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Lattice QCD framework
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LQCD gives real QCD results for a microscopic system,
but it is not a dynamical evolution at finite (T, ).
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Hydrodynamical model

Hydrodynamical model is the opposite of LQCD.
It is a model for dynamical evolution, but it is
not a microscopic description of partons and hadrons.
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Now, a model for partons with respect of QCD symmetrles
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NJL model

Basis of model |

Nlambu—Jona-Lasinio : model for nuclear matter
Now, a model for partons with respect of QCD symmetrles

Lagrangian for SUR(3) x SU.(3) x Uy (1)

8
L= 3 (P —mor)ar+Gs > [(@Aar)” + (arivsA’ar)’]
f=u,d,s ~———"" a=0
kinetic term

- Gy Z [@72%ar)? + @rrursAar)?]

— Gp  [det@r (1 + 75) qr + detgr (1 — 75) gr]

t’Hooft term which breaks Ua(l) symmetry

Rudy Marty Simulation of a QGP



NJL model

~tech

Basis of model |

Nambu—Jona-Lasinio : model for nuclear matter (1961).
Now, a model for partons with respect of QCD symmetries.

Lagrangian for SUR(3) x SU.(3) x Uy (1)

8
L= > a(ig —mo)ar+Gsy [(ﬁf)\aqtf)2 3 (af"’YS)\EQr’)Z]
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kinetic term
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— Gp  [det@r (1 + 75) qr + detgr (1 — 75) gr]

t’Hooft term which breaks Ua(l) symmetry
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Basis of model I

NJL model does not have any free parameters.

We just start with the real mass of pion,
coupling constants and bare masses of quarks.

These two last parameters have to be chosen to fit
LQCD predictions about vacuum energy density.

But the NJL model is not renormalizable,
so parameters give us a cut-off (effective model).
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NJL model

Some improvements

adoes not respect a

o Adding a Polyakov Loop gives better inclusion of gluons properties
(PNJL, H. Hansen) which allow to fit some LQCD predictions and
improve hadronization speed (through high mass derivative),
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Some improvements

does not respect a

Adding a Polyakov Loop gives better inclusion of gluons properties
(PNJL, H. Hansen) which allow to fit some LQCD predictions and
improve hadronization speed (through high mass derivative),

Adding 8-quarks loop gives high order correction,

Adding imaginary chemical potential gives the Z3 symmetry
breaking and restoration (ePNJL, K. Fukushima),

renormalization,

These improvements will not be discussed here because they
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Quantum Field Theory

The NJL lagrangian gives us a self consistent mass
using Hartree approximation (see S. P. Klevansky papers).

Mass of the quark v in SU(3)

KN?
my = Myg — Gl muA(muy Nu) + == mdmsA(mda Nd)A(msa ,us)

2

where A(m*, T, 1) is the one fermion loop integral
at finite (T, i). So the bare mass of quark is
dressed with an effective mass (gluon mean field).

NJL quark mass

+  G(qq)
——

dressed mass bare mass  effective mass

mq = mo
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Confinement

Recall that NJL does not

include gluons but a dressed
mass. The confinement is not
perfect due to finite mass at
T = 0. The ideal mass could
be a divergent mass close to

T (and so an infinite

derivative — absolute

confinement).
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Hadronization process |

The hadronization comes from the fact that we can
construct mesons from quarks interaction in the NJL model.
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Hadronization process |

The hadronization comes from the fact that we can
construct mesons from quarks interaction in the NJL model.

What is a mesons in NJL ?

gl N
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Hadronization process |l

The meson

mass of the meson

7 2K
Mk k) = akinbtom
at the pole :

1-— 4K+I'IP g(Mmx, ) =0
that gives

M(k()vk) _n(%
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Hadronization process |l

The meson

mass of the meson 7

M(ko, k) = — 244

1-4KNF (ko k)

at the pole :

4K, NP (m,,0) =0

that gives

M(k()vk) _n(%

We note that mesons have an imaginary part in the mass :

they
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Masses plots
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Masses plots
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Cross Sections

For the moment it miss some processes | do not have calculated :
qgq— DD,
MM— MM,

Rudy Marty Simulation of a QGP



NJL model
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Quasiparticle Model

Initial Conditions

thermal equilibrium. Our parameters are (A b,+/s), (T W),
n (pseudo-rapidity), t (simulation time).

7
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Dynamics of particles

Dynamics = motion + collisions

Motion Collisions

“Billard ball” collisions (using
geometrical cross sections)

Relativistic constrained
dynamics to get the

equations of motion :

dg/dr = {q,H}
dp/dr = {p, H}

(Gus Pu) — (4, P)

(7 = Relative time)
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Dynamical temperature

NJL quantities depend on the temperature.
During the expansion, we suppose a local equilibrium.
So we use a local temperature which comes from :

Fermionic density — temperature

pi=al T} = xRy = Ti=alXy Ry)/3

with a typical distance for the interaction :

Weighting function
Rj = exp(—Ax?/L?) and L= hc/T.~ lfm
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Decay of unstable hadron

Hadrons are unstable inside the plasma (T > T).
We make a random test at each time step :

/Decay test
rand() < T At/hc

Due to the local aspect of the temperature, and to avoid the Pauli
blocking for fermion : created quarks from the decay are spaced by

/ Decay security

Az = e Ve
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Quasiparticle Model

Final aim

Why the study of the expansion is so important ?

o We start with quark phase and we must finish with 100% of
hadrons : this is the total hadronization,

@ Understand observables : study of initial states and fluctuations to
show differences and similarities.

Of course we keep in mind that we have to be carefull :
this is a relativistic quantum system.
So we have to do a lot of simulations to be consistent.
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Simulation

In practice, it is a hard program to do (now | have 6000 lines of
C++ code). And a very time consumming program !
(tsimu < O(N3) due to matrix inversion in relativistic dynamic).
The results | will present come only from the following simulation :

o (A, b,+/s) =(208,13.4 fm,2 GeV) (small plasma ~ 50 particles),
o (T, u) = (350 MeV, 0 MeV),

o 1 =0 (isotrope),

o L =1 fm (interaction length ~ thermal length),
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Energy conservation

collisions and decay : AE #0
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Results
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Energy conservation

collisions and decay : AE #0
/ N\

relativistic dynamic : OK
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: Multiplicity
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Results
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: Multiplicity

JFk 40

Particle decay : delay in hadronization
20
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Results

. Eccentricity
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Elliptic flow

collisions end  interaction end

0.06 -

£ 0.04
due to potential forde

™ of remaining particles
0.02
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| do not have enough statistic to show the temperature creation of
the pion but | can show this from an article (Blanquier, 2005) :
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