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Fluid approach to plasmas

* Fluid approach describes bulk properties of plasma. We do not
attempt to solve unique trajectories of all particles in plasma. This
simplification works very well for majority of plasma.

* Fluid theory follows directly from moments of the Boltzmann
equation (previous chapter).

* Each of moments of Boltzmann (Vlasov) equation is a transport
equation describing the dynamics of a quantity associated with a

given power of v

8_n + V- (nu) =0 Continuity of mass or charge

ot transport
mn [a—qu(u V) ] =qn(E+uxB)—-V.-P+ P,
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Fluid motion

The motion of fluid 1s described by a vector velocity field v(r),
(which 1s mean velocity of all individual particles which make up
the fluid at r) and particle density n(r).

We discuss the motion of fluid of a single type of particle of mass/
charge, m/q, so charge and mass density are gn and mn

The particle conservation equation (continuity equation):

%n + V- (nv) =0
s,
Expand the V-to get: —.n + (v-V)n+nV-v=0
Significance 1s that first two terms are convective derivative of n
D d 0
Dt @tV

So continuity equation can be written: Dﬂtn — _nV-v



Lagrangian & Eulerian viewpoint

* Lagrangian: sit on a fluid element and
move with it as fluid moves

* FEulerian: sit at a fixed point in space and
watch fluid move through your volume
element: 1dentity of fluid in volume
continually changing

— 0/0t :rate of change at fixed point (Euler)

—D/Dt = 9/0t 4+ v - V : rate of change at
moving point (Lagrange)

— v - V : change due to motion
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Lagrangian & Eulerian viewpoint (cont.)

Derivation of continuity 1s Eulerian. From Langrangian view

D d AN AN d 1 dAV
_ - - = — - = —n
Dt T #AV T AVt AV dt

Since total number of particles in volume element (AN) 1s constant
(we are moving with them)
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(—V - v 1s the rate of (Volume) compression of element)



Cold-Plasma model

Simplest set of macroscopic equations can be obtained by simplifying
the momentum transfer equation and neglect thermal motions of

particles.

Here, set kinetic pressure tensor to zero, 1.€., P =mn <ww>=0asw =
0 (w 1s thermal velocity)

Remaining macroscopic variables n, u are described by
on

ou
mn [eq(uV)u] =qn(E +u x B) + P;;

Collision term P;; can be approximated by an “etfective” collision
frequency

Assumed that collisions cause a rate of decrease in momentum:

P;j = —mnuverru



Warm-Plasma model

Alternative set of macroscopic equation is obtained by truncating

energy conservation equation.
gy 9 Pee Dry DPas

Consider pressure tensor: P = mn{ww) = | pyz Py  Dyz

Pzx Pzy Pzz
Components represent transport of momentum. Diagonal elements
represent pressure, while off-diagonal represent shearing stresses.

In warm-plasma model, only consider diagonal pressure elements so

V.-P=Vp
That 1s, viscous forces are neglected. We then have
?)—7; + V- (nu)=0

mn [6—u+(uV)u] =qn(E+u x B) — Vp+ P,



Warm-Plasma model (cont.)

The previous system of equations does not form a closed set, since
scalar pressure 1s now a third variable. Usually determined by energy
equation.

If plasma 1s isothermal, assume equation of state of form:

p=nkgT and Vp=EkpTVn
Holds for slow time variations, allowing temperatures to reach
equilibrium
If plasma does not exchange energy with its surrounds, assume it 1s
adiabatic: Vp n

pn_7 — constant and — = Y —
p n

Where y 1s specific heat ratio at constant pressure
— Isothermal: T=const. : y=1
— Adiabatic /Isotropic 3 degree of freedom: y=5/3
— Adiabatic / 1 degree of freedom: y=3



Simplified energy equation

Note, the energy equation can be written

] g (L) -0+ 0P,

where ¢ 1s the heat flow vector. For electrons, commonly used
approximation for g is ¢ = KVT

where K 1s thermal Spitzer conductivity.

As average energy of plasma 1s 1/2m<ww>=3/2k,T and using p=
nkgT=>3/2p = 1/2nm<ww>. Energy equation can then be written

9(3/2p)
ot

The quantity 3/2pu represents the flow of energy density at the
fluid velocity.

+V(3/2pu)—qu+Vq:Pw



Eftect of collisions

Like particle collisions do not change that total momentum (which
1s averaged over all particles of that species)

Unlike particle collision do exchange momentum between the
species.

Therefore, any quasi-neutral plasma consisted of at least two
different species (electrons and 1ons) 1s needed to account for
another momentum loss (gain) term via collision

The rate of momentum density loss by species 1 colliding with
species 2:
Py = vignimy (v — v2)



Complete set of two-fluid equations

Consider plasma of two species; ions and electrons, in which fluid
1s fully 1onised, isotropic and collisionless (& adiabatic). The
charge and current densities are

Pe = Niq; + Nege and J = NiqiV; + NeQeVe

Using v=u, complete set of two-fluid equations are then (j =i or e)

on;
=+ V- (njv;) =0
(%j
ming | =+ (v V)vj| = =Vpj +qn;(E +v; x B)
vV.E="°
€0
0B
E=-2
V x 5
V-B=0
1 OF
VxB=pyd +—5—- (&u=1/c?)
ct Ot

pjnj_7 = const.



Complete set of two-fluid equations
(cont.)

* Equations still very difficult and complicated mostly because it
1s Nonlinear.

* In some cases, we can get a tractable problem by “linearizing”



Fluid drifts perpendicular to B

Since a fluid element 1s composed of many individual particles,
expect drifts perpendicular to B. But, the grad (p) term results in a
fluid drift called diamagnetic drift.

Consider momentum equation for each species:

mn [g—er(v-V)v] = —-Vp—qn(E +v x B)
1 Q@ 3)
Consider ratio (1) to (3):
(1) _|mniwv| w
(3) | quuiB | we

Here we have used 9/0t = iw. If only consider slow drifts
compared to time-scale of the gyro-frequency, we can set (1) to zero



Fluid drifts perpendicular to B (cont.)

Therefore, we can write: 0 ~ —gn(E +v; x B) — Vp

Wherev x B = (v +v, ) xB=v, x B

Taking cross-product of B:
0=—-gn|Ex B+ (v, xB)xB]-VpxB

Using the identity (A x B) x C = (C - A)B—- (C-B)A

We can write:

0=-gn|ExB+ (v, -B)B—(B-B)v,|-Vpx B

As v 1s perpendicular to B, v, - B = 0. Therefore

ExB VpxB
B? gqn B2
= Vgt Up

V| =



Fluid drifts perpendicular to B (cont.)

In previous equation: |y, — ExB E x B drift
VpxB| o
and |vp = — o~ | diamagnetic drift
qnBB

The vg drift is same as for guiding center, but there is now a new
drift, called the diamagnetic drift. Is in opposite directions for 10ns
and electrons.

Consider electrons + single 1ons, from quasi-neutrality n.g.=-n_q,
E x B \

7o (el i(‘)”iq'i) = V(e +pi) X 53
B
B2

NeQeVe + NiQ;V; =

Therefore current density: | j = —V(p, + p;) X

diamagnetic current



Summary

Fluid theory follows directly from moments of the Boltzmann
equation (Kinetic theory)

We drive two-fluid (MHD) equations consisting Continuity,
Momentum, Energy/ EoS, and Maxwell’s equations

Equations still very difficult and complicated mostly because it
1s Nonlinear.

Additional drift motion by pressure gradient, diamagnetic
drift.

Using wave properties of multi-species plasma

— Langmuir wave, lon(electron)-acoustic wave, ion(electron)-cyclotron
wave, Whistler wave, electrostatic wave, electromagnetic plasma wave
etc.

— Two-stream instability
Astrophysical application

— partially ionized gas such as interstellar medium, solar atmosphere



