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Lecture XV - XVI, Exercise 1.
The induction equation in the ideal-MHD limit is given by

∂tB⃗ = ∇⃗ × (v⃗ × B⃗). (1)

Using vector identity

∇⃗ × (A⃗× B⃗) = A⃗(∇⃗ · B⃗)− B⃗(∇⃗ · A⃗) + (B⃗ · ∇⃗)A⃗− (A⃗ · ∇⃗)B⃗,

the induction equation (??) can be written as

∂tB⃗ = v⃗(∇⃗ · B⃗)− B⃗(∇⃗ · v⃗) + (B⃗ · ∇⃗)v⃗ − (v⃗ · ∇⃗)B⃗, (2)

= −B⃗(∇⃗ · v⃗)− (v⃗ · ∇⃗)B⃗ + (B⃗ · ∇⃗)v⃗, (3)

where in RHS of equation, the first term is related to the ”expansion”, the second
term is related to the ”advection” of the magnetic field, and the third term corresponds
instead to the ”stretching” of the magnetic-field lines along the direction of motion of
the plasma.

Lecture XV - XVI, Exercise 2.
The thesis of the frozen-flux theorem is that the flux of magnetic field across an open
surface S is conserved, i.e.,

d

dt
ΦB⃗ = 0, (4)

where
ΦB⃗ =

∫
S

B⃗ · n⃗ ds, (5)

is the flux of magnetic field across the open surface S of local norm n⃗. In order to
prove this theorem, we consider a closed loop of fluid element l at two instants in time
t and t+ ∆t. There are two surfaces S1 and S2 which have a loop l(t) and l(t+∆t)
respectively. The fluid motion between the two time instants of the elements making
up l generates a cylinder with the surface S3. Let’s ΦB⃗ be the flux enclosed by l, and
ΦB⃗1

, ΦB⃗2
, and ΦB⃗3

be the flux through surface S1, S2, and S3, respectively.
The time derivative of the magnetic flux ΦB⃗ is given by

d

dt
ΦB⃗ = lim

∆t→0

(
ΦB⃗2

(t+ δt)− ΦB⃗1
(t)

∆t

)
. (6)
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From ∇⃗ · B⃗ = 0, the net flux through the surfaces at any time is zero. It means that

−ΦB⃗1
(t+ ∆t) + ΦB⃗2

(t+ ∆t) + ΦB⃗3
(t+ ∆t) = 0. (7)

We can eliminate ΦB⃗2
(t+ ∆t) and use definition of flux in expressing ΦB⃗1

and ΦB⃗3

dΦB⃗

dt
= lim

∆t→0

1

∆t

[∫
S1

(B⃗(t+ ∆t)− B⃗(t)) · n⃗ dS −
∫
S3

B⃗ · n⃗ dS

]
(8)

The first term on the RHS can be written as∫
S1

(B⃗(t+ ∆t)− B⃗(t)) · n⃗ dS =

∫
S1

∂B⃗

∂t
· n⃗ dS∆t (9)

The area element for S3 can be written n⃗ dS = (d⃗l × v⃗)∆t, so that the second term
on the RHS can be expressed as∫

S3

B⃗ · n⃗ dS =

∮
l(t)

B⃗ · (d⃗l× v⃗)∆t (10)

=

∮
l(t)

(v⃗ × B⃗) · d⃗l∆t. (11)

From Stokes’ theorem, the line integral can be changed to a surface integral, i.e.,∫
S3

B⃗ · n⃗ dS =

∫
S1

∇⃗ × (v⃗ × B⃗) · n⃗ dS∆t. (12)

so that, using eqs (9) and (12), equation (8) can be written as

dΦB⃗

dt
= lim

∆t→0

1

∆t

[∫
S1

∂B⃗

∂t
· n⃗ dS∆t−

∫
S1

∇⃗ × (v⃗ × B⃗) · n⃗ dS∆t

]
(13)

=

∫
S1

[
∂B⃗

∂t
− ∇⃗ × (v⃗ × B⃗)

]
· n⃗ dS = 0. (14)

Thus, we reach the conclusion that ΦB⃗ does not change in time.

Lecture XV - XVI, Exercise 3.
Here we derive the conserved form of total energy equation in ideal MHD limit. First,
the equation of motion can be written as

ρ

[
∂v⃗

∂t
+ (v⃗ · ∇⃗)v⃗

]
+ ∇⃗p− j⃗ × B⃗ = 0 (15)

ρv⃗

[
∂v⃗

∂t
+ (v⃗ · ∇⃗)v⃗

]
+ v⃗ · ∇⃗p− v⃗ · (⃗j × B⃗) = 0 (16)

∂

∂t

(
1

2
ρv2

)
− 1

2
v2

∂ρ

∂t
+

1

2
ρv⃗ · ∇⃗v2 + v⃗ · ∇⃗p− v⃗ · (⃗j × B⃗) = 0 (17)

(using continuity equation)
∂

∂t

(
1

2
ρv2

)
+ ∇⃗ ·

(
1

2
ρv2v⃗

)
+ v⃗ · ∇⃗p− v⃗ · (⃗j × B⃗) = 0 (18)
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Second, from the energy equation (pressure equation which derived from conser-
vation of entropy), we can rewritten it as

∂p

∂t
+ (v⃗ · ∇⃗)p+ γp∇⃗ · v⃗ = 0 (19)

(using the ideal-fluid EOS p = (γ − 1)ρϵ and the continuity eq.)
∂ϵ

∂t
+ (v⃗ · ∇⃗)ϵ+ (γ − 1)ϵ∇⃗ · v⃗ = 0 (20)

ρ
∂ϵ

∂t
+ (v⃗ · ∇⃗)ρϵ+ (γ − 1)ρϵ∇⃗ · v⃗ = 0 (21)

∂

∂t
(ρϵ)− ϵ

∂ρ

∂t
+ ρ(v⃗ · ∇⃗)ϵ+ p(∇⃗ · v⃗) = 0 (22)

(using continuity eq.)
∂

∂t
(ρϵ) + ∇⃗ · (ρϵv⃗) + p∇⃗ · v⃗ = 0 (23)

Third, the induction equation can be expressed it as

∂B⃗

∂t
− ∇⃗ × (v⃗ × B⃗) = 0(24)

B⃗ · ∂B⃗
∂t

− B⃗ · ∇⃗ × (v⃗ × B⃗) = 0(25)

(using the vector identity: ∇⃗ · (A⃗× B⃗) = B⃗ · ∇⃗ × A⃗− A⃗ · ∇⃗ × B⃗)

∂

∂t

(
B2

2

)
+ ∇⃗ · [B⃗ × (v⃗ × B⃗)]− (v⃗ × B⃗) · (∇⃗ × B⃗) = 0(26)

(using the vector identity A⃗× B⃗ × C⃗ = B⃗(A⃗ · C⃗)− C⃗(A⃗ · B⃗))
∂

∂t

(
B2

2

)
+ ∇⃗ · [(B⃗ · B⃗)v⃗ − (v⃗ · B⃗)B⃗]− (v⃗ × B⃗) · j⃗ = 0(27)

(recalling that ∇⃗ × B⃗ = j⃗)
∂

∂t

(
B2

2

)
+ ∇⃗ · [B2v⃗ − (v⃗ · B⃗)B⃗]− v⃗ · (⃗j × B⃗) = 0(28)

Using equations (18), (23), and (28), we can obtain the total-energy conservation equa-
tion as

∂

∂t

(
1

2
ρv2 + ρϵ+

B2

2

)
+ ∇⃗ ·

[(
1

2
ρv2 + ρϵ+

B2

2

)
v⃗ − (v⃗ · B⃗)B⃗

]
. (29)

The terms including magnetic field are the new terms arising in MHD. Clearly, when
the magnetic field is zero, equation (??) reduces to the equation of conservation of the
total energy in hydrodynamics.
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Lecture XV - XVI, Exercise 4.
The set of ideal MHD equations is given by

∂

∂t
ρ+ ∇⃗ · (ρv⃗) = 0 (30)

ρ
∂v⃗

∂t
+ ρ(v⃗ · ∇⃗)v⃗ = −∇⃗p+ j⃗ × B⃗ (31)

∂p

∂t
+ (v⃗ · ∇⃗)p = −γp∇⃗ · v⃗ (32)

p =
kB

m
ρT (33)

∂B⃗

∂t
= ∇⃗ × (v⃗ × B⃗) (34)

∇⃗ · B⃗ = 0, (35)

which, as usual, represent the continuity equation, the Euler equation, the energy con-
servation equation, an equation of state (chosen to the ideal-fluid one), the induction
equation and divergence-free constraint from the Maxwell equations.

In order to derive linerarized MHD equations, we need to make several simplifying
assumptions: in particular, we consider the initial state (which we indicate as X⃗0 to
be uniform and time independent, i.e., ∂X⃗0/∂t = 0∂X⃗0/∂x. We also take the initial
velocity to be zero, v⃗0 = 0. From Euler equation, the static equilibrium implies

0 = −∇⃗p0 + j⃗0 × B⃗0 (36)

Similarly, from eq (35) we have
∇⃗ · B⃗0 = 0 (37)

Here we introduce the perturbed state vector X⃗1, such that all quantities can be
expanded as

ρ = ρ0 + ρ1, p = p0 + p1, T = T0 + T1, (38)
v⃗ = v⃗0 + v⃗1, B⃗ = B⃗0 + B⃗1, j⃗ = j⃗0 + j⃗1. (39)

Introducing these perturbations in the set of equations (??)–(??) and neglecting second
order terms we obtain, for instance, that the perturbed continuity equation becomes

∂ρ0
∂t

+
∂ρ1
∂t

+ ∇⃗ · (ρ0v⃗1) + ∇⃗ · (ρ1v⃗1) = 0 (40)

∂ρ1
∂t

+ ∇⃗ · (ρ0v⃗1) = 0. (41)
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Similarly, the linearized Euler equation is expressed as

ρ0
∂v⃗1

∂t
+ ρ1

∂v⃗1

∂t
+ ρ0(v⃗1 · ∇⃗)v⃗1 + ρ1(v⃗1 · ∇⃗)v⃗1 =

−∇⃗p0 − ∇⃗p1 + j⃗0 × B⃗0 + j⃗0 × B⃗1 + j⃗1 × B⃗0 + j⃗1 × B⃗1 (42)

ρ0
∂v⃗1

∂t
= −∇⃗p1 + (∇⃗ × B⃗0)× B⃗1 + (∇⃗ × B⃗1)× B⃗0 + (−∇⃗p0 + j⃗0 × B⃗0) (43)

[using eq. (36)]

ρ0
∂v⃗1

∂t
= −∇⃗p1 + (∇⃗ × B⃗0)× B⃗1 + (∇⃗ × B⃗1)× B⃗0 .(44)

Similarly, the linearized energy-conservation equation is

∂p0
∂t

+
∂p1
∂t

+ (v⃗1 · ∇⃗)p0 + (v⃗1 · ∇⃗)p1 = −γp0∇⃗ · v⃗1 − γp1∇⃗ · v⃗1 (45)

∂p1
∂t

+ (v⃗1 · ∇⃗)p0 = −γp0∇⃗ · v⃗1. (46)

Similarly, the linearized equation of state for an ideal fluid is

p0 + p1 =
kB

m
ρ0T0 +

kB

m
ρ1T0 +

kB

m
ρ0T1 +

kB

m
ρ1T1 (47)

(using eq (33))

p1 =
kB

m
ρ1T0 +

kB

m
ρ0T1. (48)

Similarly, the linearized induction equation is

∂B⃗0

∂t
+

∂B⃗1

∂t
= ∇⃗ × (v⃗1 × B⃗0) + ∇⃗ × (v⃗1 × B⃗1) (49)

∂B⃗1

∂t
= ∇⃗ × (v⃗1 × B⃗0). (50)

Finally, the solenoidal constraint can be expressed as

∇⃗ · B⃗0 + ∇⃗ · B⃗1 = 0 = ∇⃗ · B⃗1 = 0. (51)

Collecting all equations, we write the set of linearized ideal-MHD equations as

∂ρ1
∂t

+ ∇⃗ · (ρ0v⃗1) = 0, (52)

ρ0
∂v⃗1

∂t
= −∇⃗p1 + (∇⃗ × B⃗0)× B⃗1 + (∇⃗ × B⃗1)× B⃗0, (53)

∂p1
∂t

+ (v⃗1 · ∇⃗)p0 = −γp0∇⃗ · v⃗1, (54)

p1 =
kB

m
ρ1T0 +

kB

m
ρ0T1, (55)

∂B⃗1

∂t
= ∇⃗ × (v⃗1 × B⃗0), (56)

∇⃗ · B⃗1 = 0. (57)
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