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Van der Waals equation

Van der Waals equation

p(T ,V ,N) =
NT

V − bN
− a

N2

V 2

Formulated in 1873.
Nobel Prize in 1910.

Is the simplest analytical model of interacting system with 1st
order phase transition and critical point.

Motivation: A toy model to study QCD critical point
E.-by-e. fluctuations can be used to study QCD phase transition
Stephanov, Rajagopal, Shuryak, Phys. Rev. D (1999)
Ejiri, Redlich, Karsch, Phys. Lett. B (2005)
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Van der Waals equation

Van der Waals equation

p(T ,V ,N) =
NT

V − bN
− a

N2

V 2

Two ingredients:

1) Short-range repulsion: particles are hard spheres,

b = 4
4πr3

3
2) Attractive interaction in mean-field approximation

Critical point

∂p
∂v

=
∂2p
∂v2 = 0, v = V/N

pC =
a

27b2 , nC =
1

3b
, TC =

8a
27b

Reduced variables

p̃ =
p

pC
, ñ =

n
nC
, T̃ =

T
TC
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Van der Waals equation

Van der Waals equation in reduced variables

p(T̃ , ñ) =
8T̃ ñ
3− ñ

− 3ñ2
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This results in appearance of mixed phase
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VDW equation in GCE

VDW equation has a simple and familiar form in canonical ensemble

p(T ,V ,N) =
NT

V − bN
− a

N2

V 2

In GCE one needs to define p = p(T , µ)

What are the advantages of the GCE formulation?
1) Hadronic physics applications: number of hadrons usually not conserved,
and GCE formulation is a good starting point to insert VDW interactions in
multi-component hadron gas.
2) CE cannot describe particle number fluctuations. E.g., N-fluctuations in
a small (V � V0) subsystem follow GCE results.
3) GCE formulation is a good starting point to include effects of quantum
statistics.
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From CE to GCE

Variables T ,V ,N are not the natural variables for the pressure function.
Therefore p(T ,V ,N) does not contain full information about system.

One needs instead free energy F (T ,V ,N).

−
(
∂F
∂V

)
T ,N

= p(T ,V ,N) ⇒ F (T ,V ,N) = F (T ,V0,N)−
∫ V

V0

dV ′ p(T ,V ′,N)

How to fix integration constant F (T ,V0,N)? Ideal gas at V0 →∞!

VDW free energy

F (T ,V ,N) = Fid(T ,V − bN,N)− a
N2

V

Fid(T ,V ,N) = − NT
[
1 + ln

V φ(T ;d ,m)

N

]

φ(T ;d ,m) =
d

2π2

∫ ∞
0

k2dk exp(−
√

k2 + m2/T ) =
d m2 T

2π2 K2

(m
T

)
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From CE to GCE
Chemical potential:

µ =

(
∂F
∂N

)
T ,V

= −T ln
(V − bN)φ(T ;d ,m)

N
+ b

NT
V − bN

− 2a
N
V

Transcendental equation for n(T , µ)

N
V
≡ n(T , µ) =

nid(T , µ∗)
1 + b nid(T , µ∗)

, µ∗ = µ − b
n T

1− b n
+ 2a n

With n(T , µ) one then recovers p(T , µ):

p(T , µ) =
Tn

1− bn
− an2 = pid(T , µ∗)− an2, where n ≡ n(T , µ)

Energy density:
ε(T , µ) = [εid (T )− an]n

Average energy per particle reduced by attractive mean field −an, excluded
volume has no effect
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Excluded-volume model

Let a = 0: only repulsive interactions. Then

particle density: n(T , µ) =
nid(T , µ∗)

1 + b nid(T , µ∗)
, µ∗ = µ − b

n T
1− b n

pressure: p(T , µ) =
Tn

1− bn
= pid[T , µ− bp(T , µ)]

energy density: ε(T , µ) = εid (T )n(T , µ)

This reproduces the excluded-volume model
Rischke, Gorenstein, Stoecker, Greiner, Z. Phys. C51, 485
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Scaled variance in VDW equation

Scaled variance is an intensive measure of N-fluctuations

ω[N] ≡ 〈N
2〉 − 〈N〉2

〈N〉
=

T
n

(
∂n
∂µ

)
T

In ideal Boltzmann gas fluctuations are Poissonian and ωid [N] = 1.

ω[N] in VDW gas (pure phases)

ω[N] =

[
1

(1− bn)2 −
2an
T

]−1

Repulsive interactions suppress N-fluctuations while attractive interactions
cause enhancement
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Scaled variance outside mixed phase region
In reduced variables

ω[N] =
1
9

[
1

(3 − ñ)2 −
ñ

4 T̃

]−1

0 1 2 3
0

1

2

3

10

2

1 0.5

mixed phase

liquid

T

n

gas

0.1

0.01

0.10

1.00

10.00

ω[N]→∞ at the critical point
11 / 31



Scaled variance in metastable phases
VDW predicts existence of metastable liquid and gas phases

ω[N] =
1
9

[
1

(3 − ñ)2 −
ñ

4 T̃

]−1
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ω[N]→∞ at the spinodal instability line, i.e. when ∂p/∂v = 0
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Scaled variance in mixed phase region
In mixed phase 〈Ng〉 + 〈Nl〉 = V [ξng + (1− ξ)nl ]

In addition to GCE fluctuations in gaseous and liquid phases there are also
fluctuations of volume fractions

ω[N] =
ξ0ñg

9ñ

[
1

(3− ñg)2
−

ñg

4T̃

]−1

+
(1− ξ0)ñl

9ñ

[
1

(3− ñl)2 −
ñl

4T̃

]−1

+
(ñg − ñl)

2

9ñ

[
ñg

ξ0 (3− ñg)2
−

ñg
2

ξ0 4T̃
+

ñl

(1− ξ0)(3− ñl)2 −
ñl

2

(1− ξ0)4T̃

]−1
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Scaled variance in whole phase diagram
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Non-gaussian fluctuations

Higher-order (non-gaussian) fluctuations are expected to be more sensitive
to the proximity of the critical point

Stephanov, Phys. Rev. Lett. (2009); Karsch, Redlich, Phys. Lett. B (2010)

Skewness

s[N] = Sσ =
κ3

κ2

Kurtosis

κ[N] = κσ2 =
κ4

κ2

Cumulants

κi =
∂ i(p/T 4)

∂(µ/T )i
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Skewness

Skewness in VDW gas (pure phases)

s[N] = ω2[N]

[
1− 3bn
(1− bn)3

]
= ω2[N]

[
1− ñ

(1− 1
3 ñ)3

]
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16 / 31



Skewness

Skewness in VDW gas (pure phases)

s[N] = ω2[N]

[
1− 3bn
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]
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1− ñ
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Kurtosis

Kurtosis in VDW gas (pure phases)

κ[N] = 3s2[N]− 2ω[N]s[N]− 6ω3[N]
b2n2

(1− bn)4
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Kurtosis is negative (flat) above critical point (crossover), positive (peaked)
elsewhere and very sensitive to the proximity of the critical point
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Kurtosis

Kurtosis in VDW gas (pure phases)

κ[N] = 3s2[N]− 2ω[N]s[N]− 6ω3[N]
b2n2
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VDW equation with quantum statistics

Boltzmann statistics does not work well everywhere
Problems with Boltzmann statistics can already be seen on an ideal gas level

For non-relativistic gas

sid
Boltz

∼=
nid

T

[
m +

5
2

T − µ
]

At T → 0

sid
Boltz

∼= n0

[
5
2

+
3
2

ln(T/c0)

]
sid

Boltz can be negative at high n or at T → 0
Quantum statistics needed in such case

Requirements for VDW equation with quantum statistics

1) Reduce to ideal quantum gas at a = b = 0
2) Reduce to classical VDW when quantum statistics are negligible
3) s ≥ 0 and s → 0 as T → 0
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VDW equation with quantum statistics in GCE

Ansatz: Take pressure in the following form

p(T , µ) = pid(T , µ∗)− an2, µ∗ = µ− b p − a b n2 + 2an

where pid(T , µ∗) is pressure of ideal quantum gas.

n(T , µ) =
(
∂p
∂µ

)
T
=

nid(T , µ∗)
1 + b nid(T , µ∗)

s(T , µ) =
(
∂p
∂T

)
µ

=
sid(T , µ∗)

1 + b nid(T , µ∗)

ε(T , µ) = Ts + µn − p = [εid(T , µ∗)− an]n

This formulation explicitly satisfies requirements 1-3

Algorithm for GCE

1) Solve system of eqs. for p and n at given (T , µ) (there may be multiple
solutions)
2) Choose the solution with largest pressure
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Quantum VDW: from GCE to CE

One can define pressure as a function of CE variables T and n

Recall that

n(T , µ) =
nid(T , µ∗)

1 + b nid(T , µ∗)
⇔ nid(T , µ∗) =

n(T , µ)
1− b n(T , µ)

Therefore µ∗(n,T ) = µid
(

n
1−bn ,T

)
where µid(n,T ) is solution to

n =
d

2π2

∫ ∞
0

dk k2

[
exp

(√
m2 + k2 − µid(n,T )

T

)
+ η

]−1

VDW equation with quantum statistics in CE

p = pid
[
T , µid

( n
1− bn

,T
)]
− a n2
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Nuclear matter as a VDW gas of nucleons

Nuclear matter is known to have a liquid-gas phase transition at
T ≤ 20 MeV and exhibit VDW-like behavior
Usually studied analyzing nuclear fragment distribution

Theory:
Csernai, Kapusta, Phys. Rept. (1986)
Stoecker, Greiner, Phys. Rept. (1986)
Serot, Walecka, Adv. Nucl. Phys. (1986)
Bondorf, Botvina, Ilinov, Mishustin, Sneppen, Phys. Rept. (1995)

Experiment:
Pochodzalla et al., Phys. Rev. Lett. (1995)
Natowitz et al., Phys. Rev. Lett. (2002)
Karnaukhov et al., Phys. Rev. C (2003)

Our description: Nuclear matter as a system of nucleons (d = 4,
m = 938 MeV) described by VDW equation with Fermi statistics. Pions,
resonances and nuclear fragments are neglected
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VDW gas of nucleons: zero temperature

How to fix a and b? Saturation density and binding energy at T = 0
From EB ∼= −16 MeV and n = n0 ∼= 0.16 fm−3 at T = p = 0 we obtain:

a ∼= 329 MeV fm3 and b ∼= 3.42 fm3 (r ∼= 0.59 fm)
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Mixed phase at T = 0 is rather special:
A mix of vacuum (n = 0) and liquid at n = n0
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VDW gas of nucleons: pressure isotherms

CE pressure

p = pid
[
T , µid

( n
1− bn

,T
)]
− a n2
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Behavior qualitatively same as for Boltzmann case
Mixed phase results from Maxwell construction

Critical point at Tc ∼= 19.7 MeV and nc ∼= 0.07 fm−3
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VDW gas of nucleons: (T , µ) plane

Density in (T , µ) plane
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Crossover region at µ < µC
∼= 908 MeV is clearly seen
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VDW gas of nucleons: (T , µ) plane

Density in (T , µ) plane
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Boltzmann: TC = 28.5 MeV. Fermi statistics important at CP
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VDW gas of nucleons: scaled variance

Scaled variance in quantum VDW:

ω[N] = ωid(T , µ∗)
[

1
(1− bn)2 −

2an
T

ωid(T , µ∗)
]−1
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VDW gas of nucleons: skewness

Skewness in quantum VDW:

s[N] =
ω[N]

[ωid(T , µ∗)]2
T

(1− bn)2
∂ωid(T , µ∗)

∂µ
+

ω2[N]

ωid(T , µ∗)
1− 3bn
(1− bn)3
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VDW gas of nucleons: kurtosis
Kurtosis in quantum VDW:

κ[N] = (s[N])2 + T
(
∂s[N]

∂µ

)
T
= ...
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Crossover region is clearly characterized by large negative kurtosis
This also been suggested for QCD CP in Stephanov, PRL (2011)
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Summary
1 Classical VDW equation is reformulated in GCE as a transcendental

equation for particle density.
2 Scaled variance, skewness, and kurtosis of particle number fluctuations

are calculated for VDW equation. Fluctuations remain finite both inside
and outside the mixed phase region but diverge at the critical point.

3 VDW equation with Fermi statistics is presented and is able to
qualitatively describe properties of symmetric nuclear matter. Fermi
statistics effects remain quantitatively important near the critical point
of nuclear liquid-gas transition.

4 Non-gaussian fluctuations are very sensitive to the proximity of the
critical point. Gaseous phase is characterized by positive skewness while
liquid phase corresponds to negative skewness. The crossover region is
clearly characterized by negative kurtosis in VDW model.

Possible tasks:
Other fluctuation measures, e.g., strongly intensive quantities
Inclusion of VDW interactions in multi-component systems, e.g.,
nuclear fragments, HRG etc.
BEC in interacting VDW gas, e.g., gas of pions
Transport coefficients
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Thanks for your attention!
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Backup slides
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Scaled variance in mixed phase region
Inside the mixed phase:

Vg = ξ V , Vl = (1− ξ)V , F (V ,T ,N) = F (Vg ,T ,Ng) + F (Vl ,T ,Nl)

〈N〉 = 〈Ng〉 + 〈Nl〉 = V [ξng + (1− ξ)nl ]

ω[N] =
ξ0ng

n

[
1

(1− bng)2 −
2ang

T

]−1

+
(1− ξ0)nl

n

[
1

(1− bnl)2 −
2anl

T

]−1

+
(ng − nl)

2 V
n

[
〈ξ2〉 − 〈ξ〉2

]
, ξ0 =

nl − n
nl − ng

In addition to GCE fluctuations in gaseous and liquid phases there are also
fluctuations of volume fractions

W (ξ) = C exp

[
− 1

2T

(
∂2F
∂ξ2

)
ξ=ξ0

(ξ − ξ0)
2

]

〈ξ2〉 − 〈ξ〉2 =
T
V

[
ngT

ξ0 (1− bng)2 −
2an2

g

ξ0
+

nlT
(1− ξ0)(1− bnl)2 −

2an2
l

1− ξ0

]−1
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