
, (2.4.21)

and thus
3
∑

j=1

ẋ j
�

∂ Aj

∂ xk
− ∂ Ak

∂ x j

�

=
3
∑

j ,l=1

εl k j ẋ j B l =
3
∑

j ,l=1

εk j l ẋ j B l = ( ˙⃗x × B⃗)k . (2.4.22)

Also setting

E k =−∂ A0

∂ xk
− 1

c
∂ Ak

∂ t
or E⃗ =−∇⃗A0− 1

c
∂t A⃗, (2.4.23)

finally the equations of motion (2.4.18) read

d
dt

 

m ˙⃗x
Æ

1− ˙⃗x2/c2

!

= qE⃗ +
q
c

v⃗ × B⃗ . (2.4.24)

This is precisely the equation of motion for a particle in an electromagnetic field (E⃗ , B⃗) given already
in Eq. (2.2.6) due to the definition of relativistic momentum (2.1.5).

3Here and in the following, when we work in the non-covariant (1+3)-formalism within a fixed inertial reference frame,
a symbol like A⃗ is always derived from the spatial components of a four-vector quantity with upper indices (contravariant
components). Note, however, that in this formalism there are three-vectors (transforming as vectors under rotations) that
need not be the spatial components of true four-vectors. An example is the usual three-velocity v⃗ = ˙⃗x.
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2.4. The action principle

2.4.2 Manifestly covariant formulation

It is now also immediately clear, how to write the action principle in a manifestly covariant form. To
this end we just have to introduce an arbitrary scalar “world time” λ. By construction our action is
invariant under redefinition of this parameter. So the action for the motion in an electromagnetic field
reads

A[xµ] =
∫ λ2

λ1

dλL=
∫ λ2

λ1

dλ
h

−mc
Æ

ηµν ẋµ ẋν − q
c
ηµν ẋ

µAν (x)
i

. (2.4.25)

Here, the dot is our short-hand notation for the derivative with respect to λ. The Lagrange function is
thus given by

L=−mc
Æ

ηµν ẋµ ẋν − q
c
ηµν ẋ

µAν (x). (2.4.26)

The equations of motion follow from the Hamilton principle, now assuming that the endpoints of the
world line are fixed, i.e.,δxµ(λ1) = δxµ(λ2) = 0. This gives the manifestly covariant Euler-Lagrange
equations

d
dλ
∂ L
∂ ẋµ

=
∂ L
∂ xµ

. (2.4.27)

For the Lagrangian (2.4.26) we are lead to the equations of motion

mc
d

dλ

ẋµ
p

ẋα ẋα
=

q
c

Fαµ ẋµ with Fαµ = ∂αAµ− ∂µAν , (2.4.28)

where we have introduced the partial derivative,

∂µ =
∂

∂ xµ
. (2.4.29)

Here it is important to realize that the partial derivative wrt. contravariant vector components (with
upper indices) leads to covariant tensor-field components (with lower indices). For a more detailed
explanation, see App. A.
Now, by construction, the Lagrangian is a homogeneous function of 1st order of ẋµ, i.e.,

ẋµ
∂ L
∂ ẋµ

= L, (2.4.30)

which can easily be shown by direct inspection of the Lagrangian (2.4.26). Taking the derivative of this
identity with respect to λ leads to

ẍµ
∂ L
∂ ẋµ

+ ẋµ
d

dλ
∂ L
∂ ẋµ

= ẋµ
∂ L
∂ xµ

+ ẍµ
∂ L
∂ ẋµ
⇒ ẋµ

d
dλ
∂ L
∂ ẋµ

= ẋµ
∂ L
∂ xµ

. (2.4.31)

This holds for any world line of the particle, i.e., not only for the solution of the equations of motion
(2.4.27). This implies that only three of the four space-time variables xµ are independent as it should
be.
This enables us to choose the proper time τ for λ, leading to the constraint

ηµν ẋ
µ ẋν = ẋµ ẋµ = c2, (2.4.32)
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because then ẋµ = c uµ. Indeed for (2.4.28) this leads to the equation of motion (2.2.2) for a particle in
the electromagnetic field,

mẍα =
q
c

Fαµ ẋµ. (2.4.33)

This formalism can be generalized to find the equation of motion in other kinds of external fields by
making the ansatz

L=−mc
Æ

ηρσ ẋρ ẋσ + Lint(x, ẋ) (2.4.34)

with Lint being also a homogeneous function in the ẋ of degree 1, i.e.,

ẋρ
∂ Lint

∂ ẋρ
= Lint. (2.4.35)

As shown above in (2.4.31) this implies

ẋρ
d

dλ
∂ Lint

∂ ẋρ
= ẋρ

∂ Lint

∂ xρ
. (2.4.36)

Now the Euler-Lagrange equations of the extended Hamiltonian principle reads

d
dλ
∂ L
∂ ẋµ

=−mc
d

dλ

ẋµ
Æ

ηρσ ẋρ ẋσ
+

d
dλ
∂ Lint

∂ ẋµ
=
∂ L
∂ xµ

=
∂ Lint

∂ xµ
. (2.4.37)

Now we have
Æ

ηρσ ẋρ ẋσ = c τ̇ (2.4.38)

and thus

mc
d

dλ

ẋµ
Æ

ηρσ ẋρ ẋσ
=

d pµ
dλ

(2.4.38)
=

d
dλ
∂ Lint

∂ ẋµ
− ∂ Lint

∂ xµ
. (2.4.39)

Multiplying this with ẋµ and using (2.4.38) we have

ẋµ
d pµ
dλ
= 0. (2.4.40)

Dividing this with τ̇2 we find this implies that

dxµ

dτ

d pµ
dτ
=

1
m

pµ
d pµ
dτ
= 0, (2.4.41)

which makes the equation of motion (2.4.39) automatically consistent with the on-shell condition

pµ pµ = m2c2, (2.4.42)

and we can use τ as the parameter of the worldline in (2.4.39).
As another example for a covariant equation of motion we consider the motion of a particle in an
external scalar field. For the interaction Lagrangian we have two choices to be a homogeneous function
of order 1 of ẋµ,

L1 =−g
Æ

ẋµ ẋµΦ(x), L2 =−g ′ ẋµ∂µΦ=
d

dλ
Φ, (2.4.43)

because we want the Lagrangian to be a Lorentz scalar itself and the action parametrization invariant.
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2.4. The action principle

The second choice, however does not lead to any consequence in the equation of motion, because it is
a toal derivative of a function of the coordinates only wrt. λ, and this part of the Lagrangian leads to a
contribution of the action

A2[x
µ] =−g ′{Φ[x(λ2)]−Φ[x(λ1)]} ⇒ δA2 =−g ′

�

δxµ∂µΦ(x)
�λ2

λ1
≡ 0. (2.4.44)

Thus the Lagrangian for the motion of a particle in a scalar field reads

L=−Æẋµ ẋµ[mc + gΦ(x)]. (2.4.45)

The evaluation of the Euler-Lagrange equations lead, after setting λ= τ, to the equations of motion

(m+ gΦ)ẍµ =
g
c
(c2ηµν − ẋµ ẋν )∂νΦ, (2.4.46)

where now the dot means the derivative wrt. τ. Obviously by contraction with ẋµ = c uµ one indeed
finds that the constraint uµuµ = 1= const is compatible with this equation of motion since

ẋµ(c
2ηµν − ẋµ ẋν ) = 0, (2.4.47)

because ẋµ ẋµ = c2 by definition.

2.4.3 Alternative Lagrange formalism

There is an alternative treatment of the manifestly covariant action principle, which has some advan-
tages compared to the “square-root formulation” (i.e., the free-particle part∝Æ

ηµν ẋµ ẋµ), which sim-
plifies the analysis greatly.
To that end we write as an alternative Lagrangian instead of (2.4.34):

L=−m
2
ηρσ ẋρ ẋσ + Lint(x, ẋ) (2.4.48)

with the same interaction Lagrangian, Lint, as in (2.4.34), which is a homogeneous function in the ẋ of
degree 1, i.e., fulfilling (2.4.35).
Then the Euler-Lagrange equation reads

d
dλ
∂ L
∂ ẋµ

=−mẍµ+
d

dλ
∂ Lint

∂ ẋµ
=
∂ Lint

∂ xµ
. (2.4.49)

Comparing this with the equation of motion for the original Lagrangian (2.4.37) we see that we only
get the same equation of motion, if

ηρσ ẋρ ẋλ = const. (2.4.50)

But this constraint is always fulfilled, because since L does not depend explicitly on the world-line
parameter λ, the Hamilton-function-like quantity

H̃ = Pµ ẋµ− L= const., (2.4.51)

for the solutions of the equations of motion, where

Pµ =
∂ L
∂ ẋµ

=−mẋµ+
∂ Lint

∂ ẋµ
(2.4.52)
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is the canonical momentum. Because of (2.4.35), (2.4.52) indeed reads

H̃ =−mẋµ ẋµ+
m
2

ẋµ ẋµ+ ẋµ
∂ Lint

∂ ẋµ
− Lint =−

m
2

ẋµ ẋµ =−m
2
ηρσ ẋρ ẋσ = const. (2.4.53)

Now we can choose the value of this quantity as we like, and if we choose

ηρσ ẋρ ẋσ = c2, (2.4.54)

then we have again choosen λ= τ.

2.5 Thermodynamics

As we shall see later, a theory for the motion of a closed system of interacting point-particles is problem-
atic, and a resolution of these problems is rather to use a description in terms of continuum mechanics.
The most simple example is the
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Chapter 3

Classical fields

3.1 The action principle for fields and Noether’s Theorem

In this section we shall establish Hamilton’s least-action principle for fields in its formulation by La-
grange, which has the advantage to be manifestly covariant under Poincaré transformations. The main
goal of the analysis is the use of Noether’s theorem to the special-relativistic space-time symmetries
of Minkowski space to define the corresponding conservation laws for energy, momentum, angular
momentum and center of momentum motion.
We start with the general formulation of equations of motion in terms of the action principle for some
fields Φk . Those need not be fields to appear in the relativistic context, but we shall discuss the need of
relativistically sensible models, i.e., field dynamics which is consistent with the relativistic space-time
model of Minkowski space, at the end of this Section. Nevertheless we shall use the relativistic notation
for space-time variables.
Since fields are quantities describing continuous phenomena, i.e., quantities being defined as functions
of time and location, Φi (t , x⃗) ≡ Φi (x), we expect the Lagrangian to be given by a density. From the
case of point particles, as discussed in Sect. 2.4, we expect it to be of the form

L=
∫

R3
d3xL (Φi ,∂µΦi ; t , x⃗). (3.1.1)

HereL is called the Lagrange density. Then, as for point-particle systems we define the action as

A[Φi ] =
∫ t2

t1

dt L[Φi , t ] =
1
c

∫

V (4)
d4xL (Φi ,∂µΦi ; t , x⃗). (3.1.2)

The equations of motion are given by the least-action principle or rather by those field configurations
which make the action functional stationary. The variation is over all fields δΦi (x) with the fields
fixed at the initial and final times t1 and t2, i.e., δΦi (x) = 0 for x0 = c t1 and x0 = c t2. The space-time
variables are not varied as in the least-action principle for point mechanics. From a formal point of view
the spatial variables x⃗ are just continuous “labels” for infinitely many field degrees of freedom and thus
not varied in the variations of the Hamilton principle, and the time is not varied by definition either.
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The variation is then easily calulated as

cδA[Φi ] =
∫

V (4)
d4x

�

δΦi
∂L
∂ Φi

+δ(∂µΦi )
∂L
∂ (∂µΦi )

�

=
∫

V (4)
d4xδΦi

�

∂L
∂ Φi
− ∂µ

∂L
∂ (∂µΦi )

�

.

(3.1.3)

Here the Einstein summation relation applies to both the indices of space-time componentents µ and
the field indices i . In the second step we have integrated by parts. The boundary contributions vanish
due to the vanishing of the field variations at the boundaries at t ∈ (t1, t2). The spatial boundary is
assumed anyway at infinity, and we also assume that boundary terms in the action integral vanish at
infinity sufficiently quickly.
Now the Hamilton principle states that δA= 0 for all field variations δΦi , and this implies the field
equations of motion

∂L
∂ Φi
− ∂µ

∂L
∂ (∂µΦi )

= 0. (3.1.4)

These are the Euler-Lagrange equations of the variational principle for fields.
We note that the variation of the action is invariant under the transformation

L ′ =L + ∂µΩµ(Φi , x) (3.1.5)

for an arbitrary four-vector function Ωµ of the fields and the space-time coordinates x. To see this we
note that

∆L = ∂µΩµ = ∂µΦi
∂ Ωµ

∂ Φi
+[∂µΩ

µ(Φi , x)]expl. (3.1.6)

The last term refers to the space-time derivatives from the explicit x dependence of Ωµ. From this we
get

∂ ∆L
∂ (∂µΦi )

=
∂ Ωµ

∂ Φi
⇒ ∂µ

∂ ∆L
∂ (∂µΦi )

= ∂µ
∂ Ωµ

∂ Φi
. (3.1.7)

On the other hand
∂ ∆L
∂ Φi

=
∂

∂ Φi
∂µΩ

µ = ∂µ
∂ Ωµ

∂ Φi
. (3.1.8)

Eqs. (3.1.7) and (3.1.8) thus imply that

∂ ∆L
∂ Φi
− ∂µ

∂ ∆L
∂ (∂µΦi )

≡ 0, (3.1.9)

i.e., the addition of ∆L does not contribute to the variation of the action, and thus the Lagrangians
L andL ′ are leading to the same field equations of motion.
One of the most important advantages to use the action principle for describing the dynamics is that
it allows to formulate Noether’s Theorem, which connects symmetries of the variation of the action
with conservation laws, i.e., for each one-parameter Lie group which keeps the variation of the action
invariant, there is a conserved quantity. As we shall see, in the case of field theories, derived from a
local Lagrange density the conservation law holds in local form.
To derive Noether’s theorem we consider infinitesimal transformations of the fields and the space-
time coordinates. The latter is particularly important since we want to apply the formalism to the
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3.1. The action principle for fields and Noether’s Theorem

proper orthorchronous Poincaré group. Let the group depend on parameters αk . Then we can write
an infinitesimal transformation of this kind in the form

xµ→ x ′µ = xµ−δαkξ µ
k
(x), Φi → Φ′i (x ′) = Φi (x)+δα

kΞi k (Φi , x). (3.1.10)

To evaluate the infinitesimal change of the action under these transformations,

δA=
∫

R4
d4x ′L (Φ′i ,∂ ′µΦ′i , x ′)−

∫

R4
d4xL (Φi ,∂µΦi , x), (3.1.11)

we note that

δ(∂µΦi ) = ∂
′
µΦ
′
i − ∂µΦi =

∂ xν

∂ x ′µ
∂ν
�

Φi +δα
kΞi k

�

− ∂µΦi . (3.1.12)

Now we need the inverse matrix of

Jµν =
∂ x ′µ

∂ xν
= δµν −δαk∂νξ

µ
k

. (3.1.13)

It is easy to see that up to linear order in the δαk

∂ xν

∂ x ′µ
= δνµ+δα

k∂µξ
ν
k +O (δα2). (3.1.14)

To prove this we calculate, using (3.1.13)

Jµρ
∂ xρ

∂ x ′σ
=
�

δµρ −δαk∂ρξ
µ
k

��

δρσ +δαk∂σξ
ρ
k

�

= δµσ +O (δα2). (3.1.15)

Thus (3.1.14) is verified. Plugging this into (3.1.12) we find after some alegbra

δ(∂µΦi ) = δα
k
�

∂µΞi k + ∂µξ
ν
k ∂νΦi

�

. (3.1.16)

Further the four-volume element transforms as

d4x ′ = d4x det
�

∂ x ′

∂ x

�

= d4x[1−δαk∂µξ
µ
k
+O (δα2)]. (3.1.17)

The latter follows from taking the determinant of (3.1.12) and only keeping terms up to linear order
in the δαk which only occur in the product of the diagonal elements of the matrix. All other terms in
the determinant obviously are at least of order O (δα2).
Plugging all this into (3.1.11) we find after some algebra

δA= δαk
∫

R4
d4x

�

∂L
∂ Φi
Ξi k +

∂L
∂ (∂µΦi )

[∂µΞi k + ∂µξ
ν
k ∂νΦi ]− ξ µk (∂µL )expl−L ∂µξ µk

�

. (3.1.18)

Since theδαk are independent of each other and becauseδA= 0 if (3.1.10) is an infinitesimal symmetry
transformation for each k the bracket under the integral must be a total four-divergence of the form
−∂µΩµk (Φ j , x), i.e., for each k there must exist a vector field Ωµ

k
(Φ j , x), such that

∂L
∂ Φ j

Ξ j k +
∂L
∂ (∂µΦ j )

[∂µΞ j k + ∂µξ
ν
k ∂νΦ j ]− ξ µk

�

∂ (expl)
µ L

�

−L ∂µξ µk + ∂µΩ
µ
k
(Φ j , x) = 0. (3.1.19)
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For abbreviation we define the canonical energy-momentum tensor,

Θµν =
∂L
∂ (∂µΦ j )

∂νΦ j −Lδµν . (3.1.20)

Then (3.1.20) reads

∂L
∂ Φ j

Ξ j k +
∂L
∂ (∂µΦ j )

∂µΞ j k + ∂µξ
ν
kΘ
µ
ν − ξ νk

�

∂ (expl)
ν L

�

+ ∂µΩ
µ
k
(Φ j , x) = 0. (3.1.21)

So far this is the constraint on the transformation, defined by theΞ j k and ξk in (3.1.10) to be a symmetry
transformation. Now we investigate the implication for the solutions of the field equations (3.1.4).
As a first step we calculate the four-divergence of the energy-momentum tensor. Using the field equa-
tions (3.1.4) we find

∂µΘ
µ
ν =

�

∂µ
∂L
∂ (∂µΦ j )

�

∂νΦ j +
∂L
∂ (∂µΦ j )

∂µ∂νΦ j −
∂L
∂ Φ j

∂νΦ j −
∂L
∂ (∂µΦ j )

∂µ∂νΦ j − ∂ (expl)
ν L

=−∂ (expl)
ν L .

(3.1.22)

Further with the field equations we get

∂L
∂ Φ j

Ξ j k +
∂L
∂ (∂µΦ j )

∂µΞ j k = ∂µ

�

∂L
∂ (∂µΦ j )

Ξ j k

�

(3.1.23)

for the first two terms in (3.1.21). Finally using (3.1.22) and (3.1.23) in (3.1.21) we conclude that the
quantities

jµ
k
=

∂L
∂ (∂µΦ j )

Ξ j k +Θ
µ
νξ
ν
k +Ω

µ
k

(3.1.24)

fulfill the equation of continuity,
∂µ jµ

k
= 0. (3.1.25)

This is the first part of Noether’s theorems: Any one-parameter symmetry implies the existence of a
corresponding conserved Noether charge,

Qk =
∫

R3
d3 x⃗ j 0

k (x). (3.1.26)

We note that this is a Lorentz scalar only if the continuity equation (3.1.25) is fulfilled.
To see this, we first prove that the Noether charge is conserved. This we can achieve easily by using
usual 3D vector calculus. With (3.1.26) we find

dt Qk =
∫

R3
d3 x⃗ ∂t j 0

k (t , x⃗) =−
∫

R3
d3 x⃗ ∇⃗ · j⃗k = 0, (3.1.27)

where in the last step we used Gauss’s theorem and the assumption that the current density vanishes at
spatial infinity.
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t

x

t ′

x ′

dσµ =−eµ0 d3~x

dσµ =−e ′µ0 d3~x ′

To see that Qk is also a Lorentz scalar if (3.1.25) is fulfilled
we use the 4D version of Gauss’s theorem (A.6.16) with
the 4D volume M depicted in the figure, where the shaded
region indicates the region, where the charge and current
densities are non-zero. Then one has

0=
∫

M
d4x∂µ jµ

k

=
∫

∂ M
d3σµ jµ

k

=
∫

t ′=0
d3 x⃗ ′ j ′0k (0, x⃗ ′)−

∫

t=0
d3 x⃗ j 0

k (0, x⃗),

(3.1.28)

which indeed implies that

Q ′k −Qk = 0 ⇒Q ′k =Qk . (3.1.29)

3.2 Poincaré symmetry

We can investigate the symmetry of a quite general class of relativistic field theory using the above
formalism. For all applications needed in this manuscript, we consider linear representations of the
proper orthochronous Poincaré group. To this end we use the results of Sect. 1.7, according to which
an infinitesimal Poincaré transformation acts on the space-time four-vector as

δxµ = δωαβ gαµxβ+δaµ (3.2.1)

whereδωαβ =−δωβα = const. andδaµ = const. It is convenient to treat the translation and Lorentz
subgroups separately. In the following we bring the transformations to the general form (3.1.10). Here
the index k of course becomes a four-vector index which we denote by α for translations and a pair αβ
for Lorentz transformations.

3.2.1 Translations

The translations are given by (3.2.1) with δωαβ = 0:

δxµ = δaµ = δaα gµα ⇒ ξ µα =−ηµα. (3.2.2)

The fields usually transform as “scalar fields” under translations, i.e.,

δφ′i = 0 ⇒ Ξαi = 0. (3.2.3)

The Lagrangian usually does not explicitly depend on x, and according to the symmetry condition
(3.1.21) this implies that the translations are a symmetry with Ωαi = 0, and from (3.1.24) it follows that
the Noether current is the canonical energy-momentum tensor, Θµα .
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3.2.2 Lorentz transformations

Here we have

δxµ = δωαβη
µαxβ =

1
2
δωαβ(η

µαxβ−ηµβxα) ⇒ ξ µαβ = 1
2
(xαηµβ− xβηµα). (3.2.4)

The fields usually transform linearly, i.e., according to

δφi =
1
2
δωαβΣ

αβ
i j φ j ⇒ Ξαβi =

1
2
Σαβi j φ j , (3.2.5)

where Σαβi j =−Σ
βα
i j = const. The Lagrangian is usually a scalar field built from the fields φ j and their

derivatives ∂µφ j . As already assumed for the invariance under space-time translations, we again assume
the Lagrangian to be not explicit dependent on x.
From (3.1.24) then the conserved currents define the angular-momentum tensor,

Jµαβ =−Jµβα = xαΘµβ− xβΘµα+ Sµαβ with Sµαβ =
∂L
∂ (∂µφi )

Σαβi j φ j . (3.2.6)

3.3 Pseudo-gauge transformations

It is clear that the conserved currents from our symmetry analysis above are not uniquely determined:
If jµ is a conserved current, i.e., fulfilling ∂µ jµ = 0 we can always use an arbitrary antisymmetric
tensor field, Ωµν =−Ωνµ to define a new current by

j̃µ = jµ+ ∂νΩ
µν . (3.3.1)

Because of the antisymmetry first of all the local conservation law, ∂µ j̃µ = ∂µ jµ holds true identically,
but also the conserved charge,

Q =
∫

R3
d3x j 0 =

∫

R3
d3x j̃ 0 (3.3.2)

does not change, because using the usual three-dimensional Gauss’s Integral Theorem shows that

∫

R3
d3x∂νΩ

0ν =
∫

R3
d3x∂ jΩ

0 j = 0, (3.3.3)

assuming that Ω0ν vanishes sufficiently quickly at spatial infinity. In the first step we have used that
Ω00 = 0 due to the antisymmetry of Ωµν .

This shows that j̃µ describes the same physical content as the original Noether current derived from the
above symmetry analysis, i.e., a local conservation law as well as the conserved total charge associated
with the symmetry. In this sense the Noether theorem provides a unique conserved quantity but does
not uniquely specify in any physical way between different distribution of the corresponding density
and current density.
A redefinition of a conserved current via an arbitrary antisymmetric tensor fileΩµν , as described above,
is sometimes called a pseudo-gauge transformation.
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3.4 The Belinfante-Rosenfeld tensor

As we shall see, in the case of the energy-momentum and the angular-momentum tensors one often
encounters difficulties with the canonical energy-momentum tensor. E.g., as we shall show later, in the
case of electrodynamics in an naive application of the transformation laws for the electrodynamic po-
tential Aµ as a vector field, the canonical energy-momentum tensor turns out to be not gauge invariant,
though this is the case for the corresponding conserved “Noether charges”, i.e., the total energy and
momentum of the (free) electromagnetic field.
A hint of, how to cure such kinds of “deficiencies” provides the General Theory of Relativity (GR),
where the energy-momentum tensor of all fields not describing gravitation turns out to provide the
sources of the gravitational field, which is described by the pseudo-metric of the pseudo-Riemannian
space-time manifold1, and this energy-momentum tensor is necessarily symmetric. In this sense general
relativity provides a physical meaning at least to the local distribution of energy in and momentum and
their current densities although in GR there are in general no globally conserved energy and momen-
tum.
As has been shown by Belinfante and Rosenfeld [Bel40, Ros40], within SR we can always define a sym-
metric energy-momentum tensor from the canonical one by a pseudo-gauge transformation making use
of the spin part of angular-momentum tensor (3.2.6). Indeed, the local conservation law for angular
momentum gives

∂µJµρν =Θρν −Θνρ+ ∂µSµρν = 0. (3.4.1)

Now we look for a pseudo-gauge transformation

Θ̃µν =: T µν =Θµν + ∂ρΩ
µρν , Ωµρν =−Ωρµν (3.4.2)

such that T µν = T νµ. Now (3.4.1) gives a hint that we can use Sµρν to achieve this. Indeed, since
Sµρν =−Sµνρ we can define the tensor

Ωµρν =
1
2
(Sµνρ− Sρνµ+ Sνµρ), (3.4.3)

which is indeed antisymmetric under exchange of the indices µ and ρ. Further, using (3.4.1) gives

T µν =Θµν +
1
2
∂ρ(S

µνρ+ Sνµρ)− 1
2
(Θµν −Θνµ) = 1

2
(Θµν +Θνµ)+

1
2
∂ρ(S

µνρ+ Sνµρ), (3.4.4)

which is indeed symmetric under exchange of the indices µ and ν. It is clear that the total conserved
energy-momentum vector

P ν =
∫

R3
d3xT 0ν =

∫

R3
d3xΘ0µ (3.4.5)

does not change under this pseudo-gauge transformation.
We also note that now we can define the total angular-momentum density tensor by

J̃µαβ = xαT µβ− xβT µα, (3.4.6)

which looks as if there is no more “spin” involved. However, indeed, because of T µν = T νµ and
∂µT µν = 0, first of all we have the local conservation law,

∂µJ̃µαβ = 0. (3.4.7)

1See, e.g., [LL96] or [MTW73] for an introduction to General Relativity.
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Further

J̃µαβ = xαΘµβ− xβΘµα+ xα∂ρΩ
µρβ− xβ∂ρΩ

µρα

= Jµαβ− Sµαβ+ ∂ρ(x
αΩµρβ− xβΩµρα)− (Ωµαβ−Ωµβα) (3.4.8)

Plugging in the definition forΩµαβ (3.4.3) one finds that the last term in (3.4.8) cancels the second, such
that the relation between J̃µαβ and Jµαβ is again a pseudo-gauge transformation,

J̃µαβ = Jµαβ+ ∂νΩ
µναβ, Ωµναβ = xαΩµνβ− xβΩµνα, (3.4.9)

where Ωµναβ indeed fulfills the necessary anti-symmetry condition Ωµναβ =−Ωνµαβ.

3.5 Continuum mechanics

As we shall see later, when treating the electromagnetic interaction between charged matter and the
electromagnetic field as the paradigmatic example for a concrete relativistic dynamical model, the point-
particle model to describe macroscopic bodies is highly problematic in the theory of relativity and that
a field description of dynamical systems is more natural.
As an example we treat the ideal fluid, which is also often useful as a classical (i.e., non-quantum) model
of matter in applications of the theory of relativity as relativistic heavy-ion collisions and for sim-
ple classical models for the constitutive relations of macroscopic electrodynamics in a fully consistent
relativistic form. We follow here [Sop08] and for the kinematical part [RZ13] adapted to our special-
relativistic framework.

3.5.1 Kinematics

As in non-relativistic continuum mechanics, i.e., the mechanics of fluids (gases and liquids) and elas-
tic solids, there are two kinds of description, usually referred to as the Lagrangian and the Eulerian
formulation. From the point of view of point-particle mechanics the Lagrange formulation is most
natural. Instead of considering a discrete set of interacting point particles, described by functions of
their position vectors in an inertial reference frame as function of time or, equivalently, in the rela-
tivistic context, the space-time four-vector as a function of proper time to get a manifestly covariant
description in terms of “world lines”, one introduces the idea of “material elements” (or more natu-
rally “fluid elements”, though the here developed formalism for the kinematics also holds for solids).
These are “macroscopically small”, i.e., you consider volume elements (in some arbitrary inertial frame)
that are small in comparison to the typical length scale across which the macroscopic properties of the
continuous matter change considerable, so that one can treat them formally as “infinitesimally small”
volume elements d3x but at the same time “microscopically large”, such that they contain many atoms
or molecules, over which fast changing “thermal motion” one can average as far as only the macroscopic
properties of the medium are of interest.
The kinematical description in the Lagrange formalism then is to define first a “standard configuration”
by cartesian coordinates ξ A (A ∈ {1,2,3}) in some arbitrary inertial frame and a density ñ(ξ⃗ ) giving
the number of particles per volume within this material frame. Now the kinematics of the continuous
medium can be described by the space-time four vectors xµ(t , ξ⃗ ) or, more conveniently in the man-
ifestly covariant description by xµ(s , ξ⃗ ), where s = cτ with τ the proper time of the fluid element
labelled by ξ⃗ .
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This defines the fluid, as seen by an inertial observer, as a time-like world-line congruence. In the
following we define material derivatives with respect to coordinate time, Dt , and s or proper time τ,
Ds and Dτ by Dt x = ∂t xµ(t , ξ⃗ ) and Dτxµ = c∂s xµ(s , ξ⃗ ) = c uµ(s , ξ⃗ ). Clearly uµuµ = 1.

We also assume that xµ(s , ξ⃗ ) as well as xµ(t , ξ⃗ ) are invertible in the sense that we can uniquely derive
ξ⃗ (s , ξ⃗ ) as well as ξ⃗ (t , ξ⃗ ). Also since Dt x = Dτx/u0 one can always uniquely express t as a function
t (s , ξ⃗ ) and s as a function s(t , ξ⃗ ), which is all in complete analogy to point-particle mechanics.
The other point of view is the more intuitive Eulerian description, which describes the fluid as seen
by an observer located at a given space-time point xµ and observing the flow of the medium just at
x⃗ at time t . This leads to a field-theoretical description with the three scalar fields ξ A(x), which just
tells us which fluid element, given by the material coordinates ξ⃗ if in standard configuration, is located
at the observer’s position x⃗ at time t . The normalized four-velocity field of the fluid is then given by
uµ(x)≡ uµ[t , ξ⃗ (t , x⃗)].
This also allows us to calculate material time and proper-time derivatives of arbitrary scalar, vector, or
tensor components in this Eulerian description:

Dt A(x) = ∂t A[t , x⃗(t , ξ⃗ )] = ∂t A+ v⃗ · ∇⃗A(x). (3.5.1)

Here A stands for any scalar-like field quantity (including vector- or tensor-field components) Multiply-
ing with u0 one gets the manifestly covariant form

DτA(x) = c Ds A(x) = c uµ(x)∂µA(x). (3.5.2)

E.g., for the proper-acceleration field we get

aµ(x) = Dτuµ(x) = c uν∂νu
µ. (3.5.3)

We note that, because uµuµ = 1= const from this we immediately get

aµuµ = c uµuν∂νu
µ =

c
2

uν∂ν (uµuµ) = 0, (3.5.4)

as to be expected from point-particle mechanics in the Lagrangian description.
The next quantity we can calculate is the particle-number four-flow. We assume here that the particle
number is conserved2. The particle-number four-current jµN(x) is given by ( jµN) = (cρN,ρNv⃗), where
v⃗ = Dt x⃗ is the three-velocity field of the medium. As we shall see in a moment this is a vector field. It
can be expressed in manifestly covariant form as jµN = n(x)c uµ, where n(x) = ρN/u

0 is a scalar field.
Its physical meaning is that it gives the particle-number density as measured in the instaneous rest frame
of the medium element. Indeed the particle number in the volume element d 3x is ρNd3x = n(x)d3x∗,
and the volume element as measured in the observational frame, d3x, is Lorentz contracted compared
to its measurement in the rest frame d3x∗, i.e., ρNd3x = ρN/u0d3x∗ = nd3x∗.
Now we express jµN in terms of the scalar fields ξ A(x). To that end we note that at time t the fluid
element labelled by ξ A(x) in the standard configuration is located at x⃗. The corresponding number of

2This is not always generally valid in the relativistic realm. E.g., if you have some fluid at temperatures higher than the
rest energy mc2 of some particles, e.g., a gas electrons and positrons there can be annihilation and pair-creation processes like
e++ e−↔ γ + γ . Then in the fluid-dynamics description we have to choose some conserved quantity to count the “amount
of matter” like, in this example, electric charge instead of the particle numbers themselves.
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particles is dN = ñ(ξ )d3ξ , but d3ξ = det(∂ jξ
A)d3x. This means that

ρN(x) = ñ(ξ⃗ )∆ j k l (∂ jξ
1)(∂kξ

2)(∂lξ
3)

= ñ(ξ⃗ )ε0 j k l (∂ jξ
1)(∂kξ

2)(∂lξ
3)

= ñ(ξ⃗ )ε0αβγ (∂αξ
1)(∂βξ

2)(∂γξ
3)

=
1
3!

ñ(ξ⃗ )ε0αβγ∆ABC (∂αξ
A)(∂βξ

B )(∂γξ
C ),

(3.5.5)

where here and in the following we define as the Levi-Civita symbol in d dimensions as the symbol
∆a1a2...ad = ∆a1...ad

that is totally antisymmetric under any permutations of two of its indices and
∆12...d = ∆12...d = 1. In the context of Minkoswki four-tensor indices we have ∆0123 = ε0123 = 1
and ε0123 =−∆0123.
Now (3.5.5) suggests that

jµN(x) =
c
3!

ñ(ξ⃗ )εµαβγ∆ABC (∂αξ
A)(∂βξ

B )(∂γξ
C ). (3.5.6)

For µ= 0 this immediately follows from (3.5.5). For µ= j exactly one of the indices α, β and γ must
be 0. Then the other two of these indices take values different from 0 and j . In our totally symmetrized
notation in (3.5.6) this simply boils down to

j j
N(x) =

c
2!

ñ(ξ⃗ )ε j 0b c∆ABC (∂0ξ
A)(∂bξ

B )(∂cξ
C ). (3.5.7)

Now we have
xµ = xµ[t , ξ⃗ (x)]. (3.5.8)

Taking the derivative wrt. t at fixed x⃗ for a spatial component xa this leads to

0= ∂t xa = ∂t xa(t , ξ⃗ )|
ξ⃗=ξ⃗ (x)

+(∂tξ
A)∂Axa(t , ξ⃗ )|

ξ⃗=ξ⃗ (x)
= va(x)+ c(∂0ξ

A)∂Axa . (3.5.9)

From this we find
c∂0ξ

A=−va∂aξ
A. (3.5.10)

Plugging this in (3.5.7) after using ε j 0b c =−ε0 j b c indeed leads to the expected result:

j j
N =+

1
2!

ñ(ξ⃗ )ε0 j b c∆ABC va(∂aξ
A)(∂bξ

B )(∂cξ
C ) =

1
2
ρN∆

j b c∆ab c va = ρNv j . (3.5.11)

From the derivation of the current (3.5.6) it is also clear that it must obey the continuity equation.
Formally this is easy to prove, using (3.5.6):

∂µJµN =
c
3!
εµαβγ∆ABC

�

(∂D ñ)(∂µξ
D )(∂αξ

A)(∂βξ
B )(∂γξ

C )+ 3ñ(∂µ∂αξ
A)(∂βξ

B )(∂γξ
C )
�

. (3.5.12)

Both terms in the square bracket vanish due to the contraction with εµαβγ : The first term, because any
non-vanishing contribution mast have {A,B ,C } = {1,2,3}, and thus D is necessarily equal with one
of these indices (A,B ,C ), e.g., A. Then (∂µξ

D )(∂ A
α ) is symmetric under exchange of µ and α and this

cancels any such contribution when contracted with εµαβγ . The second term in the square bracket
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is explicitly symmetric under exchange of the indices µ and α and thus its contraction with εµαβγ

vanishes too. Thus finally indeed
∂µJµN = 0. (3.5.13)

Next we consider the deformations of the medium as a function of (proper) time. By using proper
time rather than coordinate time to describe the motion of the infinitesimal volume elements of the
medium we already use an invariant description of time by defining it in the local rest frame of the
medium. Further we also have to distinguish between true physical deformations of one such volume
element relative to some other neighboring element and the effect of length contraction. This can
also be achieved by looking at these deformations in the local rest frame of the medium. Finally, as in
non-relativistic fluid dynamics, which is locally valid in the local rest frame, we have to also separate
the rigid rotations of the medium element as a whole from the true intrinsic deformations. To this
end we consider the volume element at xµ = xµ(τ,ξ A) and an infinitesimally close volume element at
xµ+δεsµ, where sµ = sµ(x) is an aribtrary space-like “displacement vector”. For the proper velocity
of the displacement vector we find on one hand

Dτ sµ = c uν∂ν sµ, (3.5.14)

as for any vector field. On the other hand

c uµ(x +δεs) = c uµ(x)+ cδεs ν∂νu
µ(x) = c uµ(x)+ cδεuν∂ν s

µ. (3.5.15)

From this we finally get
Dτ sµ = c uν∂ν sµ = c s ν∂νuµ. (3.5.16)

The deformation is thus given as a linear mapping with the tensor ∂νuµ, and we have to decompose this
deformation in the above described covariant way. To that end we introduce the projection operator
to the local rest frame,

∆µν = ηµν − uµuν . (3.5.17)

First we note that

∂νuµ = (∆
σ
ν + uσ uν )(∆

ρ
µ+ uρuµ)∂σ uρ =∆

σ
ν ∆
ρ
µ∂σ uρ+ aµuν , (3.5.18)

where we have used (3.5.4).
The first term now can be decomposed first in its symmetric and antisymmetric part. Since the projec-
tors∆βα project to the space-like hypersurface Minkowski-orthogonal to uµ, i.e., to the local rest frame
of the medium, this is merely a tensor in 3D space, and thus the antisymmetric part is already irre-
ducible under the symmetry group of rotations of this hypersurface. The symmetric part can further
be decomposed in two irreducible pieces, namely a scalar part transforming trivially under rotations in
the hypersurface and the remainder. The scalar part is given by the trace, i.e., we have

Θνµ =
1
2
∆σν ∆

ρ
µ(∂σ uρ+ ∂ρuσ ) = σνµ+

1
3
Θ∆νµ, (3.5.19)

where
Θ =Θµµ = ∂ρuρ, (3.5.20)

where in the final step we have used (3.5.4) again. From (3.5.19) we immediately find

σµµ = 0. (3.5.21)
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So, finally we have the displacement (3.5.16) decomposed in the irreducible parts

Dτ sµ = s ν
�

aµuν + cωνµ+ cσνµ+
c
3
Θ∆νµ

�

. (3.5.22)

The first two terms describe the rigid displacement of the medium cell in the local rest frame3, acceler-
ation and rotation, whereωνµ =−ωµν is the kinematic vorticity of the fluid cell, and the 3rd and 4th
terms the intrinsic deformations of the cell. The term with σµν describes the shear deformation of the
cell, perserving its proper volume, while Θ describes the change of the proper volume by compression
or expansion.
After having some intuitive picture of the kinematics of the fluid cell we can look at this kinematics
again using our field-theoretical description with the three scalar fields ξ A(x) introduced above and
which we can use in our Lagrangian framework to derive equations of motion for (perfect) fluids and
(nondissipative) elastic bodies. Since the Lagrange density should be a Lorentz scalar, it is clear that the
basic building block are the six scalars,

GAB =−(∂µξ A)(∂ µξ B ), (3.5.23)

the deformation matrix.
Its meaning becomes clear in a local rest frame of the medium cell, where ∂ ∗0 ξ

A = 04. There the
deformation matrix is obviously given by

GAB = (∂ ∗a ξ
A)(∂ ∗a ξ

B ). (3.5.24)

This matrix encodes information on the displacement of the fluid cell in the same sense as sµ above,
but now looked at from the “laboratory frame” at a given time t in terms of the material coordinates:

ξ A(t , x⃗ +δ x⃗) = ξ A(t , x⃗)+δxa∂aξ
A= ξ A(t , x⃗)+δxa M A

a . (3.5.25)

Obviously we have
GAB =M A

a M B
a ⇔ Ĝ = M̂ M̂ T, (3.5.26)

and Ĝ is a positive definite symmetric matrix, from which we can get M̂ up to a rotation. Indeed, if we
write M̂ = M̂ ′R̂, where R̂ ∈ SO(3) we find Ĝ = M̂ M̂ T = M̂ ′R̂R̂TM̂ ′T = M̂ ′M̂ ′T. So we can write

M̂ =
Æ

ĜR̂. (3.5.27)

So Ĝ describes the deformation of a medium cell at a given time t modulo a rigid rotation. So it is
perfectly suited to describe, e.g., an elastic body, whose elastic energy depends precisely on the de-
formations of different parts relative to its “relaxed state” but not on rigid rotations of the body as a
whole.
It is also easy to find the relation of the deformation matrix to the above discussed particle-number
current. Using (3.5.5) in the local rest frame we have

J ∗µN = (nc , 0, 0,0) (3.5.28)

3This term arises, because we consider neighboring medium cells at constant proper time. In the local rest frame we have
uµ = (1,0,0,0) and thus aµ = (0, a⃗), i.e., the term describes the change of the displacement’s velocity during the corresponding
time δ t = δτ = δεs 0/c .

4Here and in the following we write x∗µ for the space-time coordinates wrt. the local rest frame of the fluid cell.
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with

n = ñ(ξ⃗ )det M̂ = ñ(ξ⃗ )
Æ

det Ĝ∗. (3.5.29)

In a general frame we obviously have

JµN = cnuµ ⇒ n =
q

JµNJNµ = ñ(ξ )
Æ

det Ĝ. (3.5.30)

Here we have used that Ĝ = (Gab ), given in the manifestly covariant form (3.5.23), are Lorentz scalars,
and thus also det Ĝ is a Lorentz scalar.

3.5.2 Dynamics of a medium

Now we can write down the Lagrange density for a general continuous medium. According to the above
kinematic considerations we write the Lagrange density as a function of the three “material coordinates”
ξ A(x) and the deformation matrix GAB , which is a function of the derivatives. For the following it is
most convenient to also separate a factor n,

L (ξ A,GAB ) =−nU (ξ A,GAB ). (3.5.31)

To interpret this ansatz and find out the physical meaning of U we calculate the canonical energy-
momentum tensor using (3.1.20) for this Lagrange density:

Θµν =
∂L
∂ (∂µξ A)

∂νξ
A−Lδµν . (3.5.32)

First we determine the derivative of n:

∂ n
∂ (∂µξ A)

=
1

2n
∂ (n)2

∂ (∂µξ A)

=
1

2c2n
∂

∂ (∂µξ A)
J αNJNα

=
JNα

c2n

∂ J αN
∂ (∂µξ A)

=
ñJNα

2cn
εABC ε

αµρσ∂ρξ
B∂σξ

C .

(3.5.33)

Here we have used (3.5.6) for the current. Within (3.5.32) we need the combination

∂ n
∂ (∂µξ A)

∂νξ
A=

JNα

cn
ñ
2
εABC ε

αµρσ∂νξ
A∂ρξ

B∂σξ
C

︸ ︷︷ ︸

F αµν

. (3.5.34)

Now F αµν = −F µαν , i.e., this expression is only nonvanishing if µ ̸= α. For a nonvanishing con-
tribution we must also have either ν = µ, for which case F αµν = J αN/c , or ν = α, for which case
F αµν =−JµN/c . Thus we have

F αµν =
1
c

�

J αNδ
µ
ν −δαν JµN

�

. (3.5.35)
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Using this in (3.5.34) with J αN = nc uα leads finally to

∂ n
∂ (∂µξ A)

∂νξ
A= n(δµν − uµuν ) = n∆µν . (3.5.36)

Using this in (3.5.32) with the Lagrangian (3.5.31) after some simple calculations, using

∂ GC D

∂ (∂µξ A)
=−(∂ µξ CδAD + ∂ µξ DδAC ), (3.5.37)

we finally get

Θµν = nU uµuν + 2n
∂ U
∂ GC D

(∂µξ
C )(∂νξ

D ) = Tµν , (3.5.38)

were in the final step have we used the symmetry Θµν = Θνµ, i.e., as usual for field theories involving
only scalar fields the canonical energy-momentum tensor is symmetric and thus identical with the
symmetric Belinfante energy-momentum tensor.
In the local restframe of the medium we have (u∗µ) = (1,0,0,0) and thus we can identify ε∗ = nU as
the energy density measured in this local rest frame, and thus U is the energy per particle, and T ∗ab =
−S∗ab , where S∗ab is the stress tensor in the local rest frame. The latter follows from momentum
conservation ∂µT µa = 0, and it is characteristic for the continuum-mechanics equations of motion
that the three equations for energy and momentum are equivalent to the Euler-Lagrange equations of
motion, because

∂µT µν = ∂µ

�

(∂ νξA)
∂L
∂ (∂µξ A)

−ηµνL
�

= (∂µ∂
νξ A)

∂L
∂ (∂µξ A)

+ (∂ νξA)∂µ
∂L
∂ (∂µξ A)

− (∂ νξ A)
∂L
∂ ξ A
− (∂ ν∂µξ A)

∂L
∂ (∂µξ A)

= (∂ νξ A)
�

∂µ
∂L
∂ (∂µξ A)

− ∂L
∂ ξ A

�

.

(3.5.39)

Since by assumption the x⃗ are diffeomorphisms of the ξ A(x0, x⃗) for all x0 = c t , the momentum conser-
vation equations, i.e., (3.5.39) for ν = a ∈ {1,2,3} are indeed equivalent to the Euler-Lagrange equations
for the fields ξ A, and as expected from Noether’s theorem also energy is conserved, i.e., (3.5.39) for
ν = 0.

3.5.3 Ideal fluid

To apply our formalism of the previous Sect. to the case of an ideal fluid we have to use some ther-
modynamics, which in the relativistic context we will treat in detail in the next Chapter. Here, it is
sufficient to know that the usual formalism of thermodynamical quantities apply in the (local) rest-
frame of the fluid independent of whether we work within Newtonian or special-relativistic physics.
For the internal energy of a fluid for a (reversable) change of state we have

dU = T dS − PdV +µdN , (3.5.40)

where T is the temperature, S the entropy, p the pressure, V the volume, N the particle number, and
µ the chemical potential of the fluid, andU = U N the internal energy of the matter in the fluid cell
unter consideration with all these quantities defined in its local rest frame. Thus also n =N/V .
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3.5. Continuum mechanics

Thus the “natural” choice of independent variables for the internal energy are the extensive quantities
S, V , and N , of which U , which is an extensive quantity itself, must be a homogeneous function of
order 1, i.e.,

λU (S,V ,N ) =U (λS,λV ,λN ). (3.5.41)

Taking the derivative of this equation with respect to λ and then setting λ= 1 leads to

U (S,V ,N ) = S∂SU +V ∂VU +N∂NU . (3.5.42)

From (3.5.40) this yields the Gibbs-Duham relation

U = T S − PV +µN . (3.5.43)

Taking the total differential and using again (3.5.40) gives

SdT −V dP +Ndµ= 0. (3.5.44)

Deviding this by N and defining s = S/N , the entropy per particle,

sdT − 1
n

dP + dµ= 0. (3.5.45)

Deviding the Gibbs-Duham relation (3.5.43) by N and taking the total differential yields

dU = sdT +T ds − 1
n

dP +
1

n2
Pdn+ dµ, (3.5.46)

and using (3.5.45) leads to

dU = T ds +
P
n2

dn ⇒ U =U (n, s), ∂s U = T , ∂n U =
P
n2

. (3.5.47)

In the following we also need the corresponding relation for the enthalpy per particle, h = H/N =
(U + PV )/N =U + P/n:

dh = dU +
dP
n
− P

n2
dn

(3.5.47)
= T ds +

dP
n

. (3.5.48)

For an ideal fluid we thus have
L =−nU (n, s). (3.5.49)

Using (3.5.36) we find for the energy-momentum tensor

Tµν =
∂L
∂ n

∂ n
∂ (∂ µξ A)

∂νξ
A−L ηµν = (nU + P )uµuν − Pηµν . (3.5.50)

Usually one also uses ϵ = nU , the energy density in the local rest frame of the fluid cell, i.e., a scalar
field [Oll08]:

Tµν = (ϵ+ P )uµuν − Pηµν . (3.5.51)

According to the above derivation, the equations of motion now are

∂µT µν = 0, ∂µJµN = ∂µ(nuµ) = 0. (3.5.52)
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3. Classical fields

Since the energy-conservation equation, i.e., the first equation for ν = 0 follows from the spatial equa-
tions for ν ∈ {1,2,3} these are four independent equations of motion for the 5 independent fields uµ

(only u⃗ are independent, because uµuµ = 1) and two independent thermodynamic quantities. So in
addition one also needs an equation of state like P = P (ϵ, n).
One important consequence of the ideal-fluid equations of motion is that the fluid motion is isentropic.
To derive this, we contract the first equation in (3.5.52) with uν , and plug in (3.5.50), using the 2nd
equation (3.5.52), uν∂µuν = ∂µ(uνu

ν )/2= 0, and (3.5.48)

uν∂µT µν = ∂µ[(U + P/n)
︸ ︷︷ ︸

h

nuµ]− uν∂νP = T nuµ∂µ s = 0. (3.5.53)

This means that the entropy is conserved. To see this we can rewrite the latter equation as

nuµ∂µ s = ∂µ(ns uµ) = 0. (3.5.54)

Here ns is the entropy density as measured in the local rest frame of the fluid and thus, since JµS = ns uµ

it the entropy four-current, (3.5.54) has the meaning of (local) entropy conservation.

3.5.4 “Dust matter” and a scalar field

From a more fundamental point of view, one can treat matter as interacting with fields like the elec-
tromagnetic field, which we shall treat in Chpt. 4 in great detail. In this Sect. we restrict ourselves to
the interaction of “free particles” (often called “dust matter” in relation with general-relativistic astro-
physics). Since for non-interacting particles the energy per particle in its rest frame simply is U = mc2,
where m is the invariant mass of the particles, the corresponding contribution to the Lagrange density
(3.5.31) is

L (mech)
0 =−mc2n. (3.5.55)

Now we like to couple the particles to a real scalar field. The Lagrange density for the free field reads

L (field)
0 =

1
2
(∂µΦ)(∂

µΦ)− M 2

2
Φ2, (3.5.56)

where M is a parameter5. The simplest interaction term between the dust medium and the field is

L (int) =−g nΦ, (3.5.57)

where g is another constant.
The equation of motion of the field is directly derived from the corresponding Euler-Lagrange equation
(3.1.4) for the single scalar field Φ:

∂µ
∂L
∂ (∂µΦ)

=□Φ=
∂L
∂ Φ
=−M 2Φ− g n. (3.5.58)

This implies the inhomogeneous Klein-Gordon equation

(□+M 2)Φ=−g n. (3.5.59)

5In the quantized version, M ħh/c is the mass of the corresponding “scalar particles”, described by the (quantized) Klein-
Gordon equation.
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3.5. Continuum mechanics

The equations of motion for the medium is again most simply derived from the energy-momentum
conservation law, cf. (3.5.39). To this end we evaluate the energy-momentum tensor. For the three
contributions (3.5.55-3.5.57) we get, using (3.5.32) and (3.5.38) for the mechanical and interaction part

Θµν(mech) = mc2nuµuν , (3.5.60)

Θµν(field) = (∂
µΦ)(∂ µΦ)− 1

2

�

(∂αΦ)(∂
αΦ)−M 2Φ2�ηµν (3.5.61)

Θµν(int) = gΦnuµuν . (3.5.62)

The equation of motion for the medium then follows from energy-momentum conservation ∂µΘ
µν =

0, using ∂µ(nuµ) = 0,

n(mc2+ gΦ)uµ∂µuν = g n(ηµν − uµuν )∂µΦ :=K ν . (3.5.63)

The scalar field thus provides a contribution to an “effective mass” of the particle, corresponding to
the left-hand side of (3.5.63), as well as a Minkowski force given by the right-hand side, fulfilling the
constraint equation uνK

ν as it is enforced by the identity uνu
ν = 0, from which ∂µuνu

ν = 2uν∂µuν = 0
follows.
One should note that one gets back to the point-particle limit by writing the particle-number current
for a single particle as

JµN(x) = c
∫

dλ
dyµ(λ)

dλ
δ (4)[x − y(λ)], (3.5.64)

where λ is an arbitrary world-line parameter. Written in this form the current is written in a parameter-
independent and manifestly covariant way. Here yµ(λ) is the necessarily time-like world line of the
particle.
One common physically motivated choice for λ is the coordinate-time ty = y0/c ,

JµN(x) = c
∫

dty

�

c
dty

y⃗(ty )

�

δ[c(t − ty )]δ
(3)[x⃗ − y⃗(ty )] =

�

c
dt y⃗(t )

�

δ (3)[x⃗ − y⃗(t )]. (3.5.65)

Form this expression it is most easy to prove the particle-number conservation,

∂µJµN = (∂t + dt y⃗ · ∇⃗)δ (3)[x⃗ − y⃗(t )] = 0. (3.5.66)

To derive the point-particle equation of motion we note that from (3.5.65) we get, using uµ = γ (1,dt y⃗/c)
and γ = u0 = 1/

p

1− (dt y⃗/c)2,

JµN(x) =
c
γ

uµδ (3)[x⃗ − y⃗(t )] ⇒ n =
1
γ
δ (3)[x⃗ − y⃗(t )]. (3.5.67)

To derive the point-particle equation of motion, we note that from (3.5.55) and (3.5.57)

L(mech)
0 + L(int) =

∫

R3
d3x[−mc2− gΦ]n =−

Æ

1− (dt y⃗/c)2[mc2+ gΦ(y)]. (3.5.68)

The Euler-Lagrange equations for variations of this Lagrangian with respect to y⃗ and rewriting the time
derivatives in terms of proper-time derivatives yields

h

m+
g
c2
Φ(y)

i

d2
τxµ = g

�

ηµν − 1
c2
(dτyµ)(dτyν )

�

∂µΦ. (3.5.69)
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3. Classical fields

This is a well-defined equation of motion, if one takes the field Φ as an external given field, but one
should note however, that in this point-like limit a self-consistent solution of (3.5.69) and the field
equation (3.5.59) is not a well-defined problem. For the analogous case of the electromagnetic field this
is known as the radiation reaction problem. This will be discussed in some detail in Chpt. 4.
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Chapter 4

Classical Electromagnetism

4.1 Heuristic foundations

We start with the usual form of “microscopic electromagnetism”, defined by the Maxwell equations
for the electric and magnetic field components E⃗(t , x⃗) and B⃗(t , x⃗). Throughout this manuscript we use
rationalized Gauss units, also known as Heaviside-Lorentz units. This is the usual choice in relativistic
high-energy physics. In this system of units the Maxwell equations read

∇⃗ · B⃗ = 0, (4.1.1)

∇⃗× E⃗ +
1
c
∂t B⃗ = 0, (4.1.2)

∇⃗ · E⃗ = ρ, (4.1.3)

∇⃗× B⃗ − 1
c
∂t E⃗ =

1
c

j⃗ . (4.1.4)

Eqs. (4.1.1) and (4.1.2) are the homogeneous Maxwell equations. They provide merely constraints on
the field components rather than being dynamical equations for the field, as we shall see in the follow-
ing analysis in terms of the relativistic formulation we are aiming at. Nevertheless the homogeneous
equations have profound physical content. As any fundamental laws of nature they cannot be derived
but summarize empirical evidence. Gauss’s Law for the magnetic field (4.1.1) summarizes the empir-
ical lack of evidence for the existence of magnetic monopoles, i.e., there is no generic magnetic charge
seen in nature. Faraday’s Law of induction (4.1.2) means that the solenoidal part of the electric field
is due to the changes of the magnetic field with time.
The inhomogeneous Maxwell equations, Gauss’s Law for the electric field (4.1.3) and the Maxwell-
Ampere Law (4.1.4), describe the dynamical laws determining the electromagnetic field due to the
sources, i.e., the electric charge distribution, ρ(t , x⃗), which is the amount of electric charge per unit
volume at position x⃗, and the electric current density, j⃗ (t , x⃗). For an arbitrary surface element with
surface-normal vector d2 f⃗ around position x⃗, dI = d2 f⃗ · j⃗ (t , x⃗) is the amount of charge per unit time
flowing through the surface element with the meaning of its sign given by the (arbitrary!) orientation
of the surface-normal vector.
The physical meaning of the electromagnetic field is provided by “mediating” the forces on electric
charges. We have already discussed this in the context of point-particle mechanics in Sect. 2.4.2, where
we derived in (2.4.24) the equation of motion of a point particle with electric charge q in an external
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4. Classical Electromagnetism

electromagnetic field (E⃗ , B⃗) as

d
dt

 

m ˙⃗x
Æ

1− ˙⃗x2/c2

!

= qE⃗ +
q
c

v⃗ × B⃗ (4.1.5)

or, in manifestly covariant form (2.4.33)

m
d2

dτ2
xα =

q
c

Fαµ
d

dτ
xµ. (4.1.6)

Here, τ is the proper time of the partice along his world line. The spatial part is also readily derived

by using dτ = dt
Æ

1− ˙⃗x2/c2 from (4.1.5) by deviding this equation by this square-root factor. Using
uµ = 1/cdxµ/dτ then gives

md2
τ x⃗ = q(u0E⃗ + u⃗ × B⃗). (4.1.7)

In any way, (4.1.5) provides the Lorentz force for the motion of a particle in an electromagnetic field.
However, one should be aware that this is only an approximate equation of motion since it does not
take into account the interaction of the charged particle with its own electric field. As we shall see this
radiation-reaction force provides an unsolvable problem in relativistic dynamics, which finally leads
to the conclusion that the notion of a strict point particle is at least problematic in relativistic theories.
Thus in the following, we shall first discuss the usually treated problem of finding the electromagnetic
field for a given (continuous!) charge-current distribution from Maxwell’s equations (4.1.1-4.1.4) in a
relativistic covariant way. Only later we shall also address the problem of a completely closed self-
consistent dynamical system of continuous charge-particle distributions and the electromagnetic field.
We shall deal with the problem of a “point particle” as one example in describing it as a small Born-rigid
body of finite extent and then discussing possible approximations for the carefully taken limits of the
finite extension to a “point”.
Thus, in the following we consider the charge-current distributions in terms of a continuous fluid,
described by the charge-current distribution, which is given in terms of the fluid-velocity field v⃗(t , x⃗)
as

j⃗ (t , x⃗) = ρ(t , x⃗)v⃗(t , x⃗). (4.1.8)

Then the force density is given by

f⃗ (t , x⃗) = ρ(t , x⃗)E⃗(t , x⃗)+
1
c

j⃗ × B⃗ , (4.1.9)

i.e., the force dF⃗ on a charged-fluid cell around x⃗ due to the presence of the electromagnetic field is
given by dF⃗ = d3x f⃗ (t , x⃗).
In the next section we aim at a manifestly covariant description of these heuristic ideas.

4.2 Manifestly covariant formulation of electrodynamics

We start with the discussion of the charge and current distribution. It is remarkable that already from
the Maxwell equations (4.1.1-4.1.4) we can conclude the conservation of electric charge, without the
necessity to discuss the details of the dynamics of the charged fluid. Indeed taking the divergence of
(4.1.4) and using (4.1.3) we find

1
c
∇⃗ · j⃗ =−1

c
∇⃗ · ∂t E⃗ =−1

c
∂t ∇⃗ · E⃗ =−

1
c
∂tρ ⇒ ∂tρ+ ∇⃗ · j⃗ = 0. (4.2.1)
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4.2. Manifestly covariant formulation of electrodynamics

The latter equation is the continuity equation. Its physical meaning becomes clear when integrating
(4.2.1) over an arbitrary volume at rest. Then we find, using Gauss’s theorem
∫

V
d3x∂tρ(t , x⃗) =

d
dt

∫

V
d3xρ(t , x⃗) =

d
dt

QV (t ) =−
∫

V
d3x∇⃗ · j⃗ (t , x⃗) =−

∫

∂ V
d2 f⃗ · j⃗ (t , x⃗). (4.2.2)

Here ∂ V is the (closed) boundary surface of V with the convention to orient the surface-normal vectors
d2 f⃗ to point out of the volume. Now QV (t ) is the total charge of the fluid contained in the fixed volume
V at time t . According to the equation its change Q̇V is entirely given by the total current flowing
through the boundary surface.
Now (4.2.1) can be brought in a form that we shall prove to be covariant under Lorentz transfor-
mations. To that end we realize that (xµ) = (c t , x⃗) is a four-vector and ∂t = c∂0, where we define the
four-dimensional Nabla operator as

∂µ =
∂

∂ xµ
. (4.2.3)

We will prove in a moment that putting the index as a lower index when deriving with respect to xµ

provides the correct transformation property of derivatives of scalar, vector, and more general tensor
fields. In terms of this 4-dimensional Nabla operator we can write (4.2.1) as

∂µ jµ(t , x⃗) = 0, (4.2.4)

where we define the current four-vector field

jµ(x) =
�

cρ(t , x⃗)
j⃗ (t , x⃗)

�

. (4.2.5)

To confirm that (4.2.3) really defines an operator that acts formally like co-variant vector components
we start with the definition of a tensor field by its components as a function of the space-time four-
vector components, T µνρ...(x).
Now, as detailed in Sect. 1.4, the contravariant components of the space-time four-vector transform
under a Lorentz transformation as

x̄µ =Λµν x
ν , ηµρΛ

µ
νΛ
ρ
σ = ηνσ ⇒ ηνσ (Λ−1)σβ = ηµβΛ

µ
ν ⇒ (Λ−1)αβ = ηµβη

ναΛµν . (4.2.6)

From this the transformation of the co-variant components read

x̄ρ = ηµρΛ
µ
ν x
ν = ηµρη

νσΛµν xσ = (Λ
−1)σρxσ . (4.2.7)

Now by definition the transformation rule for the tensor-field components reads

T̄ µνρ···(x̄) =ΛµαΛ
ν
βΛ
ρ
γ · · ·T αβγ ...(x). (4.2.8)

From this we immediately find the transformation rule for the partial derivatives of these components
to be

∂̄σ T̄ µνρ...(x̄) =ΛµαΛ
ν
βΛ
ρ
γ · · ·
∂ xδ

∂ x̄σ
∂δT αβγ ...(x) =ΛµαΛ

ν
βΛ
ρ
γ · · · (Λ−1)δσ∂δT αβγ ...(x), (4.2.9)

which indeed means that the derivative ∂ν transforms like the components of a new tensor field with
one more covariant index.
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This implies that the left-hand side of (4.2.5), the four-divergence of the vector field ( jµ), is a scalar
field, and thus the continuity equation a Lorentz-invariant property, as it should be for a relativistic
physical law.
To also express the components of the electromagnetic fields in a manifestly covariant way, next we aim
at writing them in terms of appropriate four-tensor components. To that end it is easier to first exploit
the homogeneous Maxwell equations (4.1.1) and (4.1.2) to introduce the electromagnetic potentials.
From (4.1.1) we know that B⃗ has a vector potential A⃗ such that

B⃗(t , x⃗) = ∇⃗× A⃗(t , x⃗). (4.2.10)

Using this in (4.1.2) we find

∇⃗×
�

E⃗ +
1
c
∂t A⃗

�

= 0, (4.2.11)

from which we can conclude that the expression in the brackets is the gradient of a scalar potential Φ,

E⃗ +
1
c
∂t A⃗=−∇⃗Φ ⇒ E⃗(t , x⃗) =−∇⃗Φ(t , x⃗)− 1

c
∂t A⃗=−∇⃗Φ(t , x⃗)− ∂0A⃗. (4.2.12)

This indicates that we can combine the potentials to a four-vector potential,

[Aµ(x)] =
�

Φ(x)
A⃗(x)

�

, (4.2.13)

and that then the electric and magnetic field components are found as the tensor components of a
kind of four-dimensional curl, i.e., the antisymmetrized derivatives of Aµ, which leads to the Faraday
tensor,

Fαβ(x) = ∂αAβ(x)− ∂βAα(x). (4.2.14)

It is clear that the observable phenomena are described by this Faraday tensor, which can be expressed
with the electric and magnetic field components (E⃗ , B⃗), as we shall see next. This implies that the same
physical situation is described also by the four-potential,

A′µ =Aµ+ ∂µχ (4.2.15)

with an arbitrary scalar field χ . This is known as the gauge invariance of electromagnetism. We come
back to this very important property in Sect. 4.5.
To find the relation of the tensor components Fαβ with the usual electric and magnetic components

E⃗ and B⃗ of the non-covariant formalism, we have to be careful with the signs. We als note that E⃗ and
B⃗ are not the spatial components of a four-vector. In the following we write always lower indices for
these vector components, i.e., E⃗ = (E1, E2, E3) and B⃗ = (B1,B2,B3). This is the case for A⃗, according to
(4.2.13). Since Fαβ =−Fβαwe just need to calculate the six components Fa0 and Fab with a, b ∈ {1,2,3}:

F0a = ∂0Ab − ∂b A0 =−∂0Ab − ∂b A0 =−1
c
∂t Ab − ∂bΦ= Eb ,

Fab = ∂aAb − ∂b Aa =−∂aAb + ∂b Ac = εbac (∇⃗× A⃗)c =−εab c Bc .
(4.2.16)

Writing the the Faraday-tensor components in terms of a matrix we get

(Fµν ) =









0 E1 E2 E3
−E1 0 −B3 B2
−E2 B3 0 −B1
−E3 −B2 B1 0









. (4.2.17)
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Raising both indices we get

(F µν ) =









0 −E1 −E2 −E3
E1 0 −B3 B2
E2 B3 0 −B1
E3 −B2 B1 0









(4.2.18)

Now the Maxwell equations are first-order differential equations of the field components. Since we
expect that the Maxwell equations are in fact a relativistic field theory, it should be possible to write
these equations in terms of manifestly covariant differential manipulations. The most simple possibility
is to contract the Faraday tensor with the four-dimensional Nabla operator, i.e.,

∂µF µν =
� ∇⃗ · E⃗
−∂0E⃗ + ∇⃗× B⃗

�

=
�

ρ

j⃗/c

�

=
1
c
( j ν ). (4.2.19)

In the second step we have used the inhomogeneous Maxwell equations (4.1.3-4.1.4) and thus brought
them already in a manifestly covariant form.
To also find the covariant form of the homogeneous Maxwell equations we note that the Levi-Civita"
symbol, εαβγδ , which is defined to be totally antisymmetric under exchange of any pair of its indices
and ε0123 = 1, are invariant under proper (and thus particularly under proper isochronous) Lorentz
transformations, because

ε̄µνρσ =ΛµαΛ
ν
βΛ
ρ
γΛ
ν
δε
αβγδ = εµνρσ det(Λ̂) = εµνρσ . (4.2.20)

In the same way we find for the covariant components

εµνρσ = ε
µνρσ det(η̂) =−εµνρσ . (4.2.21)

Finally we note that
εαβγδε

µνρσ =−δρµνσ
αβγδ

, (4.2.22)

where

δµνρσ
αβγδ

= det













δµα δµ
β
δµγ δµ

δ

δνα δν
β
δνγ δν

δ

δρα δρ
β
δργ δρ

δ

δσα δσ
β
δσγ δσ

δ













. (4.2.23)

This means that δµνρσ
αβγδ

is antisymmstric under exchange of any lower or any upper index pair, and

δ0123
0123 = 1. It is also clear that this symbol defines invariant tensor components under any linear trans-

formation, particularly also under arbitrary Lorentz transformations.
With help of (4.2.22) and the properties of the determinant (4.2.23) it is easy to evaluate all possible
contractions of two Levi-Civita tensors,

εαβγδε
µνρδ =−det







δµα δµ
β
δµγ

δνα δν
β
δνγ

δρα δρ
β
δργ






=−δµνρ

αβγ
, (4.2.24)

εαβγδε
µνγδ =−2det

�

δµα δµ
β

δνα δν
β

�

=−2δµν
αβ

, (4.2.25)

εαβγδε
µβγδ =−6δµα . (4.2.26)
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The Levi-ivita tensor allows us to define for each completely antisymmetric tensor of ranks 2, 3, or 4
another antisymmetric tensor by contraction with the Levi-Civita tensor, e.g., for the Faraday tensor

†F µν =
1
2
εµνρσFρσ . (4.2.27)

The tensor defined by the components †F µν are called the Hodge dual of the Faraday tensor. Using
(4.2.24-4.2.26) we find that the operation of forming the Hodge dual of an antisymmetric tensor is a
one-to-one mapping in the space of the antisymmetric tensors. The inverse is given, up to a sign, by
the Hodge-dual operator itself. E.g., for the Faraday tensor we get

†(†F )αβ =
1
2
εαβµνε

µνρσFρσ

=+
1
4
εαβµνε

ρσµνFρσ

=−1
2
(δραδ

σ
β
−δσαδρβ)Fρσ

=−δραδσβFρσ =−Fαβ.

(4.2.28)

To see the relation of †F αβ to E⃗ and B⃗ we first note that ε0µνρ is only non-zero for µ, ν,ρ ∈ {1,2,3}.
This means that

†F 0ν =
1
2
ε0ναβFαβ =−Bν , ν ∈ {1,2,3} (4.2.29)

In the following we define that latin indices always run over the set {1,2,3} and greek ones over
{0,1,2,3}. For m, n ∈ {1,2,3} we then have

F† mn =
1
2
εmnαβFαβ = ε

mn0b F0b = ε
mnb Eb . (4.2.30)

In matrix notation this reads

F† µν =









0 −B1 −B2 −B3
B1 0 E3 −E2
B2 −E3 0 E1
B3 E2 −E1 0









. (4.2.31)

We can express this also in a different way: We can identify the 6 components of F µν with the ordered
pair of three-vectors (E⃗ , B⃗). Then †F µν is identified with (B⃗ ,−E⃗).
Thus we get for the contraction with the four-Nabla operator from (4.2.19)

∂µ F† µν =
� ∇⃗ · B⃗
−∂0B⃗ −∇⃗× E⃗

�

= 0, (4.2.32)

where in the last step we have used the homogeneous Maxwell equations (4.1.1-4.1.2). So the Maxwell
equations are equivalent to the manifestly covariant relativistic field equations for the Faraday tensor
and its dual (4.2.19) and (4.2.32):

∂µF µν =
1
c

j ν , ∂µ F†
µν = 0. (4.2.33)
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4.2. Manifestly covariant formulation of electrodynamics

We just note that we can establish a four-dimensional definition of an electric-field four-vector and
a magnetic-field four-vector. It depends on the four-velocity u = (uµ) of an inertial observer who
measures these fields,

Eµ = F µνuν =
�

u⃗ · E⃗
u0E⃗ + u⃗ × B⃗

�

, Bµ = F† µνuν =
�

u⃗ · B⃗
u0B⃗ − u⃗ × E⃗

�

. (4.2.34)

Indeed, for the observer at rest in the reference frame at hand, we have u = (1,0,0,0)T and for this
observer we have (Eµ) = (0, E⃗) and (Bµ) = (0, B⃗).
(4.2.34) gives the components of the four-vectors of the electric and magnetic field with respect to the
reference frame, where this observer moves with four-velocity u. In his own rest frame he finds the
field components by applyting the appropriate boost matrix

Λ̂=
�

u0 −u⃗T

−u⃗ 13+(u
0− 1)u⃗ u⃗T/u⃗2

�

(4.2.35)

to the vectors given in (4.2.34),

(Ēµ) = (ΛµνE ν ) =
�

0
¯⃗
E

�

, (B̄µ) = (ΛµνB ν ) =
�

0
¯⃗
B

�

, (4.2.36)

where after some simple algebra, using u0 = γ = 1/
p

1−β2 and u = γβ⃗ with β⃗= v⃗/c ,

¯⃗
E = E⃗∥+ γ (E⃗⊥+ β⃗× B⃗) = γ (E⃗ + β⃗× B⃗)− γ 2

1+ γ
β⃗(β⃗ · E⃗), (4.2.37)

¯⃗
B = B⃗∥+ γ (B⃗⊥− β⃗× E⃗) = γ (B⃗ − β⃗× E⃗)− γ 2

1+ γ
β⃗(β⃗ · B⃗). (4.2.38)

Here we have used the projection of the 3D-field components to a part longitudinal and perpendicular
with respect to β⃗,

V⃗∥ =
β⃗ · V⃗
β2
β⃗, V⃗⊥ = V⃗ − V⃗∥, (4.2.39)

and

E⃗∥ = γ E⃗ +
1− γ
β⃗2
β⃗(β⃗ · E⃗) = γ E⃗ +

1− γ
1− 1/γ 2

β⃗(β⃗ · E⃗) = γ E⃗ = γ E⃗ − γ 2

1+ γ
β⃗(β⃗ · E⃗), (4.2.40)

and the analogous equation for B⃗∥.
Of course, one obtains the same result by applying the boost transformation to the Faraday tensor and

then reads off
¯⃗
E and

¯⃗
B , using (4.2.17),

F̄ µν =ΛµρΛ
ν
σF ρσ . (4.2.41)

From (4.2.34) with some algebra one can derive that

Fµν = Eµuν − Eνuµ− εµνρσBρuσ . (4.2.42)
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Now the homogeneous Maxwell equations (4.2.19) read

∂µF µν = ∂µEµuν − uµ∂µE ν − εµνρσ (∂µBρuσ ) =
1
c

j ν . (4.2.43)

The dual tensor is
F† µν =

1
2
εµνρσFρσ = ε

µνρσEρuσ +Bµuν −B νuµ, (4.2.44)

and the inhomogeneous Maxwell equations (4.2.32) become

∂µ F† µν = εµνρσ∂µEρuσ + ∂µBµuν − uµ∂µB ν . (4.2.45)

With the tensors F µν and F† µν we can build two independen invariants of the fields,

FµνF
µν =− F†

µν F† µν =−2(E⃗2− B⃗2), Fµν F† µν =−4E⃗ · B⃗ . (4.2.46)

This leads to the idea to build a complex three-vector, the Riemann-Silberstein vector,

F⃗ = E⃗ + iB⃗ . (4.2.47)

Keeping the usual scalar product from Euclidean R3, this leads to

F⃗ 2 = E⃗2− B⃗2− 2iE⃗ · B⃗ . (4.2.48)

This shows that the invariants of the electromagnetic field (4.2.46) under Lorentz transformation occur
as real and imaginary parts of F⃗ 2. This indicates that the transformation of the field components un-
der proper orthochronous Lorentz transformations (4.2.37-4.2.38) can be expressed as a complexified
rotation matrices Ô ∈ SO(3,C), i.e., matrices Ô ∈ C3×3 with det Ô = 1 and ÔÔ† = Ô†Ô = 1. Of
course, the rotations are given by the subgroup SO(3), i.e., the usual rotation matrix. Indeed both the
electric and magnetic field components transform as usual three-vector fields under rotations, and thus
this holds also for F⃗ . Now from (4.2.37-4.2.38) we find

˜⃗
F = β̂(β̂ · F⃗ )− iβγβ̂× F⃗ + γ [β̂× (F⃗ × β⃗)] = D̂

β̂
(iη)F⃗ , (4.2.49)

where β̂ = β⃗/β and η = artanhβ. For real arguments D̂n⃗(α) denotes transformation of the three-
vector components under usual rotations of the spatial basis vectors with rotation axis n⃗ and rotation
angle α, cf. the spatial part of the four-vector in (1.7.23). Thus, the Riemann-Silberstein vector indeed
transforms under proper orthochronous Lorentz transformations according to the complexified group
SO(3,C). The usual rotations are represented by the subgroup SO(3) and rotation-free boosts by those
with imaginary rotation angles iη, where η is the rapidity of the boost, introduced in (1.7.28).
To derive the Maxwell equations in terms of the Riemann-Silberstein vector we can simply use the
three-dimensional form (4.1.1-4.1.4). Taking the divergence reads

∇⃗ · F⃗ = ρ (4.2.50)

and the curl

∇⃗× F⃗ = ∇⃗× (E⃗ + iB⃗) =−1
c
∂t B⃗ +

i
c
∂t E⃗ +

i
c

j⃗ =
i
c
(∂t F⃗ + j⃗ ) (4.2.51)

or

∇⃗× F⃗ − i
c
∂t F⃗ =

i
c

j⃗ . (4.2.52)
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4.3. The Doppler effect for light

4.3 The Doppler effect for light

As an application of the above derived transformation laws of the electromagnetic field components we
consider, how the frequency and intensity of a plane wave changes when its source moves with constant
velocity v⃗ =βc e⃗1 in the reference frame Σ. Then the source is at rest in the reference frame Σ′.
We assume that the wave vector k⃗ = k(cosα, sinα, 0) = kn⃗. Then also in the frame Σ′ we have k⃗ ′ =
k ′(cosα′, sinα′, 0) = k ′n⃗′. As we shall see, the parameters k ′ = cω′ and α′ are different from the
corresponding values k =ωc and α, where the source is moving with v⃗ =βc e⃗1, i.e., both the frequency
of the electromagnetic wave changes when the source is moving compared to the frequency when the
source is at rest (Doppler effect of light) and also the propagation direction (aberration of light).
In the frame, where the light source is at rest a plane-wave solution for the electric field reads

E⃗ ′(x ′) = E⃗ ′0 cos(k ′ · x ′). (4.3.1)

We assume that inΣ′ the axes are chosen such that n⃗′ = (cosα′, sinα′, 0)T and E⃗ ′0 = E ′01ε⃗
′
1+E ′02ε⃗2

′. Here

ε⃗′1 =





− sinα′

cosα′

0



 , ε⃗′2 =





0
0
1



 (4.3.2)

are two vectors perpendicular to n⃗′ such that ε⃗′1× ε⃗′2 = n⃗′. The magnetic field is uniquely determined
by B⃗ ′0 = n⃗′× E⃗ ′ = (E ′01ε⃗

′
2− E ′02ε⃗

′
1) and

E⃗ ′(x ′) = E⃗ ′0 cos(k ′ · x ′), B⃗ ′(x ′) = B⃗ ′0 cos(k ′ · x ′). (4.3.3)

Further due to Lorentz invariance we have k ′ · x ′ = k · x and thus because of (4.2.37)

E⃗(x) = E⃗0 cos(k · x), B⃗(x) = B⃗0 cos(k · x) (4.3.4)

with

E⃗0 =





−E ′01 sinα′

γE ′01(β+ cosα′)
E ′02γ (1+βcosα′)



 B⃗0 =
1
c





E ′02 sinα′

−E ′02γ (β+ cosα′)
E ′01γ (1+βcosα′)



 . (4.3.5)

Now

k = Λ̂−1k ′ = Λ̂−1











k ′

k ′ cosα′

k ′ sinα′

0











=











γk ′(1+βcosα′)
γk ′(β+ cosα′)

k ′ sinα′

0











=
�

k
kn⃗

�

(4.3.6)

and thus

k = γk ′(1+βcosα′), n⃗ =







(β+ cosα′)/(1+βcosα′)
p

1−β2 sinα′/(1+βcosα′)
0






=





cosα
sinα

0



 . (4.3.7)

As expected the fields (4.3.5) in Σ are of the same form as in Σ′, i.e.,

ε⃗1 =





− sinα
cosα

0



 , ε⃗2 =





0
0
1



 , E⃗ = (E01ε⃗1+ E02ε⃗2)cos(k · x), B⃗ =
1
c

n⃗× E⃗ . (4.3.8)
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Figure 4.1: Left Doppler effect for light according to (4.3.14); right: aberration of light according to
(4.3.12).

Also the observer in Σ thus sees a plane wave as in the restframe of the souce, Σ′ but with different
parameters. This must be so, because the Maxwell equations are a system of relativistically covariant
field equations, as discussed above, and the plane-wave solutions of the (free) Maxwell equations are
uniquely determined.
According to (4.3.6) the frequency changes from its rest-frame value to

ω = ck = γω′(1+βcosα′). (4.3.9)

This is the Doppler effect for light, and analogously to the Doppler effect for sound the frequency
depends on the speed of the light source and the direction of observation, n⃗ (parametrized with the
angle α), relative to the direction of the velocity of the light source, v⃗ =βc e⃗1. The effect gets largest,
it the light source moves directly towards the observer (α = 0) or away from him (α = π). Then from
(4.3.7) also α′ = 0 or α′ = π, respectively. According to (4.3.9) we get for these cases (upper sign is for
α= α′ = 0 and lower sign is for α= α′ =π)

ω± = γω
′(1±β) =ω′

√

√

√
1±β
1∓β . (4.3.10)

If the light source is moving towards the observer ω = ω+ > ω
′. If the source is moving away from

the observer we get ω =ω− <ω′. That means a light-source moving towards the observer leads to a
blue-shift of the light, one that is moving away from the observer to a red-shift.
Another interesting case is if the light is observed inΣ in the direction perpendicular to the source, i.e.,
for α = π/2. According to (4.3.7) this implies cosα′ = −β und sinα′ =

p

1−β2. Using again (4.3.9)
we find

ω = γω′(1−β2) =ω′
Æ

1−β2, (4.3.11)

i.e., contrary to the case of the (non-relativistic) acoustic Doppler effect one also has a Doppler shift
of the frequency when the light is observed in a direction transverse to the velocity of the source,
i.e., a transverse Doppler effect, and it’s a red-shift by the inverse Lorentz factor 1/γ . This can be
understood as an effect purely due to time dilation: Considering the light wave as a clock, which ticks
at a rate T ′ = 2π/ω′ in the frame it moves with v = βc it ticks at rate T = 2π/ω = γT ′ = γ2π/ω′
and thusω =ω′/γ .
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Further the angle α is changed against the angle α′ in the restframe of the source. This is known as the
aberration of light. Defining α,α′ ∈ (−π,π] we get from (4.3.7)

α= sign(sinα′)arccos
�

β+ cosα′

1+βcosα′

�

. (4.3.12)

As can be seen in Fig. 4.1, that usually α < α′ (except for the special cases, discussed above, α = α′ = 0
and α = α′ = π. The direction of the one polarization vector changes correspondingly according to
(4.3.8). The other polarization vector perpendicular to the plane spanned by the velocity of the light-
source and the direction of the wave vector (given in the frame Σ and in our choice of coordinates the
(12)-plane), does not change.
Of course we can express the Doppler effect also directly with the angle α, defined in Σ, because obvi-
ously

k ′ = Λ̂k = Λ̂











k
k cosα
k sinα

0











=











γk(1−βcosα)
γk(−β+ cosα)

k sinα
0











. (4.3.13)

As to be expected this deviates from (4.3.6) only by substituting (k ,α)→ (k ′,α′) and β→−β. From
the temporal component of (4.3.13) we get (see the right plot in 4.1)

ω′ =ω
1−βcosα
p

1−β2
⇒ ω =ω′

p

1−β2

1−βcosα
. (4.3.14)

Finally we compare the intensity of the light wave as observed in the two frames. The intensity is given
by

ϵ=
1
2

E⃗2
0 =

1
2

E⃗ ′20 γ
2(1+βcosα′)2 = ϵ′

�ω

ω′
�2

. (4.3.15)

The light intensity changes in comparison to that measured in the rest-frame of the source with the
square of the “Doppler factor”ω/ω′.

4.4 The Lagrangian for the electromagnic field

In this Section we analyze first the free electromagnetic field and then the “dust medium” as the most
simple continuum-mechanical model for charged particles interacting through the electromagnetic in-
teraction in terms of the field-theoretical action principle discussed in 3.1.
For the free fields we can find the Lagrangian for the electromagnetic four-potential Aµ quite easily from
the fact that the (inhomogeneous) Maxwell equations are linear, i.e., the Lagrangian must be a quadratic
form of the Aµ and its derivatives ∂νA

µ. Further the Maxwell equations are gauge invariant, i.e., also
the action should not change under a gauge transformation (4.5.2). Thus we expect the Lagrangian to
be a bilinear form of the gauge-invariant field-strength tensor Fµν . The two possible Poincaré invariants
are

L1 = αFµνF
µν , L2 =β

†F µνFµν =β
1
2
εµνρσFρσFµν (4.4.1)

with some constants α and β. The second candidate for a Lagrangian is however ruled out by the
empirical fact that the electromagnetic interaction is invariant under spatial reflections, which is a
Lorentz transformation with determinant (−1). Since the Levi-Civita tensor changes its sign under such
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Lorentz transformations, L2 is a pseudoscalar rather than a scalar quantity under spatial reflections.
Thus we setβ= 0. So up to the factor α the Lagrangian for the free electromagnetic field is determined
to beL1. The usual convention for the choice of the coefficient is α=−1/4. Thus we have

L (em)
0 =−1

4
F µνFµν =−

1
2

F µν∂µAν . (4.4.2)

To see that this leads to the correct source-free Maxwell equations, we calculate the variation of the
corresponding action,

δS (em)
0 =−1

2

∫

d4xF µνδFµν =−
∫

d4xF µν∂µδAν =+
∫

d4xδAν∂µF µν != 0. (4.4.3)

Since this should hold for all δAν , the equations of motion indeed are the source-free inhomogeneous
Maxwell equations, i.e., (4.2.33) with j ν = 0,

∂µF µν = 0. (4.4.4)

Next we evaluate the canonical energy-momentum tensor. From the general formula (3.1.20) we get

Θ(em)
µν =

∂L (em)
0

∂ (∂ µAρ)
∂νAρ−L ηµν = Fρµ∂νA

ρ+
1
4

FρσF ρσηµν . (4.4.5)

We note that this cannot be the observable energy-momentum tensor since it is not a gauge-invariant
expression. As discussed in Sect. 3.3, Noether’s theorem does not uniquely determine the “conserved
currents” of a symmetry (here the symmetry under space-time translations) but only up to a “pseudo-
gauge transformtion”, i.e., one can introduce an alternative energy-momentum tensor of the form,

T (em)
µν =Θ

(em)
µν + ∂ρΩ

µρν (4.4.6)

with an arbitrary field Ωµρν obeying Ωµρν =−Ωνρµ. For (4.4.6) the same local conservation law holds
as for (4.4.5),

∂ µT (em)
µν = ∂ µΘ

(em)
µν = 0, (4.4.7)

and the total energy-momentum vector,

P ν =
∫

R3
d3xT 0ν

em =
∫

R3
d3xΘ0ν

em (4.4.8)

is also the same for both energy-momentum tensors. To make (4.4.6) gauge invariant, we should have

∂ρΩ
µρν =−F ρµ∂ρAν

(4.4.4)
= −∂ρ(F ρµAν ) ⇒ Ωµρν =−F ρµAν , (4.4.9)

which is indeed antisymmetric under exchange of the indices ρ and µ. With this choice we get the
symmetric energy-momentum tensor of the electromagnetic field,

T (em)
µν = FρµFν

ρ+
1
4

FρσF ρσηµν =
1
4

FρσF ρσηµν − FρµF ρν , (4.4.10)

which is also obviously gauge invariant.
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Now we consider a charged dust medium as introduced in Sect. 3.5.4 as the most simple example of
a charged medium interacting via the electromagnetic interaction. The Lagrangian for the free dust
particles is again given by (3.5.56),

L (mech)
0 =−mc2n. (4.4.11)

The interaction with the electroamgnetic field is described by

L (int) =−q
c

JµNAµ, (4.4.12)

where q is the charge of the dust particles. We first note that this provides a gauge-invariant contribution
to the action, because for A′µ =Aµ+ ∂µχ the gauge-transformed Lagrangian reads

L (int)′ =L (int)− q
c

JµN∂µχ =L (int)− q
c
∂µ
�

JµNχ
�

, (4.4.13)

due to particle-number conservation. Thus the gauge-transformed interaction Lagrangian differs from
the original one only by a total divergence and thus the corresponding action functionals are the same.
We also obtain the correct inhomogeneous Maxwell equations since the variation of the interaction
part of the action wrt. the Aµ is

δSint =−
∫

d4x
q
c

JµNδAµ. (4.4.14)

Adding this to the variation of the action for the free electromagnetic field (4.4.3) indeed leads to the
correct inhomogeneous Maxwell equations with non-vanishing sources,

∂µF µν =
q
c

J νN. (4.4.15)

As to be expected the electromagnetic four-current density is

J ν = qJ νN = qcnuν . (4.4.16)

To find also the equations of motion for the medium we use energy-momentum conservation. First
we work with the canonical energy-momentum tensor. In addition to (4.4.5) we have the energy-
momentum tensor for the free dust particles (3.5.60),

Θ(mech)
µν = mc2nuµuν , (4.4.17)

and with (3.5.32-3.5.34) we find for the contribution of the interaction Lagrangian

Θ(int)
µν =

q
c

JNµAν = ρnuµAν . (4.4.18)

The equations of motion for the medium follow from the local energy-momentum conservation after
some algebra,

∂µΘ
µν
mech
= mc2nuµ∂µuν =−∂µΘµνem− ∂µΘµνint = qnF νρuρ =

1
c

F νρJρ. (4.4.19)

We note that despite the fact that the canonical energy-momentum tensors for the fields (4.4.5) as well
as from the interaction term (4.4.18) are not gauge invariant, we obtain the expected gauge-invariant
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equations of motion, since obviously on the right-hand side of (4.4.20) the expected gauge-invariant
Lorentz-force density occurs.
This is, of course, expected, because the equations of motion for the medium also follow from the
variation of the action, which is gauge invariant (cf. Sect. 3.5.2).
Again, we can use the same pseudo-gauge transformation as for the free field (4.4.9) to obtain a gauge-
invariant total energy-momentum tensor for the electromagnetic field and the interaction, because with
(4.4.15) we get

∂ρΩ
µρν =−∂ρ(F ρµAν ) =−nq uµAν − F ρµ∂ρAν . (4.4.20)

This leads to

T µνem =Θ
µν
em+Θ

µν
int+ ∂ρΩ

µρν =
1
4

FρσF ρσηµν − Fρ
µF ρν = F µρF ρν +

1
4
ηµνFρσF ρσ , (4.4.21)

which is formally the same gauge-invariant expression as for the free electromagnetic field. The inter-
action term is now “hidden” in the field expressions.
Of course the same equation of motion for the medium (4.4.19) can be derived from this, using (4.4.19),
because

∂µΘ
µν
mech
= mc2nuµ∂µuν =−∂µT µνem =−∂µ

�

Θµνem+Θ
µν
int+ ∂ρΩ

µρν
�

≡−∂µ
�

Θµνem+Θ
µν
int

�

. (4.4.22)

The expressions for the various quantities defined by the components of the symmetric and gauge
invariant energy-momentum tensor of the electromagnetic field (4.4.21) in terms of the 3D formalism
of electrodynamics can be simply read off the definition (4.4.21) by expressing the Faraday tensor in
terms of (E⃗ , B⃗). The result is

ϵem = T 00
em =

1
2
(E⃗2+ B⃗2), (4.4.23)

cΠ j
em =

1
c

S i = T 0 j = E⃗ × B⃗ , (4.4.24)

T j k
Max =−T ( j k)

em =
1
2
(E⃗2+ B⃗2)δ j k − E j E k −B j B k . (4.4.25)

Here, ϵem denotes the energy density of the electromagnetic field, Π⃗ its momentum density, S⃗ the
energy-current density (or Poynting vector), and T j k

Max the Maxwell stress tensor, expressing the
stress tensor of the medium due to the electromagnetic interaction.

4.5 Gauge invariance and retarded potentials

As we have already mentioned in Sect. 4.2 the homogeneous Maxwell equations guarantee the existence
of the four-vector potential Aµ with

Fµν = ∂µAν − ∂νAµ, (4.5.1)

and for any scalar field χ
A′µ =Aµ+ ∂µχ (4.5.2)

we get the same Faraday tensor (4.5.1) since ∂µ∂νχ − ∂ν∂µχ = 0. This is called gauge invariance of
the electromagnetic potential.
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Plugging (4.5.1) into the inhomogeneous Maxwell equation (4.2.19) we get the equation of motion for
the four-potential,

∂ µFµν = ∂
µ(∂µAν − ∂νAµ) =□Aν − ∂ν∂µAµ =

1
c

j ν . (4.5.3)

Here we have introduced the D’Alembert operator,

□= ∂µ∂
µ =

1
c2
∂ 2

t −∇⃗2 =
1
c2
∂ 2

t −∆. (4.5.4)

Now due to the gauge invariance the electromagnetic potential is determined only up to the gradient
of a scalar field. This means that we can apply one additional constraint on Aµ, which of course has to
be consistent with the equation (4.5.3).
Obviously the equations (4.5.3) become separated for the four components of Aµ if one chooses the
Lorenz-gauge condition,

∂µAµ = 0, (4.5.5)

which has also the advantage of being a covariant equation, i.e., if one evaluates the four-potential in
one inertial frame of reference subject to fulfill (4.5.5) this condition is also fulfilled in any other inertial
frame.
Thus with the Lorenz-gauge condition (4.5.5) the equation of motion for the vector potential (4.5.3)
simplifies to

□Aν =
1
c

j ν . (4.5.6)

This equation is consistent with the gauge condition, because

0=□∂νA
ν =

1
c
∂ν j ν , (4.5.7)

and this is fulfilled according to the conservation of electric charge, which leads to the continuity equa-
tion (4.2.4). This condition of charge conservation has to be fufilled thus not only as an integrability
condition for the Maxwell equations but also to fulfill gauge invariance.
Now we investigate, how to solve (4.5.3) with the sources, jµ(t , x⃗) considered to be given. Then this
is a set of wave equations, which are, thanks to the choice of the Lorenz gauge, uncoupled. It is a
(hyperbolic) linear partial differential equation of second order in time and thus its general solution
can be written as the sum of a particular solution of the inhomogeneous equation and the general
solution of the homogeneous equation. To make the solution unique one needs initial conditions, i.e.,
the specification of Aµ(t = 0, x⃗) =Aµ0 (x⃗) and ∂t Aµ(t = 0, x⃗) = ∂t Aµ(t = 0, x⃗) or, equivalently in terms
of the physical fields, F µν (t = 0, x⃗) = F µν0 (x⃗).
We start to look for a solution of the inhomogeneous wave equation of a scalar field. This is then
applicable to the four separated equations for the components of Aµ. So we try to solve

□Φ(x) = J (x), (4.5.8)

with Φ and J scalar fields. The usual way to solve such an inhomogeneous linear equation is to look for
a Green’s function of the corresponding differential operator on the left-hand side, i.e.,

□x D(x, x ′) = δ (4)(x − x ′). (4.5.9)
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Having found such a solution, a particular solution of the inhomogeneous equation (4.5.8) is given by

Φ(x) =
∫

R4
d4x ′D(x, x ′)J (x ′). (4.5.10)

This already provides a hint, how to specify the Green’s function needed for our purposes further: The
integral over x ′0 = c t ′ integrates over the entire “history” of the source. Since we observe the field Φ(x)
at a given time, t = x0/c , due to the causality principle, it should be determined only by the “past” of
this history, and the future states of J (x ′), i.e., at times t ′ > t should not contribute. One should note
that at this point we bring in the notion of a time direction, i.e., we distinguish past from future by
envoking the argument with the causality princple, defining the causal time arrow. Thus, we look for
the socalled retarded Green’s function, subject to the constraint

D(x, x ′)≡D(x − x ′) =Θ(x0− x ′0)d (x − x ′). (4.5.11)

In this ansatz we have already taken into account that (4.5.9) is invariant under space-time translations,
i.e., D(x, x ′) can only depend on the difference x− x ′ of its arguments. Thus setting y = x− x ′ we have
to solve

□D(y) = δ (4)(y). (4.5.12)

To this end we express D as a Fourier transform wrt. y0

D(y) =
∫

R

dk0

2π
exp(−ik0y0)D̃(k0, y⃗). (4.5.13)

Then we get from (4.5.12)

δ (4)(y) = δ (3)(y⃗)
∫

R

dk0

2π
exp(−ik0y0) =

∫

R

dk0

2π
(−k02−∆)D̃(k0, y⃗) (4.5.14)

or
−(k02+∆)D̃(k0, y⃗) = δ (3)(y⃗). (4.5.15)

Due to the invariance under rotations, this suggests the ansatz D̃(k0, y⃗) = F (k0, r )/r with r = |y⃗|.
Then (4.5.15) for r ̸= 0 simplifies to

∂ 2
r F (k0, r ) =−k02F (k0, r ) ⇒ F (k0, r ) =Aexp(ik0 r )+B exp(−ik0 r )

⇒D(k0, r ) =
A
r

exp(ik0 r )+
B
r

exp(−ik0 r ).
(4.5.16)

Plugging this into (4.5.13) we get

D(y) =
A
r
δ(y0− r )+

B
r
δ(y0+ r ). (4.5.17)

Due to the above introduced retardation condition that D(y) = 0 for y0 < 0 we must have B = 0.
Further, for k02 = 0 and B = 0 (4.5.15) must reduce to the known Green’s function for −∆ which is
1/(4πr ), leading to A= 1/(4π). So we finally obtain

D(y) =
1

4π|y⃗|δ(y
0− |y⃗|). (4.5.18)
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As we shall see below, for many applications it is more convenient to rewrite this in a manifestly co-
variant way:

D(y) =
1

2π
Θ(y0)δ(y02− y⃗2) =

1
2π
Θ(y0)δ(y · y)≡ 1

2π
Θ(y0)δ(y2). (4.5.19)

We note that this function is invariant under orthochronous Lorentz transformations, which do not
change the sign of the time component of any four-vector. This again reflects our particular choice of
the Green’s function of the D’Alembert operator, i.e., the retarded one.
To solve (4.5.6) it is most convenient to use the form (4.5.18) of the Green’s function, leading to the
retarded four-potential,

Aµ(x) =
∫

R4
d4x ′
δ(x0− x ′0− |x⃗ − x⃗ ′|)

4πc |x⃗ − x⃗ ′| jµ(x ′) =
∫

R3
d3x ′

jµ(x0− |x⃗ − x⃗ ′|, x⃗ ′)
4πc |x⃗ − x⃗ ′| . (4.5.20)

Rewriting this in terms of t = x0/c we get

Aµ(x) =
∫

R3
d3x ′

jµ(t − |x⃗ − x⃗ ′|/c , x⃗ ′)
4πc |x⃗ − x⃗ ′| . (4.5.21)

The latter equations makes the physical interpretation of the retardation effect simple: The contribu-
tion of the sources at position x⃗ ′ to the fields observed at position x⃗ at time t originates from the state
of the sources at the retarded time, τret = t − |x⃗ − x⃗ ′|/c , which is earlier by the running time of light
from x⃗ ′ to x⃗. This reflects the relativistic causality structure, limiting the speed of signal propagation
to the speed of light in a vacuum.
To see that (4.5.21) is a valid solution for potentials, leading to a Faraday tensor that solves all Maxwell
equations, we must check that the Lorenz-gauge condition (4.6.5) is fulfilled, because only then the
solution of (4.6.6) leads to a valid solution of the Maxwell equations. To prove this, we write the
solution in unintegrated form,

Aµ(x) =
∫

R4
d4x ′D(x − x ′)

jµ(x ′)
c

, (4.5.22)

and then, via an integration by parts assuming that the boundary terms do not play any role, because
the current vanishes sufficiently fast at infinity, we indeed find

∂µAµ(x) =
∫

R4
d4x ′ ∂
∂ xµ

D(x − x ′)
jµ(x ′)

c

=−
∫

R4
d4x ′ ∂
∂ x ′µ

D(x − x ′)
jµ(x ′)

c

=
∫

R4
d4x ′D(x − x ′) ∂

∂ x ′µ
jµ(x ′)

c
= 0,

(4.5.23)

where in the last step we have made use of the continuity equation (4.2.4) again. Thus the retarded
solution (4.5.21) indeed fulfills the Lorenz-gauge condition (4.6.5) and the wave equations (4.6.6) and
thus provides a valid electromagnetic potential.

4.6 The retarded fields

With (4.5.21) we have a valid solution of the Maxwell equations for the four-potential, and to find
the corresponding field components Fµν or, equivalently, E⃗ and B⃗ we could just take the derivatives,
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Fµν = ∂µAν − ∂νAµ. It is, however, simpler to use the non-covariant notation,

E⃗(t , x⃗) =−∇⃗A0(t , x⃗)− 1
c
∂t A⃗(t , x⃗), B⃗(t , x⃗) = ∇⃗× A⃗(t , x⃗). (4.6.1)

To evaluate the derivatives, it is generally more convenient to work with the four-dimensional integral
(4.5.23), taking the derivatives and only afterwards perform the x ′0 (or t ′ integral) to get rid of the δ
distribution:

Aµ(t , x⃗) =
∫

R
dt ′

∫

R3
d3x ′
δ(t − t ′− |x⃗ − x⃗ ′|/c)

4πc |x⃗ − x⃗ ′| jµ(t ′, x⃗ ′). (4.6.2)

Now we evaluate the derivatives we need in (4.6.1). Introducing the abbreviation R⃗ = r⃗ − r⃗ ′ and
R= | r⃗ − r⃗ ′|= |R⃗|, we find

∂t A⃗(t , x⃗) =
∫

R
dt ′

∫

R3
d3x ′
∂tδ(t − t ′−R/c)

4πcR
j⃗ (t ′, x⃗ ′)

=−
∫

R
dt ′

∫

R3
d3x ′
∂ ′t δ(t − t ′−R/c)

4πcR
j⃗ (t ′, x⃗ ′)

=
∫

R
dt ′

∫

R3
d3x ′
δ(t − t ′−R/c)

4πcR
∂t ′ j⃗ (t

′, x⃗ ′)

=
∫

R3
d3x ′ 1

4πcR

�

∂ ′t j⃗ (t ′, x⃗ ′)
�

t ′=t−R/c
.

(4.6.3)

Further we have

∇⃗A0 =
∫

R
dt ′

∫

R3
d3x ′ρ(t ′, x⃗ ′)∇⃗δ(t − t ′−R/c)

4πR

=
∫

R3
dt ′

∫

R3
d3x ′ρ(t ′, x⃗ ′)

�

−∂tδ(t − t ′−R/c)
R⃗

4πcR2
−δ(t − t ′−R/c)

R⃗
4πR3

�

=
∫

R3
dt ′

∫

R3
d3x ′ρ(t ′, x⃗ ′)

�

∂ ′t δ(t − t ′−R/c)
R⃗

4πcR2
−δ(t − t ′−R/c)

R⃗
4πR3

�

=−
∫

R3
d3x ′

�

∂ ′t ρ(t ′, x⃗ ′)R⃗
4πcR2

+
ρ(t ′, x⃗ ′)R⃗

4πR3

�

t ′=t−R/c

(4.6.4)

and

∇⃗× A⃗(t , x⃗) =
∫

R
dt ′

∫

R3
d3x ′

�

∂ ′t δ(t − t ′−R/c)
R⃗

4πc2R2
−δ(t − t ′−R/c)

R⃗
4πcR3

�

j⃗ (t ′, x⃗ ′)

= +
∫

R3
d3x ′

�

∂ ′t j⃗ (t ′, x⃗ ′)× R⃗
4πc2R2

+
j⃗ (t ′, x⃗ ′)× R⃗

4πcR3

�

t ′=t−R/c

.

(4.6.5)

Plugging (4.6.3-4.6.5) into (4.6.1) we find the Jefimenko equations,

E⃗(t , x⃗) =
1

4π

∫

R3
d3x ′

�

ρ(t ′, x⃗ ′)R⃗
R3

+
∂ ′t ρ(t ′, x⃗ ′)R⃗

cR2
− ∂
′

t j⃗ (t ′, x⃗ ′)
c2R

�

t ′=t−R/c

, (4.6.6)

B⃗(t , x⃗) =
1

4π

∫

R3
d3x ′

�

j⃗ (t ′, x⃗ ′)× R⃗
cR3

+
∂ ′t j⃗ (t ′, x⃗ ′)× R⃗

c2R2

�

t ′=t−R/c

. (4.6.7)
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4.7 The Liénard-Wiechert potential

Now we analyze the special case of a point particle. As we shall see, there is no principle problem
in answering the question, which electromagnetic field is created by an arbitrarily moving massive
particle. So let yµ(τ) describe the world line of the particle as a function of its proper time τ. This
world line is necessarily time-like everywhere, i.e., the four-velocity uµ = ẏµ/c everywhere fulfills the
constraint uµuµ = 1 with u0 = γ > 01.

First of all we need a description of the charge and the current density. For a charged fluid in continuum
description with the fluid-flow field v⃗(t , x⃗) we have j⃗ (t , x⃗) = ρ(t , x⃗)v⃗(t , x⃗), where ρ is the current
density as measured in the computational frame. This can be written in manifestly covariant form as
follows: The charge-current four-vector jµ = (cρ, j⃗ ) = (cρ,ρcβ⃗) is a time-like vector field, and thus
jµ jµ = ρ2c2(1− β⃗2)> 0 is a scalar. Then, defining ρ∗ = signρ

Æ

jµ jµ, we have

( jµ) = cρ∗γ
�

1

β⃗

�

= cρ∗uµ. (4.7.1)

From this we see that ρ∗ is the charge density as measured in the instantaneous rest frame of the fluid
cell. A more convenient covariant definition of this proper charge density is

ρ∗ = uµ jµ. (4.7.2)

Now for a point charge q we have

jµ(x) = q
d
dt

yµ(t )δ (3)[x⃗ − y⃗(t )] = qc
∫

R
dt ′ d

dt ′
yµ(t ′)δ (4)[x − y(t ′)]. (4.7.3)

Since this is invariant under reparametrization of the world line, we can rewrite this immediately in
manifestly covariant form as

jµ(x) = qc
∫

R
dτ ẏµ(τ)δ (4)[x − y(τ)] = qc2

∫

R
dτuµ(τ)δ (4)[x − y(τ)]. (4.7.4)

Here and in the following we write a dot for a derivative with respect to proper time of the particle.
Now we check the continuity equation. To that end we note that

d
dτ
δ (4)[x − y(τ)] =−ẏµ(τ)∂µδ

(4)[x − y(τ)] =−c uµ(τ)∂µδ
(4)[x − y(τ)]. (4.7.5)

From this we immediately find through partial integration,

∂µ jµ(x) = qc2
∫

R
dτuµ(τ)∂µδ

(4)[x − y(τ)] =−qc
∫

R
dτ

d
dτ
δ (4)[x − y(τ)] = 0. (4.7.6)

One can of course also verify the validity of the continuity equation, using the (1+3)-form in (4.7.3),
according to which

∇⃗ · j⃗ = q
d
dt

y⃗(t ) · ∇⃗δ (3)[x⃗ − y⃗(t )],

∂0 j 0 = q
d
dt
δ (3)[x⃗ − y⃗(t )] =−q

d
dt

y⃗(t ) · ∇⃗δ (3)[x⃗ − y⃗(t )]

⇒ ∂µ jµ = 0.

(4.7.7)

1As we shall see, some problems occur, if |β⃗|= |u⃗|/u0 = |dy⃗/dt |/c approaches asymptotically 1 for τ→±∞, as for, e.g.,
hyperbolic motion. In this cases one has to carefully consider regularized problems and the corresponding limits towards the
problem with the |β⃗| → 1-asymptotic behavior.
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Now the four-potential is easily evaluated using (4.5.22) and the manifestly covariant expression (4.5.19)
for the retarded Green’s function of the D’Alembert operator. With the covariant form for the four-
current density (4.7.4) we integrate out the δ distribution, using δ[ f (τ)] =

∑

τ0
δ(τ− τ0)/| ḟ (τ0)| to

get

Aµ(x) =
q

2π

∫ ∞

−∞
dτuµ(τ)θ[x0− y0(τ)]δ{[x − y(τ)]2} (4.7.8)

=
q

4π

∫ ∞

−∞
dτ

uµ(τ)
u(τ) · [x − y(τ)]

δ(τ−τret) (4.7.9)

=
q

4π
uµ(τret)

u(τret) · [x − y(τret)]
, (4.7.10)

where the “retarded proper time” of the particle, τret, is the solution of the equation

x0− y0(τret) = |x⃗ − y⃗(τret)|. (4.7.11)

Of course, the four-vector

z(τret, x) = x − y(τret) (4.7.12)

is light-like, i.e., z · z = 0 and z0 > 0. One should note that in (4.7.8) thus τret = τret(x), i.e., when
taking space-time derivatives of Aµ to obtain the Faraday tensor, using this fully integrated form (4.7.9),
one has to take this x-dependence of τret into account. As we shall demonstrate below, it is again more
advantageous to use the unintegrated expression (4.7.8).
This means that we can determine the retarded proper time in a Minkowski diagram by drawing the
particle’s world line y(τ) and then construct the light cone around the space-time point, where the
fields are observed, x. The intersection of the past light-cone with the world line of the particle then
determines τret. Since z0 is a monotonously decreasing function of τ, for each x the retarded proper
time τret is uniquely determined.
To get the electromagnetic field we have to evaluate Fµν = ∂µAν − ∂νAµ. Instead of using the fi-
nal result (4.7.10) it is more convenient to use the form (4.7.8). We start to note that for the time-
derivative, there is in principle a contribution due to the derivative of the Heaviside unit-step function,
∂0Θ[x

0 − y0(τ)] = δ[x0 − y0(τ)]. From the δ-distribution that implies that this only gives a diver-
gent contribution for the field at the corresponding (retarded) position of the particle. Since the fields
are undefined at the world line of the particle anyway we exclude this contribution, because we can
calculate the field only for x not on the particle’s world line.
Thus we only need to consider

∂µδ{[x − y(τ)]2}= 2[xµ− yµ(τ)]δ
′{[x − y(τ)]2}

= 2[xµ− yµ(τ)]
�

d
dτ
[x − y(τ)]2

�−1 d
dτ
δ{[x − y(τ)]2}

=− xµ− yµ(τ)

ẏ(τ) · [x − y(τ)]
d

dτ
δ{[x − y(τ)]2}.

(4.7.13)

Inserting this into the corresponding derivative of (4.7.8), and integration by parts, ignoring the singular
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distribution through the derivative of the Heaviside unit-step function as argued above, we finally get

∂µAν (x) =
q

2π

∫

R
dτ

d
dτ

¨

[xµ− yµ(τ)]uν (τ)

u · [x − y(τ)]

«

Θ[x0− y0(τ)]δ{[x − y(τ)]2}

=
�

q
4πc u(τ) · z

d
dτ

�

zµuν (τ)

u(τ) · z
��

τ=τret

,
(4.7.14)

where in the final step we performed the same evaluation of the integral over τ which lead from (4.7.8)
to (4.7.10). Antisymmetrization of this expression wrt. the indices µ and ν finally yields

Fµν (x) =
�

q
4πc u(τ) · z

d
dτ

� zµuν − zνuµ
u · z

��

τ=τret

. (4.7.15)

From now on we write

R= u(τ) · z = 1
c

ẏ · z, Q =
1
c

u̇(τ) · z = 1
c2

ÿ · z. (4.7.16)

One should note that, for τ = τret, R is the distance of the particle at proper time τret from the obser-
vation point x⃗ as measured in the momentary rest frame of the particle, i.e., R > 0. Working out the
proper-time derivative in (4.7.15) we find

Fµν =
q

4πR3

§ R
c2
(zµ ÿν − zν ÿµ)−Q(zµuν − zνuµ)+ (zµuν − zνuµ)

ª

. (4.7.17)

One should note that the first two terms ∝ ÿ parametrically fall off with 1/R, while the remaining
part falls off like 1/R2. As we shall see, this first part is the radiative part, i.e., the part of the field that
describes the propagation of energy and momentum to “spatial infinity”, while the second part de-
scribes the particle’s electrostatic Coulomb field as observed from a reference frame, where the particle
moves with four-velocity u.

4.8 Field of a uniformly moving point charge

As the most simple example for an electromagnetic field we consider the charge of a uniformly moving
point charge. Its trajectory in terms of its proper time is given by

y(τ) = c uτ, u = const. (4.8.1)

For given x the retarded time is determined by the equation

z2(τ) = [x − y(τ)]2 = 0, x0 > y0(τ). (4.8.2)

Inserting (4.8.1), evaluating the square and simplifying a bit, we find the quadratic equation for τ

τ2− 2u · x
c
τ+

x2

c2
= 0 (4.8.3)

with the two solutions
τ± =

u · x
c
± 1

c

p

(u · x)2− x2. (4.8.4)
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It is clear that only the lower sign can lead to the retarded proper time,

τret = τ− =
u · x

c
− 1

c

p

(u · x)2− x2. (4.8.5)

The denominator in (4.7.10) then is

R= u · z = u · [x − y(τret)] = u · x − [u · x −p(u · x)2− x2] =
p

(u · x)2− x2. (4.8.6)

Thus the four-potential is

Aµ(x) =
q uµ

4π
p

(u · x)2− x2
. (4.8.7)

That this is the correct result can be easily veryfied by noting that for a particle at rest, we have (uµ) =
(1,0,0,0)T and (u · x)2− x2 = x⃗2 = r 2. In the rest frame of the particle we thus find

A0(x) =
q

4πr
, A⃗(x) = 0. (4.8.8)

This is the well-known electrostatic Coulomb potential, which is indeed the solution for a point
charge at rest located in the origin of the spatial coordinate system. Since (4.8.7) is the only covariant
generalization of (4.8.8) which can be built with the only four-vectors u and x present in this problem,
it must be the solution for a uniformly moving point charge. One can also find it by Applying a boost-
transformation matrix to the rest-frame solution (4.8.8).
The fields are given by (4.7.17). The radiative part∝ ÿ vanishes and thus

Fµν =
q

4π[(u · x)− x2]3/2
(zµuν − zνuµ). (4.8.9)

In (1+3)-notation, using (4.2.17) we can read off the electric and magnetic field components as

E⃗ =
q

4π
γ (x⃗ − v⃗ t )

[(u · x)2− x2]3/2
, B⃗ =

q
4π

u⃗ × x⃗
[(u · x)2− x2]3/2

= β⃗× E⃗ . (4.8.10)

In the final step we have used u⃗ = γβ⃗ = γ v⃗/c . The same result can of course be obtained by taking
calculating E⃗ =−∂t A⃗/c −∇⃗A0 and B⃗ = ∇⃗× A⃗ for the potentials given by (4.8.7).
To put this in a more familar form, note that

(u · x)2− x2 = γ 2(c t − β⃗ · x⃗)2− c2 t 2+ x⃗2 = γ 2(x⃗∥− v⃗ t )2+ x⃗2
⊥, (4.8.11)

where

x⃗∥ =
β⃗ · x⃗
β2
β⃗, x⃗⊥ = x⃗ − x⃗∥ (4.8.12)

are the projections of the position vector x⃗ to the direction of the particle’s velocity v⃗ and perpendicular
to it, leading to

E⃗ =
q

4π
γ (x⃗ − v⃗ t )

[γ 2(x⃗∥− v⃗ t )2+ x⃗2
⊥]

3/2
. (4.8.13)

Note that the retarded solution finally leads to the somewhat surprising result that the electric field is
in radial direction relative to the instantaneous position y⃗ = v⃗ t of the charge, i.e., E⃗ ∝ x⃗ − v⃗ t .
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4.9 The radiation-reaction problem

While the treatment of the interaction between a charged medium2 and the electromagnetic field is well-
defined, i.e., it is, at least in principle, possible to solve the coupled equations for the electromagnetic
field and the continuum-mechanics equations of motion for the charged medium self-consistently.
As we shall show now, the task to formulate a self-consistent theory for point particles is plagued by
notorious problem, well-known since the first formulations by H. A. Lorentz and M. Abraham. A
relativistic generalization has been derived by Dirac. For a nice review of these and other “classical-
electron models”, see [Erb61]. Here we shall follow a modern derivation in the spirit of regularization
and renormalization known from modern quantum field theory [Lec18, LM07].
The problem is to describe the influence of the electromagnetic field of the point article on its motion.
It is clear that this “self field” of the particle is singular along its world line. Of course, a free electron
should simply move with constant velocity. As we shall see in the next section, of course a free point
particle does not radiate and thus there should also be no self-interaction of it with its own electro-
magnetic field, which is nothing than the “boosted Coulomb field” as calculated in Sect. 4.8. On the
other hand if we want to calculate the proper total energy of such a particle (i.e., the total energy of the
electron and its Coulomb field in the particle’s rest frame), we find a diverging result, because of the
singularity of the electrostatic Coulomb potential at the position of the particle. Now, on the other
hand, we can interpret this proper energy of the particle simply as described by its observed physical
mass, m, which implies that already for the most simple case of a free charged particle we somehow
must handle the unphysical infinite Coulomb-field energy and then take the unobservable “bare mass”,
i.e., the mass of a fictitious particle neglecting the energy of the Coulomb field, such that it cancels the
diverging field energy of this Coulomb field, leading to the observed mass of the particle.
Now, if the particle is accelerated by some external force (which can well be by an additional elec-
tromagnetic field as, e.g.. in a particle accelerator), there are electromagnetic waves emitted carrying
energy and momentum away from the particle. Thus we expect that the equation of motion for the
particle should contain some radiation-reaction force or self-force acting like a friction force due to
the loss of energy and momentum due to the radiation field.
Formally we shall handle this by applying a covariant regularization of the Liénard-Wiechert fields,
making the parts that diverge along the worldline of the particle finite and enabling us to formally
subtract the divergent self-energy of the particle and also obtain an expression for the radiation-reaction
force, which will turn out to be formally finite. Then we shall investigate the notorious problems of
the resulting Lorentz-Abraham-Dirac equation as runaway solutions and preacceleration, which
indicates a violation of causality of this classical theory of a charged point particle. It should, however,
be kept in mind that quantum effects become important already at much larger spacetime scales than
the preacceleration time scale, which is closely related to a typical length scale, called the classical
electron radius, which is defined as the typical radius of a particle of finite extent for which the entire
mass is given by its (then of course finite!) electromagnetic self-energy. In this sense one can say that
the classical theory of charged point particles itself hints at its invalidity!

4.9.1 The energy-momentum tensor of the Liénard-Wiechert field

We use the electromagnetic field of an arbitrarily moving massive point charge, given by the Liénard-
Wiechert field (4.7.17) in 4.4.10 to evaluate the energy-momentum tensor of the electromagnetic field.

2Of course the medium model can be changed to an ideal fluid, leading to magnetohydrodynamics or an elastic medium
as a simple model for a dielectric.
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x0

~x

V (4)

uµcdτ

S1

S2

Figure 4.2: Radiation originating from an infinitesimal piece of the particle’s worldline.

After a longer but straight-forward calculation we find

Tµν (x) =−
q2

16π2R4

�

ÿ2

c4
+

Q2

R2

�

zµzν (4.9.1)

+
q2

16π2R4

�

2Q
R2

zµzν +
1
c2
(zµ ÿν + ÿµzν )−QR(zµuν + uµzν )

�

(4.9.2)

+
q2

16π2R6

�

R(zµuν + uµzν )− zµzν −
R2

2
ηµν

�

. (4.9.3)

Since parametrically Q, zµ ∼ R the contribution (4.9.1) goes like 1/R2, (4.9.2) like 1/R3, and (4.9.3)
like 1/R4. One should note again that for any x the argument for τ in the above quantities has to be
taken τ = τret ≡ τret(x), cf. the solution of (4.4.11).
To evaluate the energy and momentum [Sch60] transferred from the accelerated particle to the electro-
magnetic radiation field, we note that the field due to an infinitesimal piece of the particle’s worldline
between proper times τ and dτ is located between the corresponding two light-cones cf. Fig. 4.2, where
we have choosen the inertial reference frame such that the particle at the considered moment τ is at
rest. Since the in the green four-volume V (4) we have ∂µT µν = 0 we have

∫

V (4)
d4x∂µT µν =

∫

∂ V (4)
d3ΣµT µν = 0.

To evaluate the irradiated total momentum we can push the integration volume, V (4), very far away
from the considered piece of the particle’s world-line to get only the part of the energy and momentum
which is carried to spatial infinity by the electromagnetic field. Then only the piece (4.9.1) contributes,
and the parts of the 3D boundary ∂ V (4) along the light cones do not contribute, because the corre-
sponding normal vectors dΣµ ∝ zµ. Then it is clear that the total irradiated momentum from the
considered infinitesimal piece of the particle’s trajectory can be evaluated using any of the space-like
hyper-surfaces like S1 and S2. For convenience we choose S2:

P ν =
1
c

∫

S2

d3ΣµT µν (4.9.4)
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is a four-vector, which becomes clear from using the 4D Gauss’s integral Theorem to the shaded re-
gion in Fig. 4.2 [Sch60]. If we integrate between two regions very far away from the infinitesimal
piece of the particle’s worldline under consideration, i.e., in the limit R →∞ the only piece of the
energy-momentum tensor we have to consider in evaluating (4.9.4) is the “radiation piece” in the far-
field approximation (4.9.1). Since the result is a four-vector we can also choose an arbitrary inertial
reference frame. The most simple is the rest frame of the particle at τ, i.e., uµ = ẏµ/c = (1,0,0,0).
Then we can choose the spatial base vectors such that ÿ = (0,0,0,a). We also choose the origin of the
frame such that t = τret and y⃗(τret = 0. As an integration region we choose the spherical shell with
R→∞ around y(τret), i.e.,

S : x =











0
Rcosϕ sinϑ
R sinϕ sinϑ

Rcosϑ











, R ∈ (0, cdτ), ϑ ∈ [0,π],ϕ ∈ [0,2π). (4.9.5)

Then
dσ = cdτdϑdϕ sinϑR2(1,0,0,0) (4.9.6)

and thus

dPµ =− q2dτ
(4π)2Rc4

∫ π

0
dϑ

∫ 2π

0
dϕ(−a2)(1− cos2ϑ)

�

R
x⃗

�

=
q2a2

6πc4











1
0
0
0











, (4.9.7)

i.e., in covariant form

Ṗµ =− q2

6πc4
(ÿ · ÿ)uµ, (4.9.8)

where the proper-time arguments are τret. One should note that this is only the radiation energy and
momentum carried to spatial infinity by the electromagnetic wave. The total change four-momentum
due to radiation is of course given by

∆Pµ =− q2

6πc4

∫

R
dτ(ÿ · ÿ)uµ. (4.9.9)

We stress again that in order for having a well-defined finite total change of the four-momentum we have
to assume that ÿ ̸= 0 only in a finite spatial region or we must have a sufficiently strong convergence
ÿ→ 0 for τ→±∞. Note that this assumptions are not fulfilled for hyperbolic motion, i.e., the motion
of the charged particle in an everywhere homogeneous constant electric field (which is anyway an only
academic example).

4.9.2 The Lorentz-Abraham-Dirac equation

The above consideration shows that there must be a backreaction on the particle due to the energy and
momentum radiated off as calculated by (4.9.8), i.e., there must a kind of additional “friction force” for
a particle in addition to the external force (e.g., due to an external electromagnetic field) accelerating
the particle, caused by the interaction of the particle with its own electromagnetic field. Of course, this
field is dominated by the near-field part, i.e., the boosted Coulomb field part, of the retarded field due
to the term in (4.7.17) proportional to zµuν − zνuµ. Obviously this Coulomb field diverges along the
worldline of the particle, and thus we have to regularize it in some way to be able to make mathematical
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sense of the self-force on the particle. A very convenient regularization scheme, provided in [Lec18,
LM07, Nak13], is to introduce a small spatial scale, ε and write as a regularized retarded propagator

Dε(x) =
Θ(x0)

2π
δ(x2− ε2) =

1
4π
δ(x0−px⃗2+ ε2)p

x⃗2+ ε2
(4.9.10)

instead of (4.5.19). Using this instead of the original retarded propagator for the D’Alembert operator
in the calculation of the fields, instead of (4.7.14) one arrives at

∂µA(ε)ν (x) =− q0

2π

∫

R
dτΘ(x0− z0)

zµuν
z · u

d
dτ
δ(z2− ε2), (4.9.11)

where again z = x − y(τ).
Now we want to evaluate this expression at x = y(τ0), which thanks to our regularization is now
well-defined for any given time-like worldline of the particle. To this end we write

d
dτ
δ(z2− ε2) =−2z · ẏδ ′(z2− ε2) =−1

ε
z · ẏ d

dε
δ(z2− ε2). (4.9.12)

Plugging this into (4.9.11) leads to

∂µA(ε)ν [y(τ0)] =
q

2πε
d
dε

∫

R
dτΘ(y0

0 − y0)δ[(y − y0)
2− ε2](y0− y)µuν . (4.9.13)

Since finally we want the expression for ε→ 0+, it is sufficient to expand the expression in powers of
ε, which due to the δ distribution is equivalent to an expansion of the trajectory around τ0:

z(τ)− z(τ0) = ẏ(τ0)(τ−τ0)+
1
2

ÿ(τ0)(τ−τ0)
2+O (τ3), (4.9.14)

from which
δ[(y − y0)

2− ε2] = δ[c2τ2− ε2+O (τ3)]. (4.9.15)

Using this in (4.9.13) yields

∂µA(ε)ν (y0) =
q

2επ
d
dε

�

1
2ε

�

−u0ε+
ÿ

2c2
ε2−

...y
3!c3
ε3
�

µ
uν (τ0− ε)+O (ε4)

�

=
q

4πε

�

1
c2

u0µ ÿ0ν +
1

2c2
ÿ0µu0ν

− ε
�

u0µ
...y ν/c

3+ ÿ0µ ÿ0ν/c
4+

1
3

...y 0νu0µ/c
2
�

+O (ε2)
�

.

(4.9.16)

Finally antisymmetrizing in the indices µ and ν leads to the regularized field-strength tensor at the
point z0 = z(τ0),

F (ε)µν (z0) =
q

4π

�

1
2εc2

(u0µ ÿ0ν − u0ν ÿ0µ)−
2

3c3
(u0µ

...y 0ν − u0ν
...y 0µ)

�

+O (ε). (4.9.17)

Thus the regularized self-force reads

K (ε)
self,µ

= qF (ε)µν (z0)u
ν
0 =−

q2

8πεc2
ÿ0µ+

q2

6πc3

� ...y 0µ− (u0 · ...y 0)u0µ

�

+O (ε). (4.9.18)
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As expected this expression diverges for ε→ 0, but writing down the equation of motion leads to

m0 ÿ0µ =K (ext)
µ − q2

8πc2ε
ÿ0µ+

q2

6πc3

� ...y 0µ− (u0 · ...y 0)u0µ

�

+O (ε). (4.9.19)

To make this finite, we argue that the 2nd term on the right-hand side is of the form of the left-hand
side with a diverging mass. Bringing this term to the right-hand side and interpreting the resulting
coefficient of ÿ0µ as the observable finite mass m of the particle we find, now dropping the subsript 0
since obviously this equation holds for any choice of τ0, the Lorentz-Abraham-Dirac (LAD) equation
of motion for a charged particle taking into account the interaction of the particle with its own radiation
field including the radiation-reaction force, considering that some amount of energy and momentum
is carried away from the particle to spatial infinity by the electromagnetic field,

ṗµ = mÿµ =K (ext)
µ +

q2

6πc3

� ...y µ− uµ(u · ...y )
�

. (4.9.20)

Since
ẏ2 = c2u2 = c2 = const ⇒ ÿ · ẏ = 0 ⇒ ...y · ẏ + ÿ · ÿ = c ...y · u + ÿ · ÿ = 0 (4.9.21)

we can rewrite the last term in (4.9.21),

ṗµ = mÿµ =K (ext)
µ +

q2

6πc3

�

...y µ+
1
c

uµ(ÿ · ÿ)
�

. (4.9.22)

The radiation-reaction term contains a term∝ ...y , the socalled Schott term. As we shall see in a mo-
ment, this gives rise to some characteristic problems with the LAD equation, since in contradistinction
to the usual point-particle equations of motion in Newtonian as well as special-relativistic mechanics
we have a third-order differential equation, and thus we need to provide initial conditions not only for
y and ẏ but also for ÿ.
Comparing the self-interaction contribution to the force with the momentum per unit time, which is
carried away by the electromagnetic field (4.9.8) to spatial infinity, we see that the Schott term describes
a piece of energy and momentum that is “reabsorbed” again by the particle at later times. The total
momentum balance is nevertheless correctly taken into account under the assumptions made above
after Eq. (4.9.9), i.e., the last term in the LAD equation as written in (4.9.22) balances precisely the
total energy and momentum carried away by the electromagnetic field, i.e., it describes the expected
friction force due to radiation damping. To qualitatively understand this, one should remember that
ÿ · ÿ < 0, because u · ÿ = 0, i.e., ÿ is Minkowski-orthogonal to the time-like dimensionless four-velocity
u and thus necessarily spacelike.

4.9.3 The free-particle solution

The LAD equation (4.9.20) is very unusual compared to the standard equations of motion in point-
particle mechanics, which usually are of 2nd order in the time derivatives and thus usually have unique
solutions when considering the initial-value problem, where y(τ = τ0) = y0 and ẏ(τ = τ0) = c u0
are given. Since the LAD equation is of 3rd order, when considering the description of the motion
as usual as an initial-value problem, we need in addition an initial value for the proper acceleration,
ÿ(τ = τ0) = a0. This is a priori not a problem. On the other hand, as discussed above, in order to solve
the radiation-reaction problem to have a proper balance of energy-momentum conservation, we rather
have to impose additional “asymptotic conditions” ÿ(τ)→ 0 for τ→±∞.
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We start our discussion of examples with the most simple case, where no external force is acting, and we
expect then that the particle should simply move with constant velocity, and the only electromagnetic
field thus should be the corresponding (boosted) Coulomb field. Of course, setting K (ext)

µ = 0 in (4.9.22),
indeed ẏ = c u = const is a solution of the equation of motion. However, we wish to show that this is
the unique solution, given the asymptotic conditions. To that end it is convenient to define the time
scale τq = q2/(6mπc3) and write the LAD equation for the free charged particle in the form

ÿµ = τq

�

...y µ+
uµ
c

ÿ2
�

⇒ u̇µ = τq (üµ+ uµ u̇2). (4.9.23)

As we shall see, it is useful to introduce the new independent variable λ by [Lec18]

λ= exp(τ/τq ). (4.9.24)

Then we have

ḟ =
dλ
dτ

d f
dλ
=
λ

τq
f ′(λ), (4.9.25)

where the prime now denotes a derivative wrt. λ. To express (4.9.24) in terms of derivatives wrt. λ we
need

ẏ =
λ

τq
y ′, ÿ =

λ

τ2
q

y ′+ λ
2

τ2
y ′′ (4.9.26)

Plugging this into (4.9.23) the equations of motion read

u ′′µ+ uµu ′2 = 0. (4.9.27)

Since further u · u = 1, we we have u ′ · u = 0. Thus by multiplying this equation with u ′ we get

u · u ′′ = 0 ⇒ u ′2 =−K2 (4.9.28)

Here we can assume K ≥ 0 since u ′ is necessarily time-like. With this (4.9.27) reads

u ′′ =+K2u ⇒ u =C1 exp(Kλ)+C2 exp(−Kλ). (4.9.29)

From u · u = 1 we find
C 2

1 =C 2
2 = 0, C1 ·C2 =

1
2

. (4.9.30)

Now we investigate the asymptotic conditions. Since λ→ 0 f"ur τ → −∞ and λ→∞ for τ →∞
we find that indeed these conditions ü → 0 for τ → ±∞ can only be fulfilled for K = 0 and thus
u =C1+C2 = const.
We note that for K ̸= 0, the solutions (4.9.29) are indeed unphysical since (a) the particle gets sponta-
neously accelerated although there is no other particle with which it interacts (“self-acceleration”) and
(b) the energy of the particle diverges for τ→∞. Indeed for τ→∞we have u ≃C1 exp(Kλ) and thus

E = mc2u0 = mc2C 0
1 exp(Kλ) = mc2|C⃗1|exp(Kλ). (4.9.31)

These run-away solutions are excluded by the asymptotic conditions, as expected.
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Appendix A

Tensor calculus in Minkowski space

In this Appendix we briefly summarize the basic formalism of tensor calculus in Minkowski space.

A.1 Tensor algebra

We start with the general definition of a finite-dimensional real vector space. It consists of a set V
of vectors, which we denote with bold-faced symbols a, b, · · · together with an algebraic operation
(a, b) 7→ a+ b, which forms an Abelian group, i.e.,

∀a, b, c ∈V : (a+ b)+ c = a+(b+ c), (A.1.1)
∀a, b ∈V : a+ b = b+ a, (A.1.2)
∃0 ∈V∀a ∈V : a+ 0= a, (A.1.3)
∀a ∈V ∃(−a) ∈V : a+(−a) = 0. (A.1.4)

Further for each a ∈V and λ ∈R there is an algebraic operation (a,λ) 7→ λa that fulfills

∀λ1,λ2 ∈R,a ∈V : λ1(λ2a) = (λ1λ2)a, (A.1.5)
∀a ∈V : 0a = 0, (A.1.6)
∀λ ∈V , a, b ∈V : λ(a+ b) = λa+λb, (A.1.7)
∀λ1,λ2 ∈R, a ∈V : (λ1+λ2)a = λ1a+λ2a. (A.1.8)

Any finite set of vectors ei is called linearly independent if
∑

j

λ j e j = 0 ⇒ λ j = 0. (A.1.9)

A.2 The fundamental form

A.3 Generalized δ tensors in N -dimensional affine space

The alternating tensors (“k=forms”) play a special role, particularly in tensor calculus, as we shall see
in the following sections.
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We start with the invariant generalizedδ tensors, whose componentsδµ1...µk
ν1 ...νk with respect to an arbitry

Carstesian basis are defined as the determinant

δµ1...µk
ν1 ...νk = det











δµ1
ν1 δµ1

ν2 . . . δµ1
νk

δµ2
ν1 δµ2

ν2 . . . δµ2
νk

...
...

...
...

δµk
ν1 δµk

ν2 . . . δµk
νk











. (A.3.1)

This immediately implies that in N -dimensional space we have k ∈ {1,2, . . . ,N} because for k > N all
the δ symbols must be 0, because there are only N different values, {1, . . . ,N} for the indices1 since
the δ symbol is obviously antisymmetric under exchange of any pair of lower or any pair of upper
indices. Also obviously δµ1...µk

ν1...νk ̸= 0 only if {µ1, . . . ,µk}= {ν1, . . . , νk}, because otherwise in each of the
products of k Kronecker δ’s summed over to calculate the determinant vanishes.
Obviously the δ symbols for k =N are invariant under arbitrary basis transformations: Writing x̄µ =
T µν xν and x̄µ =U νµ xν , which implies Uµν T νρ = T µρ Uρν = δ

µ
ν , we find

δ̄ρ1...ρN
σ1...σN

= T ρ1
µ1
· · ·T ρN

µN
U ν1σ1
· · ·U νNσN

δµ1...µN
ν1...νN = det(T̂ )det(Û )δµ1,...,µN

ν1...νN = δµ1,...,µN
ν1...νN . (A.3.2)

Next we show that contracting the generalized δ-symbol of rank 2k over one index pair, gives the δ-
symbol of rank 2k − 2. To evaluate the contraction δµ1...µk−1µk

ν1...νk−1µk
we use Laplace’s formula to the last

row,

δµ1...µk
ν1...νk =

k
∑

j=1

(−1) j+kδµk
ν j δ

µ1...µk−1

ν1...ν̂ j ...νk
, (A.3.3)

where the ν̂ j index in the last expression means to leave this one index out. Now we just calculate the
contraction by setting νk =µk , which implies summation from 1 to N . Then we get

δ
µ1...µk−1µk
ν1...νk−1µk

=Nδµ1,...,µk−1
ν1,...,νk−1

+
k−1
∑

j=1

(−1)k+ jδ
µ1,...,µk−1

ν1...ν̂ j ...ν j
(A.3.4)

So in the sum we sum k−1-times over the sameδµ1...µk
ν1...νk−1

symbol, only the index ν j is put to the (k−1)(th)

position. We just have to bring it back to the original position, which needs k − 1− j exchanges, i.e.,
we finaly get

δµ1...µk
ν1...µk

= (N − k + 1)δµ1,...,µk−1
ν1,...,νk−1

. (A.3.5)

Iterating this equation leads to the general contraction

δ
µ1...µ jµ j+1...µk
ν1...ν jµ j+1...µk

= (N − k + 1)(N − k + 2) · · · (N − j )δ
µ1...µ j
ν1...ν j =

(N − j )!
(N − k)!

δ
µ1...µ j
ν1...ν j . (A.3.6)

Since now for k = N the generalized δ symbol is an invariant tensor according to (A.3.2), so are all
(2k)-rank δ symbols since we can get them as contractions over the (N − k) other indices.

1In this section we count the tensor components with indices running over {1, . . . ,N} for simplicity of the argument.
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A.4 Levi-Civita tensor in (1+3)-dimensional Minkowski space

Now we turn back to (1 + 3)-dimensional Minkowski space with all Greek indices running over
{0,1,2,3}. Of course, for the generalized δ symbol nothing changes. Now we introduce the Levi-
Civita tensor by its pseudo-Cartesian contravariant components as

εµνρσ = δµνρσ0 12 3 , (A.4.1)

i.e., it is +1 (−1) if the ordered quadrupel (µ, ν ρ,σ) is an even (odd) permutation of the lexically or-
dered quadrupel (0,1,2,3)2. Then the covariant components are given by the usual rule of lowering
contravariant indices,

εαβγδ = ηαµηβνηγρηγσε
µνρσ = εµνρσ det η̂=−εαβγδ . (A.4.2)

Since we have
εµνρσεαβγδ =−δµνρσαβγδ

, (A.4.3)

because for (α,β,γ ,δ) = (µνρσ) = (0,1,2,3) the values of both sides of the equation are −1 and the
symbol is antisymmetric under exchange of any pair of upper and of any pair of lower indices. From
(A.3.6) we get the important formulas

εµνρδεαβγδ =−δµνραβγ , (A.4.4)

εµνγδεαβγδ =−2δµν
αβ

, (A.4.5)

εµβγδεαβγδ =−6δµα . (A.4.6)

Now a k"-rank tensor is called totally antisymmetric if its components T µ1...µk are antisymmetric
under exchange of any pair of indices. It is clear that only totally antisymmetric tensors of rank k ≤ 4
exist since each index can only take the four different values 0, 1, 2, or 3. Then one defines the Hodge
dual of this totally antisymmetric tensor as the (4− k)-rank tensor by its components

T†
νk+1...ν4

=
1
k!
ενk+1...ν4µ1...µk

T µ1...µk ,

T† νk+1...ν4 =
1
k!
εµ1...µk νk+1...ν4Tµ1...µk

.
(A.4.7)

E.g., a totally antisymmetric Tensor T of rank 3 is mapped to a vector †T by

(†T )µ =
1
3!
εµνρσT νρσ . (A.4.8)

Taking the Hodge-dual twice leads back to the original tensor up to a sign, because of (A.4.4-A.4.6).
E.g., for our 3rd-rank-tensor example we have

(††T )αβγ = εµαβγ (†T )µ =
1
3!
εµαβγεµνρσT νρσ =− 1

3!
δαβγν ρσ T νρσ =−T αβγ . (A.4.9)

In the last step we have used the total antisymmetry of the tensor components under permutation of
its indices. Thus Hodge dualization is an invertible mapping between totally antisymmetric tensors.

2Note that there are different conventions concerning the sign are found in the literature. Some authors define in this way
the covariant Levi-Civita tensor components, and this leads to a sign change
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A.5 Differential tensor calculus

Now we consider tensor fields. These provide tensor-valued observables T (x) as a function of the
spacetime point given by the spacetime fourvector x . The transformation properties under proper
orthochronous Lorentz transformations for its components is obviously

T̄ µν ...(x̄α) =ΛµρΛ
ν
σ · · ·T ρσ ...(xβ), x̄α =Λαβxβ. (A.5.1)

It is now easy to show that the partial derivative of the components of a tensor field of rank k with
respect to xα leads to a covariant (lower) tensor index, i.e., it defines a new tensor of rank (k + 1).
To show this we remember the properties of Lorentz-transformation matrices:

ηµνΛ
µ
ρΛ
ν
σ = ηρσ . (A.5.2)

Contracting with ησα gives
ηµνη

σαΛµρΛ
ν
σ = δ

α
ρ , (A.5.3)

i.e.,
(Λ−1)αµ = ηµνη

σαΛνσ =Λµ
α. (A.5.4)

The covariant component of a fourvector thus transforms as

x̄µ = ηµα x̄α = ηµαΛ
α
βxβ = ηµαη

βγΛαβxγ =Λµ
γ xγ = (Λ

−1)γ µxγ . (A.5.5)

Now we have

∂̄αT̄ µν ... =
∂

∂ x̄α
T̄ µν ... =

∂ xβ

∂ x̄α
ΛµρΛ

ν
σ · · ·∂βT ρσ ...

= (Λ−1)βαΛ
µ
ρΛ
ν
σ · · ·∂βT ρσ ...

=Λα
βΛµρΛ

ν
σ · · ·∂βT ρσ ...,

(A.5.6)

and this is precisely the transformation law for tensor components with a covariant indices α andβ, as
claimed.

A.6 Integrals in Minkowski space

As in usual 3D Euclidean tensor calculus we can define various types of covariant integrals in Minkow-
ski space and derive integral theorems of the Stokes and Gauss type.
The most basic ones can be defined without taking recourse to any notion of a scalar product for
Euclidean spaces or a fundamental form (“pseudoscalar product”) for Minkowski space. Here a bare
differential manifold without any notions of a metric or pseudometric is sufficient. As for special
relativity we only need integration on affine spaces we restrict ourselves to this case, but the notion of
integrals on general differential manifolds is very similar.
The key are the generalized Kronecker symbols introduced in Sect. A.3. For Minkowski space we have
N = 4 and thus three types of integrals, because we can define 1 . . . 4-dimensional sub-manifolds. Here
we only consider the most simple case that such a d ≤ 4-dimensional manifold is defined by a set of
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parameters qk (k ∈ {1, . . . , d}) with domain in a cuboid Qd (a1, b1)⊗(a2, b2)⊗· · ·⊗(ad , bd ) by a function
xµ(qk ) with xµ the spacetime four-vector. Then we can define integration measures by

ddσµ1µ2···µd = dq1dq2 · · ·dqdδµ1µ2...µd
ν1 ν2 ...νd

∂ xν1

∂ q1

∂ xν2

∂ q2
· · · ∂ xνd

∂ qd

= dq1dq2 · · ·dqdεµ1···µd det
�

∂ xν

∂ qk

�

.
(A.6.1)

The main reason is two-fold: First of all it generalizes the corresponding notions in 3D Euclidean space,
where for, e.g., d = 2 the above construction defines a 2D surface element d2σab , which usually is
mapped by a Hodge dualization to the surface-element normal vector d2 f⃗ , but first we do not consider
the Hodge dualization but work with the integration measures of the type (A.6.1) only.
The second reason to use (A.6.1) is the independence of this description of the choice of parameters.
Using other parameters q̃k the (A.6.2) gets the same form again, because then we have

ddσµ1µ2···µd = dq̃1dq̃2 · · ·dq̃dεµ1µ2···µd det
�

∂ xν

∂ qk

�

det

�

∂ qk

∂ q̃ l

�

= dq̃1dq̃2 · · ·dq̃dεµ1µ2···µd det

�

∂ xν

∂ qk

∂ qk

∂ q̃ l

�

= dq̃1dq̃2 · · ·dq̃dεµ1µ2···µd det
�

∂ xν

∂ q̃ l

�

= dq̃1dq̃2 · · ·dq̃dδµ1µ2...µd
ν1 ν2 ...νd

∂ xν1

∂ q̃1

∂ xν2

∂ q̃2
· · · ∂ xνd

∂ q̃d

(A.6.2)

Since under proper orthochronous Lorentz transformations ddσµ1µ2···µd transform like contravariant
tensor components we can integrate antisymmetric rank-d tensor fields over such a d -dimensional hy-
persurface with a scalar as a result, i.e., we can define invariant integrals of the form

∫

M
ddσµ1···µd Tµ1···µd

(x) =
∫

Q
dq1 · · ·dqdδµ1µ2...µd

ν1 ν2 ...νd
∂ xν1

∂ q1
· · · ∂ xνd

∂ qd
Tµ1···µd

[x(q)]. (A.6.3)

Now the so defined submanifolds M have a boundary, which is defined as all points described by q j = b j

and q j = a j for one j ∈ {1, . . . , d} and all the other qk ’s running over their intervals. This manifold
we denote as ∂ M . Concerning the orientation of the corresponding hypersurface elements we use the
definition for the parts with q j = b j = const

dd−1σµ1···µ̂ j ···µd = δ
µ1···µ̂ j ···µd

ν1 ···ν̂ j ···νd
∂ xν1

∂ q1
· · · ∂ xν j−1

∂ q j−1

∂ xν j+1

∂ q j+1
· · · ∂ xνd

∂ qd

�

�

�

�

�

q j=b j

(A.6.4)

and for the parts with q j = a j = const

dd−1σµ1···µ̂ j ···µd =− δµ1···µ̂ j ···µd

ν1 ···ν̂ j ···νd
∂ xν1

∂ q1
· · · ∂ xν j−1

∂ q j−1

∂ xν j+1

∂ q j+1
· · · ∂ xνd

∂ qd

�

�

�

�

�

q j=a j

. (A.6.5)

The hat over the indices indicates the ones to be left out in the expression, including an appropriate
sign convention,

δ
µ1···µ̂ j ···µd

ν1 ···ν̂ j ···νd = (−1) j+1δ
µ1···µ j−1µ j+1···µd
ν1 ···ν j−1 ν j+1 ···νd . (A.6.6)
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This defines the orientation of the boundary ∂ M relative to M . The orientation of the latter is defined
by the parametrization. This definition is chosen in a way to make the statement of the generalized
Stokes theorem of integration most simple:

∫

M
ddσµ1···µd ∂µ1

Tµ2···µd
=
∫

∂ M
dd−1σµ2···µd Tµ2···µd

. (A.6.7)

It is also very simple to prove since one has just to take each of the integrals on the left-hand side in
the sum over µ1 separately. To this end one uses the definition (A.3.1) of the δ-tensor components and
expand the determinant wrt. the 1st row,
∫

M
ddσµ1···µd ∂µ1

Tµ2···µd
=

d
∑

k=1

∫

Q
dq1 · · ·dqd (−1)k+1δµ1

νk δ
µ2······ ··· µd
ν2 ···νk−1νk+1νd Tµ2···µd

∂ xν1

∂ q1
· · · ∂ xνd

∂ qd

=
d
∑

k=1

∫

Q
dq1 · · ·dqd (−1)k+1δµ2······ ··· µd

ν2 ···νk−1νk+1νd

∂

∂ qk
Tµ2···µd

∂ xν1

∂ q1
· · · ∂ xνk−1

∂ qk−1

∂ xνk+1

∂ qk+1
· · · ∂ xνd

∂ qd

=
d
∑

k=1

∫

Qk

dq1 · · ·dqk−1dqk+1 · · ·dqd (−1)k+1δµ2······ ··· µd
ν2 ···νk−1νk+1νd

�

Tµ2···µd

�qk=bk

qk=ak

∂ xν1

∂ q1
· · · ∂ xνk−1

∂ qk−1

∂ xνk+1

∂ qk+1
· · · ∂ xνd

∂ qd

=
∫

∂ M
dd−1σµ2···µd Tµ2···µd

.

(A.6.8)

This is the general Stokes’s integral theorem.
Now we can also use the Levi-Civita symbols to consider the duals of the possible integration measures
ddσµ1···µd , where d ∈ {1,2,3,4}, and the corresponding Stokes’s integral theorem translates into the
general Gauss’s integral theorem.
To that end we define

d4σ∗ =− 1
4!
εµ1···µ4

d4σµ1···µ4 = d4x, (A.6.9)

d3σ∗µ1
=− 1

3!
εµ1µ2µ3µ4

d3σµ2···µ4 , (A.6.10)

d2σ∗µ1µ2
=− 1

2!
εµ1µ2µ3µ4

d2σµ3µ4 , (A.6.11)

d3σ∗µ1µ2µ3
=−εµ1µ2µ3µ4

dσµ4 . (A.6.12)

This leads to scalar integrals of the type
∫

M
dkσµ1···µk

V µ1···µk (A.6.13)

over totally antisymmetric tensor vields of rank k.
To state Gauss’s integral laws, it is more lucid to discuss the three different cases separately. We start
with

∫

M
d4σ∗∂µ1

V µ1 =
∫

∂ M
d3σ∗µ1

V µ1 . (A.6.14)
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To prove it, we simply have to write out the integral on the left-hand side of the equation according to
the definition (A.6.9) and use the properties of the Hodge dualization operation discussed in Sect. A.4,

∫

M
d4σ∗∂µ1

V µ1 =− 1
4!

∫

M
d4σ ν1µ2µ3µ4εν1µ2µ3µ4

∂µ1
V µ1

=
1
4!

1
3!

∫

M
d4σ ν1µ2µ3µ4εν1µ2µ3µ4

εν2ν3ν4µ1∂µ1
V†
ν2ν3ν4

=+
1
4!

1
3!

∫

M
d4σ ν1µ2µ3µ4δµ1ν2 ν3 ν4

ν1 µ2µ3µ4
∂µ1

V†
ν2ν3ν4

=+
1
3!

∫

M
d4σµ1µ2µ3µ4∂µ1

V†
µ2µ3ν4

.

(A.6.15)

With Stokes’s theorem (A.6.8) we get
∫

M
d4σ∗∂µ1

V µ1 =
1
3!

∫

∂ M
d3σµ2µ3µ4 V†

µ2µ3µ4

=− 1
3!

∫

∂ M
d3σµ2µ3µ4εµ1µ2µ3µ4

V µ1

=
∫

∂ M
d3σ∗µ1

V µ1 ,

(A.6.16)

which is (A.6.14).
In a similar way we get for an antisymmetric 2nd-rank tensor field

∫

M
d3σ∗µ1

∂µ2
V µ1µ2 =

1
2!

∫

∂M

d2σ∗µ1µ2
V µ1µ2 , (A.6.17)

for a totally antisymmetric 3rd-rank tensor field

1
2!

∫

M
d2σ∗µ1µ2

∂µ3
V µ1µ2µ3 =

1
3!

∫

dσ∗µ1µ2µ3
V µ1µ2µ3 . (A.6.18)

97



A. Tensor calculus in Minkowski space

98



Bibliography

[Bel40] F. J. Belinfante, On the current and the density of the electric charge, the energy, the
linear momentum and the angular momentum of arbitrary fields, Physica 7, 449 (1940),
https://doi.org/10.1016/S0031-8914(40)90091-X.

[Bel87] J. S. Bell, Speakable and unspeakable in quantum mechanics, Cambridge University Press,
Cambridge, New York, Melbourne (1987).

[Bor09] M. Born, Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips,
Ann. Phys. (Leipzig) 335, 1 (1909), https://doi.org/10.1002/andp.19093351102.

[Cro15] B. Crowell, Special Relativity (2015), https://www.lightandmatter.com.

[Ein05] A. Einstein, On the electrodynamics of moving bodies, Annalen Phys. 17, 891 (1905),
[Annalen Phys.14,194(2005)], https://doi.org/10.1002/andp.200590006.

[Erb61] T. Erber, The classical theories of radiation reaction, Fortschritte der Physik 9 (1961),
https://doi.org/10.1002/prop.19610090702.

[Her10] G. Herglotz, Über den vom Standpunkt des Relativitätsprinzips aus als “starr” zu
bezeichnenden Körper, Annalen der Physik 336, 393 (1910).

[Jac98] J. D. Jackson, Classical electrodynamics, John Wiley&Sons, Hoboken, NJ, 3rd edn. (1998).

[Lec18] K. Lechner, Classical Electrodynamics, Springer International Publishing AG, Cham
(2018), https://doi.org/10.1007/978-3-319-91809-9.

[LL96] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics 2, The Classical Theory of
Fields, Butterworth Heinemann, Oxford, 4 edn. (1996).

[LM07] K. Lechner and P. A. Marchetti, Variational principle and energy-momentum tensor for
relativistic electrodynamics of point charges, Ann. Phys. (NY) 322, 1162 (2007),
https://dx.doi.org/10.1016/j.aop.2006.07.002.

[Min09] H. Minkowski, Raum und Zeit, Jahresbericht der Deutschen Mathematiker-Vereinigung,
vol. 18, p. 75-88 18, 75 (1909).

[MTW73] C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, W. H. Freeman, San
Francisco (1973).

[Nak13] C. Nakhleh, The Lorentz-Dirac and Landau-Lifshitz equations from the perspective of
modern renormalization theory, Am. J. Phys 81, 180 (2013),
https://dx.doi.org/10.1119/1.4773292.

99

https://doi.org/10.1016/S0031-8914(40)90091-X
https://doi.org/10.1002/andp.19093351102
https://www.lightandmatter.com
https://doi.org/10.1002/andp.200590006
https://doi.org/10.1002/prop.19610090702
https://doi.org/10.1007/978-3-319-91809-9
https://dx.doi.org/10.1016/j.aop.2006.07.002
https://dx.doi.org/10.1119/1.4773292


Bibliography

[Noe10] F. Noether, Zur Kinematik des starren Körpers in der Relativtheorie, Annalen der Physik
336, 919 (1910).

[Oll08] J.-Y. Ollitrault, Relativistic hydrodynamics for heavy-ion collisions, Eur. J. Phys. 29, 275
(2008), https://doi.org/10.1088/0143-0807/29/2/010.

[Ros40] L. J. H. C. Rosenfeld, Sur le tenseur d’impulsion-énergie, Roy. Belg. Memoirs de Classes
de Science 18, 063504 (1940).

[RZ13] L. Rezzolla and O. Zanotti, Relativistic hydrodynamics, Oxford University Press, Oxford
(2013), https://dx.doi.org/10.1093/acprof:oso/9780198528906.001.0001.

[Sch60] A. Schild, On the radiation emitted by an accelerated point charge, J. Math. Anal. and
Appls. 1, 127 (1960), https://doi.org/10.1016/0022-247X(60)90033-0.

[Sil14] L. Silberstein, The Theory of Relativity, MacMillan&Co., London (1914),
https://archive.org/details/theoryofrelativi00silbrich.

[Sop08] D. E. Soper, Classical field theory, Dover Publications, Minneola, New York (2008).

[Tho26] L. H. Thomas, The motion of the spinning electron, Nature 117 (1926),
https://doi.org/10.1038%2F117514a0.

100

https://doi.org/10.1088/0143-0807/29/2/010
https://dx.doi.org/10.1093/acprof:oso/9780198528906.001.0001
https://doi.org/10.1016/0022-247X(60)90033-0
https://archive.org/details/theoryofrelativi00silbrich
https://doi.org/10.1038%2F117514a0

	Contents
	Kinematics
	Introduction
	The special-relativistic space-time model
	The twin ``paradox''
	General Lorentz transformations
	Addition of velocities
	Relative velocity
	The Lorentz group as a Lie group
	Fermi-Walker transport and Thomas precession

	Mechanics
	Particle dynamics
	Motion of a particle in an electromagnetic field
	Massive particle in a homogeneous electric field
	Massive particle in a homogeneous magnetic field

	Bell's space-ship paradox
	The action principle
	The frame-dependent (1+3)-formalism
	Manifestly covariant formulation
	Alternative Lagrange formalism

	Thermodynamics

	Classical fields
	The action principle for fields and Noether's Theorem
	Poincaré symmetry
	Translations
	Lorentz transformations

	Pseudo-gauge transformations
	The Belinfante-Rosenfeld tensor
	Continuum mechanics
	Kinematics
	Dynamics of a medium
	Ideal fluid
	``Dust matter'' and a scalar field


	Classical Electromagnetism
	Heuristic foundations
	Manifestly covariant formulation of electrodynamics
	The Doppler effect for light
	The Lagrangian for the electromagnic field
	Gauge invariance and retarded potentials
	The retarded fields
	The Liénard-Wiechert potential
	Field of a uniformly moving point charge
	The radiation-reaction problem
	The energy-momentum tensor of the Liénard-Wiechert field
	The Lorentz-Abraham-Dirac equation
	The free-particle solution


	Tensor calculus in Minkowski space
	Tensor algebra
	The fundamental form
	Generalized  tensors in N-dimensional affine space
	Levi-Civita tensor in (1+3)-dimensional Minkowski space
	Differential tensor calculus
	Integrals in Minkowski space

	Bibliography

