Hybrid model

Results

Summary 0

Beam energy scan in a UrQMD+hydro hybrid model

J. Auvinen (in collaboration with H. Petersen)

Frankfurt Institute for Advanced Studies Germany

> Transport meeting April 25, 2013

J. Auvinen (FIAS, Frankfurt)

Hybrid model energy scan

April 25, 2013 1 / 34

Hybrid model

Results

Summary

Outline

Introduction

Hybrid model

 $\mathsf{Results}$

Summary

J. Auvinen (FIAS, Frankfurt)

Hybrid model energy scan

April 25, 2013 2 / 34

Hy<mark>brid mode</mark>l

Results

Summary

Beam energy scan

First order phase transition with critical point?

QGP volume and lifetime decreases with decreasing $\sqrt{s_{NN}} \Rightarrow$ completely vanishes at some point?

Picture taken from G. Odyniec, Acta Phys. Polon. B 43, 627 (2012).

Introduction ○●○○○ Hy<mark>brid mode</mark>l 000000 Results

Summary

Beam energy scan

Some interesting findings:

- Non-monotonic $\sqrt{s_{NN}}$ dependence of net-proton v_1
- Difference in particle and antiparticle v_2 at lower energies
- R_{CP} suppression turns to enhancement between $\sqrt{s_{NN}}=$ 39 and 27 GeV

 v_1 and v_2 figures from L. Kumar [STAR Collaboration], arXiv:1211.1350 [nucl-ex],

R_{CP} from Hot Quarks 2012 talk by S. Horvat.

J. Auvinen (FIAS, Frankfurt)

Hybrid model

Results

Summary

Beam energy scan

Charged hadron v_2 shows weak collision energy dependence.

L. Adamczyk et al. [STAR Collaboration], Phys. Rev. C 86, 054908 (2012).

J. Auvinen (FIAS, Frankfurt)

Hy<mark>brid mode</mark>l 000000 Results

Summary

Beam energy scan

Differential v_2 almost identical for all $\sqrt{s_{NN}}$.

L. Adamczyk et al. [STAR Collaboration], Phys. Rev. C 86, 054908 (2012).

J. Auvinen (FIAS, Frankfurt)

Hy<mark>brid mode</mark>l 000000 Results

Summary

Beam energy scan

v_3 more sensitive to beam energy?

Y. Pandit [STAR Collaboration], QM2012 talk; arXiv:1210.5315.

J. Auvinen (FIAS, Frankfurt)

Hybrid model

Results

Summary 0

Hybrid model

J. Auvinen (FIAS, Frankfurt)

Hybrid model energy scan

April 25, 2013 8 / 34

Hybrid model •00000 Results

Summary 0

Transport + hydrodynamics hybrid model

H. Petersen, J. Steinheimer, G. Burau, M. Bleicher and H. Stocker, Phys. Rev. C 78, 044901 (2008).

Initial State from UrQMD¹ string/hadronic cascade

- Start the hydrodynamical evolution when nuclei have passed through each other: $t_{\text{start}} = \max\{\frac{2R_{\text{nuclei}}}{\sqrt{\gamma_{CM}^2 1}}, 0.5 \text{ fm}\}.$
- Energy-, momentum- and baryon number densities (3D Gaussians) are mapped onto the hydro grid
- Event-by-event fluctuations are taken into account (width of Gaussians $\sigma=1.0~{\rm fm.})$
- Spectators are propagated separately in the cascade

J. Auvinen (FIAS, Frankfurt)

¹S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998), M. Bleicher et al., J. Phys. G 25, 1859 (1999).

Hybrid model

Results

Summary

Hydro starting times

J. Auvinen (FIAS, Frankfurt)

Hybrid model

Results

Summary 0

Transport + hydrodynamics hybrid model

H. Petersen, J. Steinheimer, G. Burau, M. Bleicher and H. Stocker, Phys. Rev. C 78, 044901 (2008).

Hydrodynamical evolution

- (3+1)D ideal hydrodynamics using SHASTA²
- Equation of state³:
 - Chiral model coupled to Polyakov loop to include the deconfinement phase transition
 - Qualitative agreement with lattice QCD data at $\mu_B=0$
 - Applicable also at finite baryon densities
 - Has the same degrees of freedom as UrQMD in hadronic phase

J. Auvinen (FIAS, Frankfurt)

²D. H. Rischke, S. Bernard and J. A. Maruhn, Nucl. Phys. A 595, 346 (1995),

D. H. Rischke, Y. Pursun and J. A. Maruhn, Nucl. Phys. A 595, 383 (1995).

³J. Steinheimer, S. Schramm and H. Stocker, J. Phys. G 38, 035001 (2011).

Hybrid model

Results

Summary

Hydro duration in computational frame

J. Auvinen (FIAS, Frankfurt)

Hybrid model energy scan

April 25, 2013 12 / 34

Transport + hydrodynamics hybrid model

H. Petersen, J. Steinheimer, G. Burau, M. Bleicher and H. Stocker, Phys. Rev. C 78, 044901 (2008).

Freeze-out Procedure

- Transition from hydro to transport ("particlization") when energy density ϵ is smaller than critical value $x\epsilon_0$, where $\epsilon_0 = 146 \text{ MeV/fm}^3$ represents the nuclear ground state and $x \ge 1.^4$
- Particle distributions are generated according to the Cooper-Frye formula
- Rescatterings and final decays calculated via hadronic cascade (UrQMD)

⁴In this study x = 2, corresponding to temperature $T \approx 154$ MeV.

J. Auvinen (FIAS, Frankfurt)

Hybrid model

Results

Summary O

Transport + hydrodynamics hybrid model

Cornelius hypersurface finding algorithm

P. Huovinen and H. Petersen, arXiv:1206.3371.

A method for finding the elements of 3D particlization hypersurface in 4D space for the Cooper-Frye procedure, without holes or double counting

Fig. 9. Reduction of a four dimensional problem into a series of three dimensional problems.

J. Auvinen (FIAS, Frankfurt)

Hybrid model

Results

Summary O

Results

J. Auvinen (FIAS, Frankfurt)

Hybrid model energy scan

April 25, 2013 15 / 34

Hybrid model

Results

Summary

Particle multiplicity

Charged pion multiplicity as a function of $\sqrt{s_{NN}}$.

J. Auvinen (FIAS, Frankfurt)

Hybrid model energy scan

April 25, 2013 16 / 34

Hybrid model

Results

Summary

Particle multiplicity

Charged kaon multiplicity as a function of $\sqrt{s_{NN}}$.

J. Auvinen (FIAS, Frankfurt)

Hybrid model energy scan

April 25, 2013 17 / 34

Hybrid model

Results

Summary

Particle m_T spectra

(0-7)% centrality.

Left: π^- , K^+ , K^- at $\sqrt{s_{NN}} \approx 9$ GeV. Right: π^- , K^+ , K^- at $\sqrt{s_{NN}} \approx 12$ GeV.

S. V. Afanasiev et al. [NA49 Collaboration], Phys. Rev. C 66, 054902 (2002).

J. Auvinen (FIAS, Frankfurt)

Hybrid model energy scan

April 25, 2013 18 / 34

Hybrid mode

Results

Summary

Particle m_T spectra

(0-7)% centrality.

(0-5)% centrality.

Left: π^- , K^+ , K^- at $\sqrt{s_{NN}} \approx 17$ GeV. Right: π^- , K^+ , p at $\sqrt{s_{NN}} = 200$ GeV.

S. V. Afanasiev *et al.* [NA49 Collaboration], Phys. Rev. C 66, 054902 (2002). J. Adams *et al.* [STAR Collaboration], Phys. Rev. Lett. 92, 112301 (2004),

S. S. Adler et al. [PHENIX Collaboration], Phys. Rev. C 69, 034909 (2004).

J. Auvinen (FIAS, Frankfurt)

P. Sorensen, arXiv:0905.0174 [nucl-ex].

Initial spatial asymmetry: eccentricity $\epsilon_2 = \frac{\sqrt{\langle r^2 \cos(2\phi) \rangle^2 + \langle r^2 \sin(2\phi) \rangle^2}}{\langle r^2 \rangle}$. Final momentum anisotropy: $v_2 \{ \mathsf{EP} \} = \frac{v_2 \{ \mathsf{observed} \}}{R_2} = \frac{\langle \langle \cos[2(\phi_i - \psi_2)] \rangle \rangle}{\langle \cos[2(\psi_2 - \psi_2^{\mathsf{true}})] \rangle}$

J. Auvinen (FIAS, Frankfurt)

Hybrid model

Results

Summary

Elliptic flow

Rising slope in 0-5% centrality not reproduced; rough agreement at midcentrality.

L. Adamczyk et al. [STAR Collaboration], Phys. Rev. C 86, 054908 (2012).

J. Auvinen (FIAS, Frankfurt)

Hybrid model

Results

Summary

Elliptic flow

No contribution from hadronic rescattering in most central collisions. Pre-equilibrium dynamics become more important at lower energies.

J. Auvinen (FIAS, Frankfurt)

Hybrid model energy scan

April 25, 2013 22 / 34

Hy<mark>brid mode</mark>l

Results ○○○○○○●○○○○○○○○○ Summary

Hydro contribution on v_2

highest energies.

Hybrid model

Results

Summary

Elliptic flow

 $v_2(p_T)$ overestimated at higher p_T .

L. Adamczyk et al. [STAR Collaboration], Phys. Rev. C 86, 054908 (2012).

J. Auvinen (FIAS, Frankfurt)

Hy<mark>brid mode</mark>l 000000 Results

Summary 0

Effect of hydro ending condition on elliptic flow

Revision of hydro-to-cascade transition condition could fix $v_2(p_T)$.

J. Auvinen (FIAS, Frankfurt)

Hybrid model energy scan

April 25, 2013 25 / 34

Hybrid model

Results

Summary

Elliptic flow

No clear energy dependence on differential flow.

J. Auvinen (FIAS, Frankfurt)

Hy<mark>brid mode</mark>l 000000 Results

Summary

Triangular flow

FIG. 3. Distribution of nucleons on the transverse plane for a $\overline{s_{\rm fin}}=200~{\rm GeV}$ Au+Au collision event with $\epsilon_3{=}0.53$ from Glauber Monte Carlo. The nucleons in the two nuclei are shown in gray and black. Wounded nucleons (participants) are indicated as solid circles, while spectators are dotted circles.

B. Alver and G. Roland, Phys. Rev. C 81, 054905 (2010), [arXiv:1003.0194].

Triangularity: $\epsilon_{3} = \frac{\sqrt{\langle r^{3}\cos(3\phi)\rangle^{2} + \langle r^{3}\sin(3\phi)\rangle^{2}}}{\langle r^{3}\rangle}$

$$v_3\{\mathsf{EP}\} = \frac{\langle\langle \cos[3(\phi_i - \psi_3)] \rangle\rangle}{\langle \cos[3(\psi_3 - \psi_3^{\mathsf{true}})] \rangle}$$

J. Auvinen (FIAS, Frankfurt)

Hybrid model energy scan

April 25, 2013 27 / 34

Hybrid model

Results

Summary

Triangular flow

Midcentral v_3 rises from ≈ 0 to $\approx 0.015 - 0.02$.

J. Auvinen (FIAS, Frankfurt)

Hybrid model

Results

Summary

Triangular flow

Preliminary data displays quite different behavior, however.

Y. Pandit [STAR Collaboration], QM2012 talk.

J. Auvinen (FIAS, Frankfurt)

Hybrid model energy scan

April 25, 2013 29 / 34

Hybrid model 000000 Results

Summary O

 $v_3(p_T)$

Increase at lower values of $\sqrt{s_{NN}};$ no change after 19.6 GeV.

J. Auvinen (FIAS, Frankfurt)

Hy<mark>brid mode</mark>l 000000 Results

Summary

 $v_3(p_T)$

Comparison with preliminary STAR data.

Y. Pandit [STAR Collaboration], arXiv:1210.5315.

J. Auvinen (FIAS, Frankfurt)

Hybrid model energy scan

April 25, 2013 31 / 34

Hybrid model

Results

Summary

Collision geometry

J. Auvinen (FIAS, Frankfurt)

Hy<mark>brid mode</mark>l 200000 Results

Summary

Scaled flow coefficients

 v_2 response to ϵ_2 remains roughly the same in both centrality classes and all energies.

Energy dependence of v_3 persists through scaling.

J. Auvinen (FIAS, Frankfurt)

- Multiplicities: Pion production in reasonable agreement with data, kaons overproduced.
- Elliptic flow: Integrated v_2 similar to the STAR data, $v_2(p_T)$ overshoots the data (particlization at higher energy density?).

• Triangular flow: $v_3 \approx 0$ at $\sqrt{s_{NN}} = 5$ GeV, then rises until reaches value 0.015 - 0.02 at $\sqrt{s_{NN}} = 19.6$ GeV. Qualitative disagreement with preliminary STAR data, which has flat v_3 at low $\sqrt{s_{NN}}$ and begins increasing at 27 GeV.

J. Auvinen (FIAS, Frankfurt)

Hybrid model energy scan

April 25, 2013 35 / 34

v_2 fluctuations

 δv_2 visibly energy-dependent on midcentral collisions; equal to v_3 in magnitude in central collisions.

J. Auvinen (FIAS, Frankfurt)

Eccentricity probability distributions

J. Auvinen (FIAS, Frankfurt)

Triangularity probability distributions

J. Auvinen (FIAS, Frankfurt)

(Square root of) variances of $\langle \epsilon_2 \rangle$ and $\langle \epsilon_3 \rangle$

Both eccentricity and triangularity have variances of same size.

J. Auvinen (FIAS, Frankfurt)

Relative variances of $\langle \epsilon_2 \rangle$ and $\langle \epsilon_3 \rangle$

Triangularity has larger relative variance than eccentricity; remains practically same from most central to midcentral collisions.

J. Auvinen (FIAS, Frankfurt)

Relative variance of $\langle \epsilon_2 \rangle$ and v_2 fluctuations

April 25, 2013 41 / 34

Energy-momentum tensor anisotropy

J. Auvinen (FIAS, Frankfurt)

Hybrid model energy scan

April 25, 2013 42 / 34