Hydrodynamics and Magnetohydrodynamics: Solutions of the exercises in Lecture VIII

Yosuke Mizuno

Winter Semester 2014

Lecture VIII, Exercise 1.

The vorticity tensor is defined as

$$
\begin{align*}
\Omega_{\mu \nu} & =2 \nabla_{[\mu} \omega_{\nu]} \tag{1}\\
& =\nabla_{\nu}\left(h u_{\mu}\right)-\nabla_{\mu}\left(h u_{\nu}\right) \tag{2}\\
& =h \nabla_{\nu} u_{\mu}+u_{\mu} \nabla_{\nu} h-h \nabla_{\mu} u_{\nu}-u_{\nu} \nabla_{\mu} h \tag{3}\\
& =h\left(\nabla_{\nu} u_{\mu}-\nabla_{\mu} u_{\nu}\right)+u_{\mu} \nabla_{\nu} h-u_{\nu} \nabla_{\mu} h . \tag{4}
\end{align*}
$$

The kinematic vorticity tensor is defined as

$$
\begin{align*}
\omega_{\mu \nu} & =h_{\mu}^{\alpha} h_{\nu}^{\beta} \nabla_{[\beta} u_{\alpha]} \tag{5}\\
& =\nabla_{[\mu} u_{\nu]}+a_{[\mu} u_{\nu]} \tag{6}\\
& =\frac{1}{2}\left(\nabla_{\nu} u_{\mu}-\nabla_{\mu} u_{\nu}\right)+a_{[\mu} u_{\nu]} . \tag{7}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\nabla_{\nu} u_{\mu}-\nabla_{\mu} u_{\nu}=2\left(\omega_{\mu \nu}-a_{[\mu} u_{\nu]}\right) \tag{8}
\end{equation*}
$$

Substituting Eq (8) into Eq (4) we obtain

$$
\begin{align*}
\Omega_{\mu \nu} & =2 h\left(\omega_{\mu \nu}-a_{[\mu} u_{\nu]}\right)+u_{\mu} \nabla_{\nu} h-u_{\nu} \nabla_{\mu} h \tag{9}\\
& =2 h\left[\omega_{\mu \nu}-a_{[\mu} u_{\nu]}+\frac{1}{2}\left(u_{\mu} \frac{1}{h} \nabla_{\nu} h-u_{\nu} \frac{1}{h} \nabla_{\mu} h\right)\right] \tag{10}\\
& =2 h\left[\omega_{\mu \nu}-a_{[\mu} u_{\nu]}+u_{[\mu} \nabla_{\nu]} \ln h\right] . \tag{11}
\end{align*}
$$

From the equation above it is clear that only for a test fluid (i.e., $e=0=p$ and $h=1$) in geodetic motion (i.e., $a_{\mu}=0$) two tensors are directly proportional, $\Omega_{\mu \nu}=2 \omega_{\mu \nu}$.

Lecture VIII, Exercise 2.

The Carter-Lichnerowicz equation is given by

$$
\begin{equation*}
\Omega_{\mu \nu} u^{\mu}=T \nabla_{\mu} s \tag{12}
\end{equation*}
$$

Here we consider Newtonian limit of the Carter-Lichnerowicz equation. First we rewrite Eq. (12) as

$$
\begin{align*}
\Omega_{\mu \nu} u^{\mu} & =u^{\nu} \Omega_{\nu \mu} \tag{13}\\
& =u^{\mu}\left[\nabla_{\nu}\left(h u_{\mu}\right)-\nabla_{\mu}\left(h u_{\nu}\right)\right] \tag{14}\\
& =u^{0}\left[\frac{1}{c} \frac{\partial}{\partial t}\left(h u_{i}\right)-\frac{\partial}{\partial x^{i}}\left(h u_{0}\right)\right]+u^{j}\left[\frac{\partial}{\partial x^{j}}\left(h u_{i}\right)-\frac{\partial}{\partial x^{i}}\left(h u_{j}\right)\right] . \tag{15}
\end{align*}
$$

As already discussed in the exercise of Lecture VII, the covariant components of the four-velocity vector in the Newtonian limit are given by

$$
\begin{equation*}
u^{\alpha} \simeq\left(u^{0}, \frac{v^{i}}{c}\right)=\left(1-\frac{\phi}{c^{2}}+\frac{1}{2} \frac{v_{j} v^{j}}{c^{2}}, \frac{v^{i}}{c}\right) \tag{16}
\end{equation*}
$$

while the corresponding covariant components are given by

$$
\begin{equation*}
u_{\alpha} \simeq\left(u_{0}, \frac{v_{i}}{c}\right)=\left(-1-\frac{\phi}{c^{2}}-\frac{1}{2} \frac{v_{j} v^{j}}{c^{2}}, \frac{v_{i}}{c}\right) . \tag{17}
\end{equation*}
$$

Similarly the expression for the relativistic specific enthalpy is

$$
\begin{equation*}
h=c^{2}\left(1+\frac{h_{\mathrm{N}}}{c^{2}}\right) \tag{18}
\end{equation*}
$$

where h_{N} is the specific enthalpy in the Newtonian limit, $h_{\mathrm{N}}=\epsilon+p / \rho$. We substitute these relations into Eq (15) to obtain

$$
\begin{align*}
\Omega_{\mu \nu} u^{\mu}= & u^{0}\left\{\partial_{t}\left[\left(1+\frac{h_{\mathrm{N}}}{c^{2}}\right) v_{i}\right]-\partial_{i}\left[\left(c^{2}+h_{\mathrm{N}}\right) u_{0}\right]\right\} \\
& +v^{i}\left\{\partial_{j}\left[\left(1+\frac{h_{\mathrm{N}}}{c^{2}}\right) v_{i}\right]-\partial_{i}\left[\left(1+\frac{h_{\mathrm{N}}}{c^{2}}\right) v_{j}\right]\right\} . \tag{19}
\end{align*}
$$

In tthe Newtonian limit, the terms u^{0} and h_{N} / c^{2} can be set to 1 and 0 respectively, so that the second term in the RHS of Eq (19) can be changed as

$$
\begin{align*}
\partial_{i}\left[\left(c^{2}+h_{\mathrm{N}}\right) u_{0}\right] & =-\partial_{i}\left[\left(c^{2}+h_{\mathrm{N}}\right)\left(1+\frac{\phi}{c^{2}}+\frac{v_{j} v^{j}}{2 c^{2}}\right)\right] \tag{20}\\
& \simeq-\partial_{i}\left(\phi+\frac{1}{2} v_{j} v^{j}+h_{\mathrm{N}}\right) \tag{21}
\end{align*}
$$

Finally we get

$$
\begin{align*}
& \partial_{t} v_{i}+\partial_{i}\left(h_{\mathrm{N}}+\frac{1}{2} v_{j} v^{j}+\phi\right)+v^{i}\left(\partial_{j} v_{i}-\partial_{i} v_{j}\right)=T \partial_{i} s \tag{22}\\
& \Rightarrow \quad \frac{\partial \overrightarrow{\boldsymbol{v}}}{\partial t}+\vec{\nabla} \cdot\left(\frac{1}{2} v^{2}+\epsilon+\frac{p}{\rho}+\phi\right)-\overrightarrow{\boldsymbol{v}} \times(\vec{\nabla} \times \overrightarrow{\boldsymbol{v}})=T \vec{\nabla} s \tag{23}
\end{align*}
$$

This equation is known as the Crocco equation of motion.

Lecture VIII, Exercise 3.

The vorticity four-vector is written as

$$
\begin{equation*}
\Omega^{\mu}={ }^{*} \Omega^{\mu \nu} u_{\nu}=\frac{1}{2} \epsilon^{\mu \nu \alpha \beta} \Omega_{\alpha \beta} u_{\nu} . \tag{24}
\end{equation*}
$$

The kinetic vorticity four-vector is given by

$$
\begin{equation*}
\omega^{\mu}={ }^{*} \omega^{\mu \nu} u_{\nu}=\frac{1}{2} \epsilon^{\mu \nu \alpha \beta} \omega_{\alpha \beta} u_{\nu} \tag{25}
\end{equation*}
$$

Writing out Eq (24) explicitly we obtain

$$
\begin{align*}
\Omega_{\alpha \beta} u_{\nu} & =\left[\nabla_{\beta}\left(h u_{\alpha}\right) u_{\nu}-\nabla_{\alpha}\left(h u_{\beta}\right) u_{\nu}\right] \tag{26}\\
& =\left[h \nabla_{\beta}\left(u_{\alpha}\right) u_{\nu}+u_{\alpha} u_{\nu} \nabla_{\beta} h-h \nabla_{\alpha}\left(u_{\beta}\right) u_{\nu}-u_{\beta} u_{\nu} \nabla_{\alpha} h\right] \tag{27}\\
& =h u_{\nu}\left(\nabla_{\beta} u_{\alpha}-\nabla_{\alpha} u_{\beta}\right)+u_{\alpha} u_{\nu} \nabla_{\beta} h-u_{\beta} u_{\nu} \nabla_{\alpha} h \tag{28}\\
& =h u_{\nu} 2 \nabla_{[\beta} u_{\alpha]}, \tag{29}
\end{align*}
$$

where the terms including $u_{\alpha} u_{\nu}$ and $u_{\beta} u_{\nu}$ vanish because of the symmetry in the indices and the antisymmetry of the Levi-Civita tensor.

From the definition of the kinetic vorticity tensor, we instead obtain

$$
\begin{align*}
& \omega_{\mu \nu}=\nabla_{[\mu} u_{\nu]}+a_{[\mu} u_{\nu]} \tag{30}\\
\Rightarrow \quad & \nabla_{[\mu} u_{\nu]}=\omega_{\mu \nu}-a_{[\mu} u_{\nu]} .
\end{align*}
$$

Therefore connecting these two results, the vorticity four-vector can be given by

$$
\begin{align*}
\Omega^{\mu} & =\frac{1}{2} \epsilon^{\mu \nu \alpha \beta} h u_{\nu} \omega_{\beta \alpha}-\epsilon^{\mu \nu \alpha \beta} h u_{\nu} a_{[\beta} u_{\alpha]} \tag{32}\\
& =2 h \omega^{\mu} \tag{33}
\end{align*}
$$

where the second term of the RHS in Eq. (32) vanishes because of the symmetries in the four-velocity.

