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Transport description of the
partonic and hadronic phase

Parton-Hadron-
String-Dynamics
(PHSD)



The Dynamical QuasiParticle Model (DQPM)

Spectral functions for partonic degrees of freedom (g, q, q,,,):

. g? 1 N, < 2

gluon mass. M2 (T) — E ((NC n §Nf) T2 i 5 Zq: W_g)

luon width: -~ g’T | ¢
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uark width: ~_(T)=—F |
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with E’(p)=p? + M? - y? A. Peshier, PRD 70 (2004) 034016

Peshier, Cassing, PRL 94 (2005) 172301;
Cassing, NPA 791 (2007) 365: NPA 793 (2007)



The running coupling g2
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3 parameters: T /T =0.46; ¢=28.8; A=2.42 ol
fit to lattice (1IQCD) entropy density: 1 2 T/T3C o

- quasiparticle properties (N=3; T, = 0.185 GeV)
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DQPM thermodynamics (N;=3)

Thermodynamics: entropy s = j—i - pressure P

energy density: ¢ =Ts— P
interaction measure:

W(T) — E(T) — 3P(T) — Ts — 4P 1QCD: M. Cheng et al.,
PRD 77 (2008) 014511
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cf. V. D. Toneev, Heavy Ion Phys. 8 (1998) 83

DQPM gives a ,perfect® description of 1QCD resulits !



I11. PHSD: partonic phase

3. Partonic phase:

»

»

NN o

Degrees of freedom:

quarks and gluons (= ,dynamical quasiparticles®) (+ hadron
Properties of partons:

off-shell spectral functions (width, mass) defined by DQPM
EoS of partonic phase: from lattice QCD (or DQPM)

elastic parton-parton interactions:
using the effective cross sections from the DQPM

inelastic parton-parton interactions:
quark+antiquark (flavor neutral) <=> gluon (colored)
gluon + gluon <=> gluon (possible due to large spectral width)

quark + antiquark (color neutral) <=> hadron resonances
Note: inelastic reactions are described by Breit-Wigner cross sections
determined by the spectral properties of constituents (q,q,,..g) !

parton propagation:
with self-generated vector potentials U, U,

Cassing, Bratkovskaya, PRC 78 (2008) 034919
Cassing, EPJ ST 168 (2009) 3



II1. PHSD: hadronization "81%2" 0 %

o e =
®e“"eo0
Based on DQPM: massive, off-shell quarks and gluons

with broad spectral functions hadronize to off-shell mesons and baryons:

gluons = q+ gbar q + gbar < meson
q+q+q = baryon

Hadronization happens:
®  when the effective interactions become attractive <= from DQPM
®  for parton densities 1 <pp< 2.2 fm? :

Note: nucleon: parton density ppN =Ng/ Vy=3/2.5 fm’=1.2 fm3
meson: parton density pp™=N,/V,_,=2/1.2 fm*=1.66 fm

Parton-parton recombination rate = probability to form bound state
during fixed time-interval At in volume AV:

d‘P 1 ) <= from DQPM
AVAt = AV igvﬂux. | an(p P)l and recomb. model

Matrix element |Vqlql(Pp)|2 increases drastically for pp->0 => d4_P| .
=> hadronization successful ! AVAE ™



IV. PHSD: hadronization

Conservation lows:

< 4-momentum conservation = invariant mass and momentum of meson
< flavor current conservation = quark-antiquark content of meson

/

< color + anticolor => color neutrality

® large parton masses = dominant production of vector mesons
or baryon resonances (of finite/large width)
® resonance state (or string) is determined by the weight of its
spectral function at given invariant mass M

® hadronic resonances are propagated in HSD (and finally decay to the
groundstates by emission of pions, kaons, etc.) = Since the partons are
massive the formed states are very heavy (strings) = entr: -
in the hadronization phase !

S. Hadronic phase:

hadron-string interactions —> off-shell transport in HSD




V. PHSD: Hadronization details

Local off-shell transition rate: (meson formation)

ANy, (x, p)
d*xd*p

_ T’I‘QT?‘Q 54(}) — g _Pq) 54 ( Lg + Lg )
xwq pq(pq) wa pa(pg) [vgal® Win(wq — wq,pg —

XNy(xq,py) Nglxq, pg) o(flavor, color). @
using =

Tr; = Z/d4;5j-d4pj-/(2ﬁ)4
-

W, : Gaussian in phase space V<12 > = 0.66 fm

Cassing, Bratkovskaya, PRC 78 (2008) 034919
Cassing, EPJ ST 168 (2009) 3



Systems in a finite box — periodic boundary cond.

Initialize the system with some number of partons and
4-momentum distributions in line with the DQPM
— energy density ¢ = E/V and chemical potential

Evolve the system in time until equilibrium is achieved !
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Note: the volume is divided into 93 cells of size 1 fm3 !



Systems in a finite box — energy partitions

E [GeV]

The system evolves very differently for ¢ <g and € > ¢_
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Systems in a finite box — reaction rates

hadronization rate
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Hadron formation and partonic interaction rates: @
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Detailed balance 1s established n equilibrium !



Systems in a finite box — dynamical equilibrium
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Systems in a finite box

d’N/dp’ [GeV?]

Energy spectra become
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Expanding partonic fireball 1

Initial condition: Partonic fireball at temperature 1.7 T with
ellipsoidal gaussian shape in coordinate space

Eccentricity: E= ((Fy2 - ze)/ ((’y2 T ze)

energy conservation partons and hadrons
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More hadrons in the final state than initial partons !

Cassing, Bratkovskaya, PRC 78 (2008) 034919
Cassing, EPJ ST 168 (2009) 3



PHSD: Expanding fireball 11
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Summary

® The dynamical quasiparticle model (DQPM) defines the transport
input for PHSD !

® PHSD provides a consistent description of off-shell parton dynamics;
the repulsive mean fields generate flow!

® The dynamical hadronization in PHSD yields particle ratios close to
the (GC) statistical model at a temperature of about 170 MeV!

® The elliptic flow v, scales with the initial eccentricity in space as in
ideal hydrodynamics!

® The scaled elliptic flow of mesons and baryons is approximately the
same as a function of the scaled transverse Kinetic energy, but is smaller
than the parton v,(p)!
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Application to nucleus-nucleus collisions
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only about 40% of the converted energy goes to partons;
the rest is contained in the ,large® hadronic corona!

Cassing & Bratkovskaya, NPA 831 (2009) 215



Partonic phase at SPS/FAIR/NICA energies

partonic energy fraction vs centrality and energy
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Dramatic decrease of partonic phase with decreasing energy
and centrality

Cassing & Bratkovskaya, NPA 831 (2009) 215



Proton stopping at SPS

dN/dy
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=>looks not bad in comparison to NA49 data,
but not sensitive to parton dynamics (PHSD = HSD)!

Cassing & Bratkovskaya, NPA 831 (2009) 215




Rapidity distributions of n, K*, K

80 A GeV, 7% central

dN/dy

=» pion and kaon rapidity distributions become slightly narrower



PHSD: Transverse mass spectra at SPS

Central Pb + Pb at SPS energies

Pb+Pb, mid-rapidity
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© PHSD gives harder spectra and works better than HSD at SPS (and top

FAIR) energies
@ However, at low SPS (and low FAIR) energies the effect of the partonic

phase is NOT seen in rapidity distributions and m spectra

Cassing & Bratkovskaya, NPA 831 (2009) 215



Rapidity distributions of strange baryons
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=» PHSD similar to HSD, reasonable agreement with data




Rapidity distributions of (multi-)strange antibaryons
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=» enhanced production of (multi-) strange anti-baryons in PHSD
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PHSD: rapidity spectra at RHIC

dN_/dn

200 Au+Au, s"’=200 GeV, 5% central

PHSD gives a reasonable description
of the rapidity spectra also at RHIC

looks actually too good to be true!
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PHSD: Transverse mass spectra at RHIC
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PHSD gives harder spectra and works better than HSD at RHIC

looks actually too good to be true!



¢ High p; suppression signals of QGP:

The attenuation of high p-hadrons (R,,) is

well reproduced in the hadron-string
approach for non-central Au+Au collisions at ;. .
am Fom

top RHIC energies, however, the hadron-
string model doesn‘t provide enough high
pr suppression for central Au+Au !

® Jet suppression signals of QGP:

STAR observed very strong away-side jet

suppression which is NOT reproduced in

|||||

the hadron-string picture

1Ny jg0e, AN/(A0)

=> evidence for strong
nonhadronic interactions in

the early phase of the reaction!
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#entries

New exp. data: ¢—n angular correlations
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Fig. 1. (Color on-line) Preliminary associated particle distri-
butions in Anp and A¢ with respect to the trigger hadron for as-
sociated particles with 2 GeV /e < p3#°®® < pii™ in 0-12% cen-
tral Au+Au collisions. Two different trigger pr selections are
shown: 3 < pi'*? < 4 GeV /e (upper panel) and 4 < pi*? < 6
GeV /e (lower panel). No background was subfracted.
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FIG. 2:  (color online) Per-trigger correlated yield with
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I: High p particle correlations in HSD vs. STAR data
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HSD vs. STAR: 08
®

away side structure is suppressed in Au+Au collisions in comparison to p+p,

however, HSD doesn‘t provide enough high p, suppression to reproduce the
STAR Au+Au data
o

near-side ridge structure is NOT seen in HSD!

V. Konchakovski et al., PRC in press



II: Intermediate p, particle correlations in HSD vs. PHOBOS data
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Summary 11

® PHSD provides a reasonable description of the rapidity spectra and
meson my slopes for Au+Au collisions at SPS and the top RHIC energy

® new exp. data from the STAR and PHOBOS collaborations show a
near-side ridge structure in the ¢— angular correlations which is not
reproduced in the HSD model

®STAR and PHOBOS observe a very strong away-side jet suppression
which is NOT reproduced in the hadron-string picture

=> evidence for strong nonhadronic interactions in the early phase of the
reaction ?!

Just let‘s see what PHSD thinks about the issue!



I. PHSD: basic concepts

1. Initial A+A collisions — off-shell HSD:

string formation and decay to pre-hadrons
Strings — excited color singlet states
(qq - q) or (q — gbar)
(in HSD: pre-hadrons = hadrons under
formation time tg~ 0.8 fm/c)

colo; e:ectric L % o 00 09,90
ield 0. Q:’éa“ 900

- 0 “‘ 'fl J !'0

0= e :%:

Z o o @ 0 9.9y

2. Fragmentation of pre-hadrons into quarks:

dissolve all new produced secondary hadrons to partons (and
attribute a random color ¢) using the spectral functions from the
Dynamical QuasiParticle Model (DQPM) approximation to 1IQCD

-- 4-momentum, flavor and color conservation --
Cassing, Bratkovskaya, PRC 78 (2008) 034919
Cassing, EPJ ST 168 (2009) 3
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