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What are the necessary model parameters for

hydrodynamical simulations?

(]

Thermalization time 7 is fixed by hand.

Initial energy density profile and eccentricity: CGC or
Glauber.

@ Decoupling freeze-out temperature fixed by hand to
reproduce < p; >

(]

©

Initial value of shear stress tensor and bulk pressure.
@ Transport coefficient values
'

—> After fixing these, only getting v, right is non-trivial
(parameter-free)
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Extraction of /S from experiments
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M. Luzum and P. Romatschke, Phys.Rev.C78:034915,2008.
n/S <0.5 but its value has large uncertainties.
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— By studying systematic studies of the impact parameter dependence of the

eccentricity scaled elllptlc flow vy /e can help to reduce these uncertainties, (see U.
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The initial time 74 is not completely constrained from hydro

simulations
@ (b)
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M. Luzum and P. Romatschke, Phys.Rev.C78:034915,2008.
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Thermalization and viscous hydro in parton cascade models

@ Gyulassy, Pang and Zang (1997): comparison between
kinetic theory and Navier-Stokes results.
Nucl.Phys.A626:999-1018,1997.

@ Z. Xu and C. Greiner (2007): studies on thermalization of
gluon matter by calculating the transport rates within
BAMPS.

Phys.Rev.C76:024911,2007.

@ Huovinen and Molnar (2008): use kinetic theory to
determine the validity of causal IS egs. and Navier-Stokes
theory for relativistic heavy ion collisions.
Phys.Rev.C79:014906,2009.
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Requirements over the solutions of viscous

hydrodynamics

© Weak constraint: The effective longitudinal pressure to be
positive during the simulated time P_ > 0.

@ Strong constraint: Requiring that 7 < P during the
simulated time.

@ 79 is non-trivially related with 7+ (1) and & (o).
@ This relation imposes lower bounds over .
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Basic setup: Fluid equations

The energy momentum-tensor for a relativistic fluid in the
presence of shear viscosity is:

TH = Eulu? — PAM + 7, |

From the conservation laws of energy and momentum,
D,TH#* =0:

(£ +P)DU* = VHP — AHDgrP
DE

1
—(5 A ’P)V“U# = E?T””V(,,Um ,
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Basic setup: Conformal viscous hydrodynamics

By demanding conformal invariance of the energy-momentum
tensor of the fluid, it imposes the constraint

Tz — e6w(x)7r,uy

For a conformal fluid, the equation of motion for 7 up to
second order in the gradient expansion is

4
o = pvieer) — 7, [AgAngaﬁ + gwf“’(vau“)]

+K E R<#> 4 uaR"“<“”>ﬁu5]

1 1 1
_2—,'72 A1 7T<u)\ﬂ_u>)\ + 2_7] /\27T<u)\wu>)\ _ E /\3w<u)\wu>)\

R. Baier et. al., JHEP 04, 100 (2008), 0712.245; S. Bhattacharyya et. al., JHEP 02,
045 (2008),0712.2456.
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Basic setup: transport coefficients

Trans. coefficient Weakly-coupled QCD Strongly-coupled N = 4 SYM
n=n/S ~1/(g*logg—") 1/(4r)
Tr 67/T (2 —log2)/(2xT)
A1 (—2.2 - —2.0)7#S/T 272S)T

The coefficients 7, ~ T~ and \; ~ 7?/T. We parametrize
these coefficients as (7 = n/S):

_ Cr_ Cr 1
(S 4 =
A1 = C)\1772 <T> = 3—720)\1 772 51/2’

~ is a parameter related with the eqn. of state and the degrees
of freedom of the system.
Strong coupling: R. Baier et. al., JHEP 04, 100 (2008), 0712.245; S. Bhattacharyya et.

al., JHEP 02, 045 (2008),0712.2456.
Weak coupling: M. York and G. Moore, Phys.Rev.D79:054011,2009;
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Results II: Convergence line (7/P < 1/

207 T T

Strong coupling case [ Weak oouplmg 1
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M. Martinez and M. Strickland, Phys. Rev. C 79, 044903 (2009)
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Are there implications for higher dimensional

hydrodynamical simulations?

p/p

Mauricio Martinez
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Weak Coupling

A1 = 0,To = 350 MeV, 1o = 1 fm/c and N} (7o) = 0.
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Matching pre-equilibrium dynamics and viscous

hydrodynamics
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Matching the values of every component of the stress-energy tensor T #* (7 = )
using Landau matching conditions allows to know the initial conditions for viscous

hydro from early-time pre-equilibrated QGP.
M. Martinez and M. Strickland, arXiv:0909.0264 [hep-ph]
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Pre-equilibrated phase of the QGP: 1o < 7 < 1,

From kinetic theory, the energy-momentum tensor

v uv v d°p prp ~
TS T 0T = [ Gy o (VPP R A ). |

The microscopical anisotropy parameter is

2 o 2 Free streaming expansion
s—<”§_1: Ll —i == reaming expans
2(pf) 0 2/3 Collisional-broadening

From this function, the components of the E-M tensor are:

T = R(€)Eso(Phad) ,
T T 236 (%) PI(Drard) »
e = 3 (EHIRO D) gy,

M. Martinez and M. Strickland, arXiv:0909.0264 [hep-ph].
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Matching initial conditions

The Landau matching conditions are

E(T) = UMT(%l)/uV7 1)
uNE = 0, @)
udT*u, = 0, @)

From Egn. (1):

dép - d3p
/ (2m)3pO (u- p)2 exp[— p2 +§p§/phard] = / W(u . p)2 exp[—p/T] .
= Phad = (R(g))*l/“T

To match the initial condition of 7, we study the anisotropy in momentum-space:

< T T = Th<T
(T +TW) 9 ™
=3 T ) — Alr) = =
A(7) ST 1 (T} =3 T

M. Martinez and M. Strickland, arXiv:0909.0264 [hep-ph].
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Pre-equilibrated+viscous phase model evolution

Weak Coupling
0.1 — Th =0.3fm/c 150
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Using this evolution model, we study entropy generation as a
function of m,. See details in arXiv:0909.0264 [hep-ph].

M. Martinez and M. Strickland, arXiv:0909.0264 [hep-ph].
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Conclusions

@ We have derived a two criteria that can be used to assess the applicability of
viscous hydrodynamics:
(a) Requiring the longitudinal pressure to be positive during the
simulated time.
(b) Requiring that || < P /3 during the simulated time.

@ These requirements lead to a non-trivial relation between possible initial
simulation time 7, energy density &, and the initial value of the fluid shear
tensor , for a 0+1 dim. viscous plasma.

@ The constraints provide guidance for where one might expect 2nd-order viscous
hydrodynamics to apply in higher-dimensional cases.

@ Maybe it would be necessary to include non-conformal terms in the expansion
(D. Rischke’s talk) or higher order (3rd.) corrections (A. Muronga and A. El's talk).

@ We model the pre-equilibrated phase of the QGP to find the initial conditions of
the energy density and shear tensor as a function of the as a function of the
lifetime of the pre-equilibrated phase for a 0+1 dimensional expansion.
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Future perspectives

@ It is possible to match all components of the energy
momentum tensor and fluid four-velocity by using simple
analytical models such as 3d free streaming or 3d
collisionally-broadened expansion.

@ It is necessary to specify information about the transverse

expansion during the pre-equilibrium period and how this
impacts the anisotropy at early times:
© 3d parton cascade models: Z. Xu and C. Greiner
@ 3d Boltzmann-Vlasov-Yang-Mills simulations: Dumitru,
Nara, Strickland and Schenke.

Mauricio Martinez Constraining the onset of viscous hydro Flow and dissipation in Ultrarel. Heavy lon Coll. 21/23



Dimensionless equations for 0+1 viscous

hydrodynamics

Using the ideal egn. of state, we can remove the dimensionful
scales and rewrite the fluid equations for 0+1 dim. viscous

plasma as:

4 _
7"8.;E+§E—I'I:0

— - — 4ATI] 167 &/ 3¢y, T
7(:_1 OzM+=—=| — 07 ¢ CAlT—O,
vk €/ 37 9~vk T 8 ¢

where: € = ¢/ep,M = MN/eg and 7 = 7/79

22123
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Notation and conventions

@ The metric for a Minkowski space in the curvilinear
coordinates (7,x,y,() is
Qu = diag(gﬂ'u Oxx> Qyy s gCC) = (17 =i, =il _7—2)

@ A = gH” — utu” is a projector orthogonal to the fluid
velocity, u, A" = 0.

@ The comoving time derivative: D = u®D,,.

@ The comoving space derivative: V¥ = A*YD,,.

@ The brackets ( ) denote an operator that is symmetric,
traceless, and orthogonal to the fluid velocity:

2
A,B, = <A3A§ +ASAL — §AaﬁAW> AqBg,

@ The symmetric and anti-symmetric operators:

1

AwBy) = 2 (AuB, +A,By)
1

AuBy = 5 (AB, —A/B,).
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