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Single Particle Motion 
•  Particle Motion in uniform B-field 
– Gyro-motion 
– E x B drift 

•  Particle Motion in non-uniform B-field 
– Gradient drift 
– Curvature drift 

 
•  Adiabatic invariants  



Equation of Motion 
•  In dense plasma, Coulomb forces couple with particles. So bulk 

motion is significant 
•  In rarefied plasma, charge particles does not interact with other 

particles significantly. So motion of each particles can be treated 
independently 

•  In general, equation of motion of particle with mass m under 
influence of Lorentz force is : 

–  E: electric field, B: magnetic field, q: particle’s charge, v: particle’s 
velocity 

–  Which is valid for non-relativistic motion (v << c) 
•  A wide range of behaviors is possible depending on the nature of 

E and B in space and time 

(2.1) m
dv

dt
= q(E + v �B)



Uniform B-field: Gyration 
•  If motion is only subject to static and uniform B field, (E=0 ) 

•  Taking a dot product with v, 

•  RHS is zero as v⊥B => 

•  Therefore, a static magnetic field cannot change the kinetic 
energy of a particle since force is always perpendicular to 
direction of motion 

(2.2) m
dv

dt
= q(v �B)

v · m
dv

dt
= v · q(v �B)

m
1
2

d(v · v)
dt

= q[v · (v �B)]

d

dt

�
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�
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Uniform B-field: Gyration (cont.)	  
•  Decompose velocity into parallel and perpendicular 

components to B: 

•  Eq (2.2) => 

•  This equation can be split into two independent equations: 

•  These imply that B field has no effect on the motion along it. 
Only affects particle velocity perpendicular it 

=> 

v = v� + v�

dv�

dt
+

dv�
dt

=
q

m
(v �B)

dv�

dt
= 0 v� = const

dv�
dt

=
q

m
(v��B)



Uniform B-field: Cyclotron Frequency	  

•  To examine the perpendicular motion, we consider B =(0, 0, Bz) 
•  Re-write eq (2.2) in each components:  

•  To determine the time variation of vx and vy we take derivative eq (2.3a) & eq 
(2.3b) , 

•  Where                         is the gyrofrequency or cyclotron frequency 

(2.3a) 

(2.3b) 

(2.3c) 

(2.4a) 

(2.4b) 

m
dvx

dt
= qBvy

m
dvy

dt
= �qBvx

m
dvz

dt
= 0

d2vx

dt2
+ �2

cvx = 0

d2vy

dt2
+ �2

cvy = 0

�c = �qB

m



Uniform B-field: Cyclotron Frequency 
(cont.)	  

•  Gyrofrequency or cyclotron frequency: 

•  Indicative of the field strength and the 
charge and mass of particles of plasma 

•  Does not depend on kinetic energy 

•  For electron, ωc is positive, electron 
rotates in the right-hand sense 

•  Plasma can have several cyclotron 
frequencies 

Figure from Schwartz et al., P.23 

�c = �qB

m



Uniform B-field: Larmor radius	  
•  The v x B force is centripetal, so 

 

•  Particles with faster velocities or larger mass orbit larger radii 
 
•  For electron, the gyrofrequency can be written: 

  

Larmor radius 
or gyroradius 

where B is in units of Gauss 

�
mv2

�
r

= q(v �B)

= qv�B

rL =
mv�
|q|B =

v�
�c

fce =
�c

2�
� 2.8� 106B



Uniform B-field: Guiding Center	  
•  What is path of electrons? Solution of eqs (2.4a) & (2.4b) are 

harmonic: 

    where                            is a constant speed in plane of perpendicular to 
B  
•  Integrating, we have 

•  Using Larmor radius (rL), and taking a real part of above: 

•  These describe a circular orbit at a guiding center (x0, y0) 

(2.5a) 

(2.5b) 

(2.6) 

vx = v�ei�ct = ẋ

vy =
m

qB
v2
x = ± 1

�c
v̇x = ±iei�ct = ẏ

x� x0 = �i
v�
�c

ei�ct

y � y0 = ±v�
�c

ei�ct

x� x0 = rL sin(�ct)
y � y0 = ±rL cos(�ct)

v� =
�

v2
x + v2

y



Uniform B-field: Helical Motion	  
•  In addition to this motion, there is a 

velocity vz along B which is not 
effected by B 

•  Combine with eq (2.6), this gives 
helical motion about a guiding center 

•  Guiding center moves linearly along z 
with constant velocity, v|| 

•  Pitch angle of helix is defined as  

guiding center 
motion in 
uniform B-field 

(x0, y0) 

rg 

rL 

rg = x0x̂ + y0ŷ + (z0 + v�t)ẑ

� = tan�1

�
v�
v�

�



Helical Motion: Magnetic Moment	  
•  The charge circulates on the plane perpendicular to B with a 

uniform angular frequency ωc 

•  Charge passes through ωc/2π times per unit time 
•  This motion equivalent with a situation that an electric current 

I=qωc/2π is flowing in a circular coil with radius rL 

⇒ It has Magnetic moment: 

•  Therefore,  

µm = IA

=
q�c

2�
�r2

L

µm =
mv2

�/2
B



Uniform E & B field: E x B drift 
•  When E is finite, motion will be sum of two motions: circular 

Larmor gyration + drift of the guiding center 

•  Choose E to lie in x-z plane, so Ey=0. consider B=(0,0,Bz), Equation 
of motion is   

•  z-component of velocity is: 
 
 
•  This is a straight acceleration along B. The transverse components 

are:    

m
dv

dt
= q(E + v �B)

dvz

dt
=

q

m
Ez

vz =
qEz

m
t + vz,0

dvx

dt
=

q

m
Ex ± �cvy

dvy

dt
= 0± �cvx



Uniform E & B field: E x B drift (cont.)	  
•  Differentiating with constant E,  

•  Using                             we can write this as  

•  In a form similar to Eq (2.5a) & (2.5b): 

•  Larmor motion is similar to case when E=0, but now there is 
super-imposed drift vg of the guiding center in –y direction 

v̈x = ��2
cvx

v̈y = ±�c

� q

m
Ex ± �cvy

�

= ��2
c

�
Ex

B
+ vy

�

d2
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�
vy +

Ex

B

�
= ��2

c

�
vy +
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B

�
vx = vy + Ex/B

vx = v�ei�ct

vy = ±iei�ct � Ex

B



Uniform E & B field: E x B drift (cont.)	  
•  To obtain the general formula for vg, we solve equation of motion 

•  As mdv/dt gives a circular motion, already understand this effect, so 
set to zero 

•  Taking cross product with B,  

•  The transverse components of this equation are 

 
•  Where vE is the E x B drift velocity of the guiding center 

E + v �B = 0

m
dv

dt
= q(E + v �B)

E �B = B � (v �B) = vB2 �B(v · B)

v�gc = (E �B)/B2 = vE



Uniform E & B field: E x B drift (cont.)	  

vE 



External force drift 
•  E x B drift of guiding center is : 
 
    which can be extended to a form for a general force F: 
 
 
•  Example: In a gravitational field, 

•  Similar to the drift vE, in that drift is perpendicular to both 
forces, but in this case particles with opposite charge drift in 
opposite direction. 

 

External-force drift 

vE =
E �B

B2

vf =
1
q

F �B

B2

vg =
m

q

g �B

B2



Drift in non-uniform field 
•  Uniform fields provide poor descriptions for many phenomena, such 

as planetary fields, coronal loops in the Sun, Tokamaks, which have 
spatially and temporally varying fields. 

•  Particle drifts in inhomogeneous fields are classified several way 
•  In this lecture, consider two drifts associated with spatially non-

uniform B: gradient drift and curvature drift. (There are many other) 

•   In general, introducing inhomogeneity is too complicated to obtain 
exact solutions for guiding center drifts 

•  Therefore use orbit theory approximation: 
–  Within one Larmor orbit, B is approximately uniform, i.e., typical length-scale 

L over which B varies is L >> rL => gyro-orbit is nearly circle 



Grad-B Drift 
•  Assumes lines of forces are straight, but their strength is 

increases in y-direction 

•  Gradient in |B| causes the Larmor radius (rA=mv/qB) to be 
larger at the bottom of the orbit than at the top, which leads to 
a drift 

•  Drift should be perpendicular to∇B and B 
•  Ions and electrons drift in opposite directions  



Grad-B Drift (cont.)	  
•  Consider spatially-varying magnetic field, B=(0,0,Bz(y)), i,.e., B only 

has z-component and the strength of it varies with y. 
•  Assume that E=0, so equation of motion is F=q(v x B) 
•  Separating into components, 

•  The gradient of Bz is 

                                 => 
•  This means that the magnetic field strength can be expanded in a 

Taylor expansion for distances y < rL,   

Fx = q(vyBz)
Fy = �q(vxBz)
Fz = 0

dBz

dy
� Bz

L
� Bz

rL

rL
dBz

dy
� Bz

Bz(y) = B0 + y
dBz

dy
+ ...

(2.7a) 
(2.7b) 
(2.7c) 



Grad-B Drift (cont.)	  
•  Expanding Bz to first order in Eqs (2.7a) & (2.7b ) : 

 
•  Particles in B-field traveling around a guiding center (0,0) with 

helical trajectory: 

•  The velocities can be written in a similar form: 

•  Substituting these into eq(2.8) gives:    

Fx = qvy

�
B0 + y

dBz

dy

�

Fy = �qvx

�
B0 + y

dBz

dy

�

x = rL sin(�ct)
y = ±rL cos(�ct)

vx = v� cos(�ct)
vy = ±v� sin(�ct)

Fx = �qv� sin(�ct)
�
B0 ± rL cos(�ct)

dBz

dy

�

Fy = �qv� cos(�ct)
�
B0 ± rL cos(�ct)

dBz

dy

�

(2.8a) 

(2.8b) 



Grad-B Drift (cont.)	  
•  Since we are only interested in the guiding center motion, we 

average force over a gyro-period. Therefore in x-direction:  

•  But                         and                                       =>  

•  In the y-direction:  

•  Where                         but    

�Fx� = �qv�

�
B0�sin(�ct)�± rL�sin(�ct) cos(�ct)�

dBz

dy

�

�sin(�ct)� = 0 �sin(�ct) cos(�ct)� = 0 �Fx� = 0

�Fy� = �qv�

�
B0�cos(�ct)�± rL�cos2(�ct)�

dBz

dy

�

= �qv�rL

2
dBz

dy

�cos(�ct)� = 0 �cos2(�ct)� = 1/2

(2.9a) 

(2.9b) 



Grad-B Drift (cont.)	  
•  In general, drift of guiding center is 

•  Using Eq(2.9b): 

•  So positive charged particles drift in –x direction and negative 
charged particles drift +x direction 

•  In 3D, the result can be generalized to: 

•  The \pm stands for sign of charge. The grad-B drift is in opposite 
direction for electrons and ions and causes a current transverse to B 

Grad-B drift 

v�B =
1
q

�Fy�ŷ �Bz ẑ

B2
z

= �v�rL

2Bz

dBz

dy
x̂

v�B = ±1
2
v�rL

B ��B

B2

vf =
1
q

F �B

B2



Grad-B Drift (cont.)	  
•  Below are shown particle drifts due to a magnetic field gradient, 

where B(y) = zBz(y) 

•  Consider rL=mv/qB, local gyroradius is large where B is small and is 
small where B is large which gives to a drift 



Curvature Drift 
•  When charged particles move along curved magnetic field lines, 

experience centrifugal force perpendicular to magnetic field lines 
•  Assume radius of curvature (Rc) is >> rL 

•  The outward centrifugal force is  

•  This can be directly inserted into  
general form for guiding-center drift 

 
          => 
 
•  Drift is into or out of page depending on sign of q 

Curvature drift 

Fcf =
mv2

�
Rc

r̂

vf =
1
q

F �B

B2

vR =
mv2

�
qR2

c

Rc �B

B2



Adiabatic invariance of magnetic moment 
•  Gyrating particle constitutes an electric current loop with a dipole 

moment: 

•  The dipole moment is conserved, i.e., is invariant. Called the first 
adiabatic invariant. 

•  µ = const even if B varies spatially or temporally. If B varies, then 
vperp varies to keep µ = const =>v|| also changes. 

•  It gives rise to magnetic mirrorng. Seen in planetary 
magnetospheres, coronal loops etc. 

µ =
1/2mv2

�
B



Magnetic mirroring 
•  Consider B-field is in z-direction and whose magnitude varies in z-

direction. If B-field is axisymmetric, Bθ=0 and d/dθ=0   (r, θ, z) 
•  This has cylindrical symmetry, so write 
•  How does this configuration gives a force that can trap a charged 

particle? 
•  Can obtain Br from                   . In cylindrical coordinates:  
  
 
•  If                is given at r=0 and does not change much with r, then 

B = Brr̂ + Bz ẑ

� · B = 0
1
r

�

�r
(rBr) +

�Bz

�z
= 0

�

�r
(rBr) = �r

�Bz

�z

�Bz/�z

rBr = �
� r

0
r
�Bz

�z
dr � �1

2
r2

�
�Bz

�z

�

r=0

Br = �1
2
r

�
�Bz

�z

�

r=0
(2.10) 



Magnetic mirroring (cont.)	  
•  Now have Br in terms of Bz, which use to find Lorentz force on 

particle. 
•  The components of Lorentz force are: 

•  As Bθ=0, two terms vanish and  terms (1) & (2) give Larmor 
gyration. Term (3) vanishes on the axis and cause a drift in radial 
direction. Term (4) is therefore the one of interest 

•  Substitute from eq (2. 10): 

Fr = q(v�Bz � vzB�)

F� = q(�vrBz + vzBr)

Fz = q(vrB� � v�Br)

(1) 

(2) (3) 

(4) 

Fz = �qv�Br

=
qv�r

2
�Bz

�z



Magnetic mirroring (cont.)	  
•  Averaging over one gyro-orbit, and putting                   & r = rL 

•  This is called the mirror force, where -/+ arises because particles of 
opposite charge orbit the field in opposite directions. 

•  Above is normally written: 
 
 
 
 

•  or                         where    

•  In 3D, this can be generalized to: 
 
where F|| is the mirror force parallel to B and ds is a line element 
along B 

v� = �v�

Fz = �qv�rL

2
�Bz

�z

Fz = �1
2
q
v2
�

�c

�Bz

�z

= �1
2

mv2
�

B

�Bz

�z

Fz = �µ
�Bz

�z µ =
1/2mv2

�
B

F� = �µ
dB

ds
= �µ��B



Adiabatic invariants 
•  Symmetry principles:  
–  Periodic motion óconserved quantity 
–  symmetry ó conserved law 

•  What if the motion is almost periodic? 
•  Hamiltonian formulation: 
•  q and p is canonical variables and motion almost periodical => 

•  Adiabatic invariant is a property of physical system that stays 
constant when changes occur slowly  

I =
�

pdq is constant, called adiabatic invariant 



First adiabatic invariant 
•  As particle moves into regions of stronger or weaker B, Larmor 

radius changes, but µ remains invariant 
•  To prove this, consider component of equation of motion along B: 

•  Multiplying by v|| : 

•  Then, 

•  The particle energy must be conserved: 

•  Using 

mv�
dv�
dt

= �µv�
dB

ds

m
dv�
dt

= �µ
dB

ds

d

dt

�
1
2
mv2

�

�
= �µ

ds

dt

dB

ds

= �µ
dB

dt
d

dt

�
1
2
mv2

� +
1
2
mv2

�

�
= 0

µ =
1/2mv2

�
B

d

dt

�
1
2
mv2

� + µB

�
= 0

(2.11) 



First adiabatic invariant (cont.)	  
•  Use eq(2.11), 

•  As B is not equal to 0, this implies that:  
•  That is µ = const in time (invariant) 
•  µ is known as the first adiabatic invariant of the particle orbit. 
•  As a particle moves from a weak-field to a strong-field region, it 

sees B increasing and therefore vperp must increase in order to keep 
µ constant. Since total energy must remain constant, v|| must 
decrease. 

•  If B is high enough, v|| essentially => 0 and particle is reflected back 
to weak-field 

�µ
dB

dt
+

d

dt
(µB) = 0

�µ
dB

dt
+ µ

dB

dt
+ B

dµ

dt
= 0

B
dµ

dt
= 0

dµ

dt
= 0



Consequence of invariant µ	

•  Consider B0 & B1 in the weak- and strong-field regions. Associated 

speeds are v0 & v1 

•  The conservation of µ implies that  
•  So as B increases, the perpendicular component of particle velocity 

increases => particles move more and more perpendicular to B  
•  However, since E=0, the total particle energy cannot increase. Thus 

as vperp increases, v|| must decrease. The particle slow down in its 
motion along the filed 

•  If field is strong enough, at some point the particle may have v||=0 

µ =
mv2

0

2B0
=

mv2
1

2B1



Consequence of invariant µ (cont.)	  
•  At B1, v1,||=0, From conservation of energy: 

•  Using                                we can write 

•  But                            , where θ is the pitch angle 

•  Therefore 

•  Particle with smaller θ will mirror in regions of higher B. If θ 
is too small, B1 >> B0 and particle does not mirror 

v2
1 = v2

1,� = v2
0

µ =
mv2

0

2B0
=

mv2
1

2B1

B0

B1
=

v2
0,�

v2
1,�

=
v2
0,�
v2
0

sin(�) = v�/v0

B0

B1
= sin2(�)

B 
v|| 

v vperp 
θ	




Consequence of invariant µ (cont.2)	  
•  Mirror ratio is defined as 

 
 
•  The smallest θ of a confined particle is   

•  This defines region in velocity space in the shape of a cone, called 
the loss cone. 

•  If a particle is in a region between two high field. The particle may 
be reflected at one, travel towards the second, and also reflect there. 
Thus the particle motion is confined to a certain region of space, 
this process is known as magnetic trapping. 

Rm =
Bm

B0

sin2(�) =
B0

Bm
=

1
Rm



Other adiabatic invariants 
•  Second adiabatic invariant: longitudinal invariant of a trapped 

particle in the magnetic mirror 

•  This property is used in Fermi acceleration. 

•  Third adiabatic invariant: flux invariant, which means the magnetic 
flux through the guiding center orbit is conserved 

  

J =
�

p�ds

� =
�

A · dx



Application for Astrophysics 
•  Particle trapping: due to magnetic mirroring in the Earth’s van 

Allen radiation belt and energetic electrons confined in solar 
coronal magnetic loops 

•  Particle transport of energetic particles (galactic cosmic-rays, solar 
energetic particles, ultra-relativistic particles from extragalactic 
sources): governed by variety of particle drifts  

•  Particle acceleration: due to electric fields in pulsar magnetosphere 
and solar flares. Magnetic mirroring due to either stochastic 
motion of high field regions, or systematic motion between 
converging mirrors in the vicinity of shock waves, leads to Fermi 
acceleration of particles 

•  Radiation: given by relativistic gyrating particles (synchrotron 
radiation) or accelerating particles (bremsstrahlung)   



Summary of single particle motion 
•  Charged particle motion in B & E fields is very unique and has 

interesting physical properties 
 
•  Particle Motion in uniform B-field (no E-field) 
–  Gyration: gyro (cyclotron)-frequency, Larmor radius, guiding 

center  
•  Particle Motion in uniform E & B-fields 
–  E x B drift 

•  Particle Motion in non-uniform B-field 
–  Grad-B drift, Curvature drift 
–  magnetic mirroring 

•  Adiabatic invariants  
–  Magnetic moment 


