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Lecture VII, Exercise 1.
We consider the Newtonian limit of the hydrodynamic equations. For this purpose we
assume that the gravitational field with potential ϕ which is solution of the Poisson
equation ∇⃗2ϕ = 4πGρ and that is weak and static, so that it is possible to find a
coordinate system xα = (t, xi) such that the metric components take the form (note
that we will retain explicitly the speed of light, c, as this will help us keep track of the
order of different terms in an expansion in terms of the normalized fluid velocity v/c)

ds2 = −
(
1 + 2

ϕ

c2

)
c2dt2 +

(
1− 2

ϕ

c2

)
ηijdx

idxj , (1)

where ηij is the flat three-metric. If we define as vi = dxi/dt the components of
the fluid velocity v⃗ with respect to the inertial frame defined by the coordinate xα in
Eq. (1) (these coordinates become inertial in the limit ϕ/c2 → 0), then the Newtonian
limit is obtained by additionally requiring that |v⃗|/c ≪ 1. Using the normalization
condition for the four-velocity and the expression for the four-velocity components,
we can express u0 in terms of ϕ and v⃗. To first order in ϕ and vjv

j , we can write

u0 ≃ 1− ϕ

c2
+

1

2

vjv
j

c2
, u0 v

i

c
≃ vi

c
O
(
vivjv

j

c3

)
. (2)

As a result, the contravariant components of the four-velocity vector in the Newtonian
limit are given by

uα ≃
(
u0,

vi

c

)
=

(
1− ϕ

c2
+

1

2

vjv
j

c2
,
vi

c

)
, (3)

while the corresponding covariant components are given by

uα ≃
(
u0,

vi
c

)
=

(
−1− ϕ

c2
− 1

2

vjv
j

c2
,
vi
c

)
. (4)

Next we can consider the Newtonian limit of the relativistic continuity equation

uµ∇µρ+ ρ∇µu
µ = 0. (5)

The operator uµ∇µ reduces to the convective derivative in the Newtonian framework,
i.e.,

uµ∇µ → D

Dt
:=

∂

∂t
+ v⃗ · ∇⃗, (6)
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since

uµ∇µ =
u0

c

∂

∂t
+ ui ∂

∂xi
, (7)

and we can use expressions (3) and (4) to rewrite the differential operators at O(v2/c2)
as

uo

c

∂

∂t
≃ 1

c

∂

∂t
, (8)

ui ∂

∂xi
≃ vi

c

∂

∂xi
. (9)

Similarly, the term ∇µu
µ can be expressed by

∇µu
µ =

1

c

∂u0

∂t
+

∂ui

∂xi
≃ 1

c

∂vi

∂xi
, (10)

Collecting all these results, the Newtonian limit of Eq. (5) is given by

D

Dt
ρ+ ρ(∇⃗ · v⃗) (11)

= ∂tρ+ vi∂iρ+ ρ∂iv
i = 0. (12)

Lecture VII, Exercise 2.
Here we can consider the Newtonian limit of the relativistic equation of momentum
conservation

uµ∇µuν +
1

ρh
hµ
ν∇µp = 0. (13)

Here we need to introduce the concept of external forces. The typical example of
an external force is represented by the gravitational force, the electromagnetic forces
(which act when the fluid has the net electromagnetic charge), and the fictitious forces
(such as the centrifugal or Coriolis force), which appear when the fluid motion is de-
scribed in a non-inertial (e.g., rotating) reference frame. The important difference be-
tween Newtonian description and relativistic ones is that, if present, the gravitational
forces (and the possible fictitious forces) are no longer external forces but are accounted
for by the curvature of spacetime.

In the Newtonian description, we consider ϵ ≪ c2 (i.e., the energy density of the
fluid is essentially given by the rest-mass energy) and ρ/p ≪ c2 (i.e., the pressure
contribution to the energy density is negligible). Hence the Newtonian limit of the
specific enthalpy and of the second term in Eq. (13) are given respectively by

h = c2 + ϵ+
p

ρ
→ c2, (14)

1

ρh
hµ
ν∇µp → 1

ρc2

(
∂jp+

vj
c2

∂tp+
vjv

j

c2
∂jp

)
≃ 1

ρc2
∂jp. (15)
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Collecting these results and considering the presence of an external force of gravita-
tional origin, the Newtonian limit of Eq. (13) is given by

∂tv
i + vj∂jv

i +
1

ρ
∂ip+ ∂iϕ = 0 (16)

Lecture VII, Exercise 3.
Here we can consider the Newtonian limit of the relativistic equation of energy conser-
vation

uµ∇µe+ ρh∇µu
µ = 0. (17)

Similarly we consider following change of each term in the Newtonian limit

uµ∇µ → Dt, ∇µu
µ → ∇⃗ · v⃗, (18)

e → ρ+ ρϵ, ρh → ρ+ ρϵ+ p. (19)

Thus, Eq. (17) can be written as

Dt(ρ+ ρϵ) + (ρ+ ρϵ+ p)∇⃗ · v⃗ = 0 (20)

⇒ ∂tρ+ ϵ∂tρ+ p∂tϵ+ v⃗ · ∇⃗ρ+ v⃗ · ∇⃗(ρϵ) + (ρ+ ρϵ)∇⃗ · v⃗ = 0. (21)

From the continuity equation

∂tρ+ v⃗ · ∇⃗ρ = −ρ∇⃗ · v⃗ (22)
⇒ ϵ(∂tρ+ v⃗ · ∇⃗ρ) = −ρϵ∇⃗ · v⃗ (23)

Using Eq. (23), Eq. (21) can be written as

−ρ∇⃗ · v⃗ − ρϵ∇⃗ · v⃗ + ρ∂tϵ+ ρv⃗ · ∇⃗ϵ+ ρ
⃗⃗∇v⃗

+ρϵ∇⃗ · v⃗ + p∇⃗ · v⃗ = 0 (24)
⇒ ρ(∂tϵ+ v⃗ · ∇⃗ϵ) + p∇⃗ · v⃗ = 0 (25)

⇒ ρDtϵ+ p∇⃗ · v⃗ = 0. (26)

Let’s remain within a Newtonian framework and let’s rewrite Eq. (25) as

ρDtϵ+ p∇⃗ · v⃗ + ϵ(Dtρ+ ρ∇⃗ · v⃗) = 0 (27)

⇒ Dt(ρϵ) + ρϵ∇⃗ · v⃗ + p∇⃗ · v⃗ = 0 (using the continuity equation) (28)

⇒ Dt(ρϵ) + (ρϵ+ p)∇⃗ · v⃗ = 0 (29)

⇒ ∂t(ρϵ) + ∇⃗ · (ρϵv⃗) + p∇⃗ · v⃗ = 0 (30)

⇒ (add ±v⃗ · ∇⃗p in Eq. (30)) (31)
⇒ ∂t(ρϵ) + ∇⃗ · [(ρϵ+ p)v⃗]− v⃗ · ∇⃗p = 0. (32)
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Here we consider following equation

∂t(ρv
2) + ∇⃗ · (ρv2v⃗) (33)

= ρ∂tv
2 + v2∂tρ+ v2∇⃗(ρv⃗) + ρv⃗ · ∇⃗v2 (34)

= ρ(∂tv
2 + v⃗ · ∇⃗v2) (35)

Then using the following relation

∂tv
2 = 2v⃗ · ∂tv⃗, (36)

v⃗ · ∇⃗v2 = 2v⃗ · (v⃗ · ∇⃗v⃗), (37)

Eq. (35) can be expressed as

= 2ρv⃗(∂tv⃗ + v⃗ · ∇⃗v⃗) (38)

= 2ρv⃗ ·Dtv⃗ = 2ρv⃗

(
−1

ρ
∇⃗p− ∇⃗ϕ

)
(39)

= −2v⃗∇⃗p− 2ρv⃗ · ∇⃗ϕ, (40)

where we have used the equation of momentum conservation. As a result we obtain

−v⃗ · ∇⃗p = ∂t

(
1

2
ρv2

)
+ ∇⃗ ·

(
ρv2

2
v⃗

)
+ ρv⃗ · ∇⃗ϕ. (41)

Using this relation in Eq. (32), we finally obtain the Newtonian limit of the energy
conservation equation

∂t

(
1

2
ρv2 + ρϵ

)
+ ∇⃗ ·

[(
1

2
ρv2 + ρϵ+ p

)
v⃗

]
= −ρv⃗ · ∇⃗ϕ. (42)
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