Recent results on QCD thermodynamics:

Lattice QCD

versus

Hadron Resonance Gas model

Claudia Ratti

Bergische Universität Wuppertal, Germany

Based on: S. Borsanyi, Z. Fodor, C. Hölbling, S. Katz, S. Krieg, C. R. and K. Szabó, 1005.3508 S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. Katz, S. Krieg, C. R. and K. Szabó 1007.2580

Claudia Ratti

Motivation

- Bielefeld-Brookhaven-Riken-Columbia (+ MILC = hotQCD) Collaboration:
 - M. Cheng et al. PRD 74 (2006)
 - \blacksquare Chiral susceptibility and Polyakov loop both give $T_c = 192(7)(4)$ MeV
- Wuppertal-Budapest (WB) Collaboration:
 - Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, PLB 643 (2006)
 - \blacksquare Chiral susceptibility gives $T_c = 151(3)(3)$ MeV
 - Polyakov loop and strange quark number susceptibilities give $T_c = 175(2)(4)$ MeV

- 'chiral T_c ': ~ 40 MeV difference
- 'deconfinement T_c ': ~ 15 MeV difference

Results from the two collaborations

notQCD collaboration					
	2006-2009				
.Cheng et al. PRD(2006),A.Bazavov et al. PRD(2009)					
	♦ asqtad, p4 actions				
	$\diamond N_t = 6, 8$				
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				
2009-2010					
	M. Cheng <i>et al.</i> PRD (2010)				
	$\diamond N_t = 8$				
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				
	A. Bazavov, P. Petreczky, 1005.1131 (2010)				
	\diamond asqtad, $N_t=12$, hisq, $N_t=6,8$				

Pseudo-scalar mesons in staggered formulation

- Staggered formulation: four degenerate quark flavors ('tastes') in the continuum limit
- Rooting procedure: replace fermion determinant in the partition function by its fourth root
- At finite lattice spacing the four tastes are not degenerate
 - each pion is split into 16
 - the sixteen pseudo-scalar mesons have unequal masses
 - ••• only one of them has vanishing mass in the chiral limit

Purpose of this analysis

in order to identify

the origin of the discrepancy

In particular:

 \Rightarrow **Discretization effects**

 \Rightarrow Effects due to heavy pions

Partition function of HRG model

The pressure can be written as

$$p^{HRG}/T^{4} = \frac{1}{VT^{3}} \sum_{i \in mesons} \ln \mathcal{Z}_{m_{i}}^{M}(T, V, \mu_{X^{a}}) + \frac{1}{VT^{3}} \sum_{i \in baryons} \ln \mathcal{Z}_{m_{i}}^{B}(T, V, \mu_{X^{a}}),$$

where

$$\ln \mathcal{Z}_{m_i}^{M/B} = \mp \frac{V d_i}{2\pi^2} \int_0^\infty dk k^2 \ln(1 \mp z_i e^{-\varepsilon_i/T}) \quad ,$$

with energies $\varepsilon_i = \sqrt{k^2 + m_i^2}$, degeneracy factors d_i and fugacities

$$z_i = \exp\left(\left(\sum_a X_i^a \mu_{X^a}\right)/T\right)$$
.

 X^a : all possible conserved charges, including the baryon number B, electric charge Q, strangeness S.

F. Karsch, A. Tawfik, K. Redlich; S. Ejiri, F. Karsch, K. Redlich

Lattice QCD and HRG

Discretization effects

C. W. Bernard et al., PRD (2001), C. Aubin et al., PRD (2004), A. Bazavov et al., 0903.3598.

Claudia Ratti

Hadron masses

Non-strange baryons and mesons:

$$r_1m = r_1m_0 + \frac{a_1(r_1m_\pi)^2}{1+a_2x} + \frac{b_1x}{1+b_2x}, \qquad x = (\frac{a}{r_1})^2$$

Strange baryons and mesons:

$$\begin{aligned} r_{1} \cdot m_{\Lambda}(a, m_{\pi}) &= r_{1} m_{\Lambda}^{phys} + \frac{2}{3} \frac{a_{1}(r_{1}m_{\pi})^{2}}{1 + a_{2}x} + \frac{b_{1}x}{1 + b_{2}x} + \frac{r_{1} \cdot (m_{\Lambda}^{phys} - m_{p}^{phys})}{1 + a_{2}x} \left(\frac{m_{s}}{m_{s}^{phys}}\right), \\ r_{1} \cdot m_{\Sigma}(a, m_{\pi}) &= r_{1} m_{\Sigma}^{phys} + \frac{1}{3} \frac{a_{1}(r_{1}m_{\pi})^{2}}{1 + a_{2}x} + \frac{b_{1}x}{1 + b_{2}x} + \frac{r_{1} \cdot (m_{\Sigma}^{phys} - m_{p}^{phys})}{1 + a_{2}x} \left(\frac{m_{s}}{m_{s}^{phys}}\right), \\ r_{1} \cdot m_{\Xi}(a, m_{\pi}) &= m_{\Xi}^{phys} + \frac{1}{3} \frac{a_{1}(r_{1}m_{\pi})^{2}}{1 + a_{2}x} + \frac{b_{1}x}{1 + b_{2}x} + \frac{r_{1} \cdot (m_{\Xi}^{phys} - m_{p}^{phys})}{1 + a_{2}x} \left(\frac{m_{s}}{m_{s}^{phys}}\right), \\ r_{1}m_{\Omega}(a, m_{\pi}) &= r_{1}m_{\Omega}^{phys} + a_{1}(r_{1}m_{\pi})^{2} - a_{1}(r_{1}m_{\pi}^{phys})^{2} + b_{1}x + (m_{\Omega}^{phys} - m_{\Delta}^{phys}) \cdot 1.02x \end{aligned}$$

- Distorted spectrum implemented in the HRG model
- Assumption: all resonances behave as their fundamental states
- P. Huovinen and P. Petreczky (2009).

Lattice QCD and HRG

Results: strangeness susceptibilities

HRG results in good agreement with stout action

- asqtad and p4 results show similar shape but shift in temperature
 - HRG results with corresponding distorted spectrum reproduce asqtad and p4 results

S. Borsanyi et al., 1005.3508

Lattice QCD and HRG

Results: trace anomaly

For large masses few states are known experimentally

- Inclusion of exponentially growing hadron mass spectrum
 - J. Noronha-Hostler, C. Greiner, I. Shovkovy (2008); J. Noronha-Hostler, M. Beitel, C. Greiner, I. Shovkovy (2010)

igoplus Agreement between lattice and HRG improved up to $T\sim 155~{
m MeV}$

(A. Majumder, B. Müller: 1008.1747)

Results: subtracted chiral condensate

• $\frac{\partial m_i}{\partial m_{\pi}^2}$ and $\frac{\partial m_i}{\partial m_s}$ from fit to lattice data Camalich, Geng and Vacas (2010)

T_c summary from Wuppertal-Budapest collaboration

	$\chi_{ar{\psi}\psi}/T^4$	$\Delta_{l,s}$	$\langle \bar{\psi}\psi angle_R$	χ_2^s/T^2	ϵ/T^4	$(\epsilon - 3p)/T^4$
WB'10	147(2)(3)	157(3)(3)	155(3)(3)	165(5)(3)	157(4)(3)	154(4)(3)
WB'09	146(2)(3)	155(2)(3)	-	169(3)(3)	-	-
WB'06	151(3)(3)	-	-	175(2)(4)	-	-

• Different variables give different T_c values: the transition is broad S. Borsanyi et al., 1005.3508

progress in T dependence of chiral condensate

Equation of state

Conclusions

igoplus The present analysis concludes the WB investigation of T_c with stout action

- Results from 2006 and 2009 are improved:
 - \rightarrow physical quark masses used in simulations also at T=0
 - \blacksquare smaller lattice spacings $N_t = 16$
 - continuum limit provided for all observables
- The new results are in perfect agreement with those from 2006 and 2009
- The QCD transition is a broad analytic crossover
- Good agreement between HRG model predictions and WB continuum results
- hotQCD results can be reproduced in HRG model with distorted spectrum
- New results for EoS with physical masses and fine lattices

What happens below T_c ?

- At low T and $\mu = 0$, QCD thermodynamics is dominated by pions
- The interaction between pions is suppressed

 - the energy density of pions from 3-loop ChPT differs only less than 15% from the ideal gas value
 - P. Gerber and H. Leutwyler (1989)
- \blacklozenge as T increases, heavier hadrons start to contribute
- for $T \ge 120$ MeV heavy states dominate the energy density
- their mutual interactions are proportional to $n_i n_k \sim \exp[-(M_i + M_k)/T]$: they are suppressed
 - the virial expansion can be used to calculate the effect of the interaction

Why HRG?

- In the virial expansion, the partition function can be split into a non-interacting piece and a piece which includes all interactions Dashen, Ma and Bernstein (1969)
- virial expansion and experimental information on scattering phase shift
 Prakash and Venugopalan (1992)
 - interplay between attractive and repulsive interaction

Interacting hadronic matter

can be well approximated by

a non-interacting gas of resonances