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Lecture IX, Exercise 1.
We start from the conservation equations for energy and linear momentum

∇µTµν = 0, (1)

where the energy-momentum tensor is given by

Tµν = (e+ p)uµuν + pgµν . (2)

Assuming for simplicity that the flow is one-dimensional and the spacetime is flat, i.e.
uα = W (1, v, 0, 0), W = (1 − vivi)

1/2, and gµν = ηµν = (−1, 1, 1, 1), we can
rewrite Eq. (1) as

∂tT
tt + ∂xT

xt = 0 (3)
∂tT

tx + ∂xT
xx = 0 (4)

The relevant components of the energy-momentum tensor are given by

T tt = (e+ p)utut + pgtt

= (e+ p)W 2 − p
= W 2(e+ pv2) (5)

T tx = (e+ p)utux

= (e+ p)W 2v (6)
T tt = (e+ p)uxux + pgxx

= (e+ p)W 2v2 + p

= ev2W 2 + pW 2. (7)

As a result, Eqs (3) and (4) are written as

∂t[(e+ pv2)W 2] + ∂x[(e+ p)W 2v], (8)
∂t[(e+ p)W 2v] + ∂x[(ev

2 + p)W 2]. (9)
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Lecture IX, Exercise 2.
Assuming the fluid is initially uniform with energy density, pressure and velocity given
by e0, p0, and v0, we can introduce the perturbations

e = e0 + δe, p = p0 + δp, v = v0 + δv = δv, (10)

Next we assume that the initial velocity v0 is zero and insert the perturbations (10)
in equations (8) and (9) to obtain the linearized hydrodynamical equations where we
drop off 2nd-order terms, e.g. δXδY , and assume that the initial state is static and
uniform, i.e., ∂tX0 = ∂xX0 = 0. In this way we obtain

∂t{[(e0 + δe) + (p0 + δp)δv2]W 2}+ ∂x{[(e0 + δe) + (p0 + δp)]W 2δv} = 0 (11)
∂t(δeW

2) + ∂x(e0W
2δv + p0W

2δv) = 0 (12)
W 2∂tδe+W 2(e0 + p0)∂xδv = 0 (13)

∂tδe+ (e0 + p0)∂xδv = 0 (14)

∂t{[(e0 + δe) + (p0 + δp)W 2δv] + ∂x{[(e0 + δe)δv2 + (p0 + δp)]W 2} = 0 (15)
∂t(e0W

2δv + p0W
2δv) + ∂xW

2δp = 0 (16)
W 2(e0 + p0)∂tδv +W 2∂xδp = 0 (17)

(e0 + p0)∂tδv + ∂xδp = 0 .(18)

Therefore the final set of linearized equations is

∂tδe+ (e0 + p0)∂xδv = 0, (19)
(e0 + p0)∂tδv + ∂xδp = 0. (20)

Taking a time derivative in both equations,

∂2t δe = −(e0 + p0)∂x∂tδv, (21)
∂2xδp = −(e0 + p0)∂x∂tδv. (22)

and combining them we obtain

∂2t δe− ∂2xδp

= ∂2t δe− ∂x2
(
δp

δe
δe

)
= ∂2t δe− c2s∂x2δe
= (∂2t − c2s∂x2)δe = �δe = 0. (23)

The one above is a wave equation with speed cs, which we define to be

c2s =

(
∂p

∂e

)
s

. (24)

In other words, ±cs is the speed at which the perturbations propagate as waves in the
fluid and where the ± sign reflects that the waves can propagate in either direction of
our one-dimensional space.
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Lecture IX, Exercise 3.
The continuity and momentum equations can be written as

∂t(ρW ) + ∂x(ρWv) = 0, (25)

W∂t(Wv) +Wv∂x(Wv) = − 1

ρh
[∂xp+W 2v∂tp+W 2v2∂xp]. (26)

Here we introduce the similarity variable ξ := x/t. The differential operators are given
by

∂t = −
(
ξ

t

)
d

dξ
, ∂x =

(
1

t

)
d

dξ
. (27)

Using the similarity variable and the differential operators, the equations (25) and (26)
are written as

−
(
ξ

t

)
d

dξ
(ρW ) +

(
1

t

)
d

dξ
(ρWv) = 0 (28)

−ξ d
dξ

(ρW ) +
d

dξ
(ρWv) = 0 (29)

−ξρ d
dξ
W − ξW d

dξ
ρ+ ρW

d

dξ
v + ρv

d

dξ
W +Wv

d

dξ
ρ = 0 (30)

W (v − ξ) d
dξ
ρ+ ρ(v − ξ) d

dξ
W + ρW

d

dξ
v = 0 (31)

W (v − ξ) d
dξ
ρ+ ρW [W 2v(v − ξ) + 1]

d

dξ
v = 0 (32)

(v − ξ) d
dξ
ρ+ ρ[W 2v(v − ξ) + 1]

d

dξ
v = 0 (33)

where we have used W 2 = 1/(1 − v2) and dW = W 3vdv. Similarly, for the other
equation we have

ρhW

(
ξ

t

)
d

dξ
(Wv)− ρhWv

(
1

t

)
d

dξ
(Wv) =(

1

t

)
d

dξ
p−W 2v

(
ξ

t

)
d

dξ
p+W 2v2

(
1

t

)
d

dξ
p

ρhW

(
1

t

)
(ξ − v) d

dξ
(Wv) =

(
1

t

)
(1−W 2vξ +W 2v2)

d

dξ
p (34)

ρhW (ξ − v)
(
W

d

dξ
v + v

d

dξ
W

)
= (1−W 2vξ +W 2v2)

d

dξ
p (35)

ρhW (ξ − v)(W +W 3v2)
d

dξ
v = (W 2 − v2W 2 −W 2vξ +W 2v2)

d

dξ
p(36)

ρhW 4(ξ − v) d
dξ
v = W 2(1− vξ) d

dξ
p (37)

ρhW 2(ξ − v) d
dξ
v = (1− vξ) d

dξ
p. (38)
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As a result we obtain the following ordinary differential equations describing the self-
similar flow in the rarefaction wave

(v − ξ) d
dξ
ρ+ ρ[W 2v(v − ξ) + 1]

d

dξ
v = 0, (39)

ρhW 2(v − ξ) d
dξ
v + (1− vξ) d

dξ
p = 0. (40)
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