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Lecture XIII, Exercise 1.
Since the magnetic field does not produce a work on the particle, particle energy in a
static magnetic field is conserved. However, if magnetic field is time-dependent, there
must be an accompanying electric field

∇⃗ × E⃗ = −∂B⃗
∂t

. (1)

Clearly the electric field can not be uniform in the space and so we must expect that
electric field will change the particle’s energy. Here we focus on the motion normal to
the magnetic field. The perpendicular component of particle kinetic energy is given by

U⊥ =
1

2
mv2⊥. (2)

Taking a time derivative and expressing the acceleration of the particle in terms of the
electric fiedl, i.e.,

m
dv⃗⊥

dt
= qE⃗. (3)

we obtain that
dU⊥

dt
= qv⃗⊥ · E⃗. (4)

Expressing the perpendicular velocity as

v⃗⊥ =:
dX⃗

dt
, (5)

where X⃗(t) denotes the trajectory of the particle, we can rewrite eq (12) as

dU⊥

dt
= q

dX⃗

dt
· E⃗. (6)

The total change in U⊥ over the one cycle of the orbital motion is given by

∆U⊥ =

∫ P

0

q
dX⃗

dt
· E⃗dt, (7)

where P is period of the motion. The time variation of the magnetic field implies a time
variation in both the gyro radius and the gyro period. Therefore the orbit will not be
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closed. However, if we assume that the change in the magnetic field during one period
of the circular motion is small compared to the magnitude of magnetic field, i.e., if

P

∣∣∣∣∣dB⃗dt
∣∣∣∣∣ = 2π

ωc

∣∣∣∣∣dB⃗dt
∣∣∣∣∣ ≪ |B⃗|. (8)

then the time integral of eq (15) can be replaced by a line integral taken over a fictitious
circular orbit of the particle

∆U⊥ =

∮
qE⃗dl. (9)

By using Stokes’ theorem, this can be expressed as

∆U⊥ = −q
∫

(
⃗⃗∇× E⃗)ds, (10)

which shows that the surface integral follows the particle motion as for our assumption.
Using eq (10), we rewrite eq (18) as

∆U⊥ = |q|
∫
∂B⃗

∂t
ds, (11)

where the change in energy is in fact independent of the sign of the charge. If we
assume that the magnetic field is uniform, the surface integral is expressed as πr2L,
then eq (20) yields

∆U⊥ = |q|πr2L
dB⃗

dt
. (12)

As a result, the rate of change of energy per one gyration period is given by

dU⊥

dt
=

∆U⊥

P
=

1

2
|q|ωcr

2
L

dB⃗

dt
. (13)

Lecture XIII, Exercise 2.
Here we focus on charged particle motion in a non-uniform magnetic field. When
particles move into a weaker field, the Larmor radius increases. It decreases again as
particle moves back into strong field. Different Larmor radii generates a drift motion
of particle. Now qe consider the most simple case

E⃗ = 0, B⃗ = (0, 0, Bz(y)). (14)

We assume Larmor radius is much smaller than the lengthscale of the variation of
magnetic field, i.e., rL/L ≪ 1. The orbit theory also assume the velocity can be
decomposed into components with a small drift velocity

v⃗ = v⃗D + v⃗⊥, (15)
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where we assune the drift velocity to be much smaller than the other components of
the velocity

vD ≪ v⊥. (16)

The equation of motion is written as

m
dv⃗

dt
= q(v⃗ × B⃗). (17)

The components of the Lorentz force are given by

Fx = qvyB
z, (18)

Fy = −qvzBz, (19)
Fz = 0. (20)

The magnetic field has the z-component only which is a function of y. the gradient of
magnetic field is

dBz

dy
∼ Bz

L
≪ Bz

rL
. (21)

Therefore the gradient of magnetic field is small,

rL
dBz

dy
≪ Bz. (22)

From this condition, we take the Taylor expansion of the magnetic field

Bz(y) = B0 + yB′
z +O(y2), (23)

where B′
z = dBz/dy. Using this expression of magnetic field, the Lorentz force can

be written as

Fx = qvy(B0 + yB′
z), (24)

Fy = −qvx(B0 + yB′
z). (25)

In the uniform magnetic field, the particle performs a circular motion. Therefore the
position is given by

x = rL sin(ωct), (26)
y = rL cos(ωct). (27)

The velocity for the circular motion is expressed as

vx = −v⊥ cos(ωct), (28)
vy = ±v⊥ sin(ωct). (29)

Using eqs (13) -(16), the various components of the Lorentz force can be obtained as

Fx = −qv⊥ sin(ωct)[B0 ± rL cos(ωct)B
′
z], (30)

Fy = −qv⊥ cos(ωct)[B0 ± rL cos(ωct)B
′
z]. (31)
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We take a time average of them over the one period of the circular motion

⟨ψ⟩ := 1

∆t

∫ P

0

ψdt, (32)

Using the above definition, the each components of Lorentz force are

⟨Ḟx⟩ = −qv⊥[B0⟨sin(ωct)⟩ ± rL⟨sin(ωct) cos(ωct)⟩B′
z] (33)

⟨Ḟy⟩ = −qv⊥[B0⟨cos(ωct)⟩ ± rL⟨cos2(ωct)⟩B′
z], (34)

where ⟨sin(ωct)⟩, ⟨cos(ωct)⟩, and ⟨sin(ωct) cos(ωct)⟩ are zero, and ⟨cos2(ωct)⟩ =
1/2. Therefore

⟨Ḟx⟩ = 0, (35)

⟨Ḟy⟩ = ±qv⊥rL
2

B′
z. (36)

The drift velocity of the general forces is defined by

v⃗F =
1

q

F⃗ × B⃗

B2
. (37)

Therefore in this case the drift velocity is given by

v⃗F =
1

q

⟨Ḟy⟩ŷ ×Bzẑ

B2
z

(38)

= ∓v⊥rL
2Bz

dBz

dy
x̂. (39)

In three-dimensions, this results can be generalized to

v⃗∇⃗B = ±1

2
v⊥rL

B⃗ × ∇⃗|B⃗|
B2

. (40)

This drift is the so-called “grad-B” drift.

Lecture XIII, Exercise 3.
(a) The earth’s magnetic field has a dipole field which contains gradient and curva-

ture. Therefore we need to consider two drift motion, magnetic field gradient
(grad-B) drift and curvature drift. The grad-B drift is given by

v⃗∇⃗B =
mv2⊥
2qB3

(B⃗ × ∇⃗|B⃗|). (41)

And the curvature drift is expressed as

v⃗c =
mv2∥

qB4
B⃗ × [(B⃗ · ∇⃗)B⃗]. (42)
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From the vector identity,

(B⃗ · ∇⃗)B⃗ − ∇⃗B2/2 = (∇⃗ × B⃗)× B⃗ = µ0J⃗ × B⃗ (43)
= 0 (44)

because of the absence of currents. Using this equation, the curvature drift can
be written as

v⃗c =
mv2∥

qB3
(B⃗ × ∇⃗|B⃗|). (45)

Therefore the drift velocity in this case is given by

v⃗d = v⃗∇⃗B + v⃗c =
m

qB

(
v2∥ +

v2⊥
2

)
(B⃗ × ∇⃗|B⃗|)

B2
(46)

=
m

qB

(
v2∥ +

v2⊥
2

)
∇⃗|B⃗|
B

. (47)

Here the earth’s magnetic field in the equatorial plane is expressed as B = k/r3.
The gradient of earth’s magnetic field in the equatorial plane is obtained as∣∣∣∇⃗|B⃗|

∣∣∣ := (
∇⃗|B⃗|

)
· e⃗r =

∂B

∂r
= −3k

r4
. (48)

Therefore ∣∣∣∇⃗|B⃗|
∣∣∣ = −3

r
. (49)

The particle velocity is obtained by the thermal velocity, which in three-dimension
is given by

v2th =
3kBT

m
= v2x + v2y + v2z . (50)

If we consider the magnetic field is on the z-direction, the velocity component
parallel and perpendicular of the magnetic field is expressed as

v2∥ = v2z =
kBT

m
, (51)

v2⊥ = v2x + v2y =
2kBT

m
. (52)

Therefore

v2∥ +
v2⊥
2

=
2kBT

m
. (53)

Using eqs (36) and (40), the drift velocity is obtained

v⃗d = ±m(2kBT/m)(−3/r)

eB
= ∓6kBT

eBr
. (54)
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We now consider particles that at are the about five Earth’s radii, r/RE = 5. The
elections have an energy of 30 keV and the protons an energy of 1 eV. Using the
eq (41), the drift velocity of electrons and protons are

vd,e = 2.4× 106 cm/s. (55)
vd,p = 79 cm/s, (56)

where we have used that 1eV= 1.16 × 104K. The drift motion makes circular
motion around the Earth which is on the equatorial plane, with the electrons and
protons moving in opposite directions.

(b) Because the drift motion of electrons and protons is in opposite directions, it
leads to a ring current given by

j⃗ = ne(v⃗d,p − v⃗d,e) = 3.8× 10−15 A/cm2. (57)

(c) The drift time around the Earth is calculated by

td = 2πr/vd. (58)

Using r = 5RE , the drift time of elections and protons are

electrons: 8.5× 104 s,∼ 24 h (59)
protons: 2.8× 108 s ∼ 8.8 yr. (60)
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