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Kinetic Theory

* Single particle description: tenuous plasma with strong
external fields, important for gaining insight into physical

processes involved

* For a system with a large number of particles 1t is neither
possible nor desirable to determine the motion of every single
particle
=> statistical approaches, average macroscopic properties

* Kinetic theory averages out microscopic information to obtain
statistical, kinetic equations. No knowledge of individual
particle motion is required to describe observable phenomena.



Particle Phase Space

A particle’s dynamical state can be specified using its position and
velocity:

r = (gc,y,z) and v = (U;,;,Uy,?}z)

Combining position and velocity information gives particle’s
position 1n phase space:
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Volume element in phase space 1s d>rd>v



Velocity distribution functions

Single-particle approach has limited application where collective
motion not important. Non-zero electric fields in a plasma generally
arise self-consistently, so must consider collective motion of many
plasma particles.

State of plasma described by the velocity distribution function :
f(il?, y? <y Ug, vya Uz, t)

Gives the number of particles per unit volume as a position r and a
time ¢ with velocity, v, vy, V,. Has 7 independent variables defining

a 6D phase space.

Number of particles in a phase space volume d*rd’v is:
dn = f(r,v,t)dzdydzdv,dv,dv, = f(r,v,t)d*rd>v

The total number of particles 1s therefore

n = / flr,v, ) d>rd>v



Moments

* Let f(x) be any function that 1s defined and positive on an interval
[a, b]. The moments of this function is defined as

Zeroth moment Moy = / f(z)dx
b

First moment My = / xf(x)dx
b

Second moment M2:/ v f(x)d
b

n'" moment M, = / " f(x)dx
b



Moments (cont.)

In particular case that distribution is a probability density, p(x), then
My =1
M, = / rp(x)dr = (x) = mean(x)
b

My = / rp(x)dr = variance(z)
b

Higher order moments correspond to skewness and kurtosis.

Skewness: a measure of symmetry or lack of symmetry

Kurtosis: a measure of whether the data are peaked or flat relative
to normal distribution



Moments of distribution function

Velocity distribution function gives microscopic description of
statistical information on particles. However, most important use 1s in
determining macroscopic (1.€., averages) values such as density,
current, etc.

Zeroth order moment of f(r, v, {) is: n(r,t) = / f(r,v,t)dv
— OO

o
First order moment 1s bulk velocity: « = 1 / vf(r,v, t)d3v
T — OO

Charge and current densities of spices (s) can be expressed in using

moments: .
Pe = Z dsNs ) = Z GsNsUg
S S

Second order moment relates to kinetic energy

I o\ 1 [>*1 3
<2mv >— n/ 5 1Y f(r,v,t)dv
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Derivation of Boltzmann Equation

Evolution of f(r,v,f) 1s described by the Boltzmann Equation.

Consider particles entering and leaving a small volume of space.
Since r and v 1s independent, can treat separately.

Position: Number of particles leaving d°r
per second through its surface dS is

/f(r,v,t)fi“-dS:/f(r,v,t)v-dS

Velocity: Number of particles leaving d°v
per second through its surface dS, 1s

/f(r,'v,t)fb-dSv:/f(r,v,t)a,-dSU

So the net number of particles leaving the phase space volume d*rd>v

1S
/f(r, v,t)v - dSd>v + /f('r, v,t)a - dS,d°r




Derivation of Boltzmann Equation (cont.)

 The rate of change of particle number in &°rd’v is:

% [ / fd3rd3v] = — [ / fo-dSd%v + / fa-dSvd?’r]

 As total number of particles in d°rd’v is conserved:

% [ / fd3rd3v] + [ / fo-dSd>v + / fa~dSUd3r] =0

* Recall Gauss’ Divergence Theorem: / (V- F)dV = / (F -n)dS
vV S

* Can change integral over dS to d’r:

% / fdrd’v| + / Ve (fo)d'rd’v + / Vo (fa)d'rd*v| =0

0 | 3 8] | [0 3,. 13 /8 3.3 | _
a_/fdrdv_—l—_/ar (fv)d’rd’v + 5 (fa,)drdv_—O



Derivation of Boltzmann Equation (cont.)

* The phase space volume can be arbitrarily small, such that integrals
are constant within the volume. Therefore we have

of 0 9 B
EJF%'(JE’U)JF%'(JCG)—O

* But since r and v are independent variables, we can take v outside
d/dr and similarly for a. Then we can write

of ~ of . of

E—'_/U §—|—a 8_’()_0

* Replacing a=F/m, we have
of of F Of
E—Fv.@r—km.@v_o -1

* This is the collisionless Boltzmann equation. Can be used in hot
plasma where collisions can be neglected



Vlasov equation

Previous equation written in terms of generalized force. For
plasmas, Lorentz force is of interest, so

(9f 8f
875 or

of

ov =0

+ = [E+( x B)] -

This 1s called the Viasov equation. Can also be written as

0 O
a{Jr’v Vf+m[E+(va)] (’91]:

0| (3.2)

This 1s one of the most important and widely used equations in
kinetic theory of plasmas.

Maxwell’s equations for E and B and the Vlasov equation represent
a complete set of self-consistent equations.



Convective derivative in phase space

Distribution function f(r, v, t) depends on 7 independent variables.
Total time derivative of fis:

g B 0f+8f6‘a:+8f0y+8f8z
dt Ot Ox 0t Oyot 0z0t
of Ovy,  Of Ovy,  Of Ov,

v, ot T av, ot " ou, ot

: : df of of of
This can be writtenas =¥ _ ZJ L) L2
i ot " Var T 90

To appreciate meaning of this equation, consider f=f(r,?):

i ot " or — Dt

Called the convective derivative or Lagrangian derivative. Second

term gives change in f measured by an observed moving 1n the fluid
frame.



Phase space evolution

A plasma particle’s state (#, v) evolves 1n phase space. In absence of
collisions, points move along continuous curves and f obeys the

continuity equation: H o

O Yy [ 0)f] = 0
ot

Called Liouville equation

The Liouville equation describes the time evolution of the phase
space distribution function. Liouvilles’ theorem states that flows in
phase space are incompressible.

In Cartesian coordinates, equation reduces to

of 0 . 0 N
atJrar'(f"“)Jra—U'(fU)—O
of af af
E"‘Ug‘l—aa—v—o

Which 1s in form of the collisionless Boltzmann equation. The
Bolzmann and Vlasov equations follow from Liouville equation.



Collisional Boltzmann and Vlasov equations

In the presence of collisions, the Boltzmann equation can be written

O ey B (0
coll

ot m Ov ot

where the term on the right is the time rate of change of f due to
collisions. This is the collisional Boltzmann equation.

Similarly, the Vlasov equation can be written

of af of
priCh Vf+m[E+(v><B)] . (ELOH

This 1s the collisional Viasov equation. Describes change 1n particle
distribution due to short-range interactions.

of

When there are collisions with neutral atoms: (8—> ~
where f, 1s the neutral atom distribution v/ coll
function, and 7 1s the collision time. Called Krook collision model

fn_f

T




Kinetic description of plasma

* Kinetic description of plasma 1s highly applicable treatment
for collisionless plasma (wave-particle interaction, collision-
less shock, particle acceleration)

* But evaluation of a 6D distribution function 1s difficult:
analytical solutions of a kinetic equation are rare and
numerical are expensive.

* Astrophysical application:
— Dark matter evolution in cosmological simulation
— Neutrino transport in core-collapse supernova simulation
— Stellar interior (equation of state)
— Collisionless shock (supernova blast wave)

— Particle acceleration (astrophysical shock)



Moments of Bolzmann -Vlasov equation

Under certain assumptions not necessary to obtain actual distribution
function if only interested in the macroscopic values.

Instead of solving Boltzmann or Vlasov equation for distribution
function and integrating, can take integrals over collisional
Boltzmann-Viasov equation and solve for the quantities of interest.

of af of
at+fv Vf+m[E+(v><B)] . <E)coll (3.3)

Called taking the moments of Boltzmann-Vlasov equation

Resulting equations known as the macroscopic transport equations,
and form the foundation of plasma fluid theory.

Results in derivation of the equations of magnetohydrodynamics
(MHD).



Zeroth-order moment: continuity equation

* Lowest order moment obtained by integrating eq. (3.3):

0 9, 0
a—‘:dqu/v-Vfdqu/%[E—l—(vxB)]oa—idv:/(a—{>coudv

The first-term gives: of 0 / fdv = on
ot B

Since v and r are independent, v is not effected by gradient operator:

/U-Vfd’vzv-/vfd’v

From previous one, the first order moment of distribution function is

u = l/’uf('r,’u,t)d’v

n

Therefore,

/U-Vfdv =V - (nu) (3.5)



Zeroth-order moment: continuity equation (cont.)

* For the third term, consider E and B separately. E term vanishes as

/E —dv—/(%-(fE)dv:/fE-dS:O (3.6a)

where using Gauss’ divergence theorem in velocity space. The
surface area of velocity space goes as v2. As v => oo, f=> () more
quickly than S => o (i.e., f typically goes as 1/v?>. A Maxwellian goes
as ¢V?). Integral to v = inﬁnity goes to zero.

* Using vector identity, V- (aA) = A-Va+aV - A.Thevx B term 1s

/(va) %dv = /&v fvadv—/f (v x B)d

= /fva -dS — /f (v x B)dv =0
(3.6b)
* The first term on right again vanishes as f=> 0 more quickly than S
=> o0, The second term vanishes as v x B 1s perpendicular to d/dv



Zeroth-order moment: continuity equation (cont.2)

Last-term 1s on right-hand side of eq. (3.3) :

of 0 B
/ (E)coll o= E [/ fdv] =0 (37)

This assumes that the total number of particles remains constant as
collisions proceed.

Combing eq. (3.4)-(3.7) yields the equation of continuity

0
a—Z’ LV-(nu) =0  (3.8)

First-term represents rate of change of particle concentration within
a volume, second-term represents the divergence of particles of the
flow of particles out of the volume.

Eq (3.8) 1s the first of the equations of magnetohydrodynamics
(MHD). Eq (3.8) 1s a continuity equation for mass or charge
transport if we multiply m or q.



First-order of moment: momentum transport
* Re-write eq.(3.3):

” of af
i, Vf+m[E+(”XB)] v (5)@

* Next moment of the Boltzmann equation 1s obtained by multiplying
Eq (3.3) by mv and integrating over dv.

m/v%dv+m/v(v‘v)fd”+q/ [E+(vxB) —dv - /( )coll

(3.9)
* The right-hand side 1s the change of the momentum due to collisions
and will be given the term P;; .

* The first-term gives m/’v—dv _ mQ/vfdv
Ot

(3.10)

= m

ot



First-order of moment: momentum transport (cont.)

 Next consider third-term:

/U[E+(UXB)] g /8'0 [fv(E 4+ v x B)] dv—/fv - (E +v x B)dv

v

0
—/f E+vxB)- %fvd’v

* The first and second to integrals on the right vanishes for same
reasons as before. Therefore have,

q/v[E+(v><B)] %dv = —q/f(E—l—va)dv

= —qn(E+uxB) (3.11)

* To evaluate second-term of €q.(3.9) , use that v does not depend on

gradient operator:
/v(v V) fdv = /V - (fov)dv



First-order of moment: momentum transport (cont.)

Since the average of a quantity 1s 1/ times 1ts weighted integral over
v, we have

\E /f’v’vd’v =V - (n{vv))
Now separate v into average fluid velocity u and a thermal velocity w:

V=Uu+w

Since u is already averaged, so we have

V- (n(vv) = V- (nuw) + V- (n(ww)) +2V - (nufw))  (3.12)

The average thermal velocity 1s zero => <w > =0 and

P = mn({ww) (3.13)
is the stress tensor.
P 1s a measure of the thermal motion 1n a fluid. If all particles moved
with same steady velocity v, then w = 0 and thus P =0 (i.e., a cold
plasma).



First-order of moment: momentum transport (cont.3)
* Remaining term in Eq (3.9) can be written

V. (nuu) =uV - (nu)+n(u-Viu  (3.14)

* Correcting eq.

0

(3.10), (3.11), (3. 13), and (3.14), we have

m—(nu) + muV - (nu) + mn(u-V)u+V - P —gn(E+u x B) = P,

ot

* Combing first two terms (using cont. eq.), we obtain the fluid equation

of motion:

ou |
K n

(uV)u] =qn(E+uxB)—-V- P+ P,

(3.15)

e This describes flow of momentum — also called momentum transport

equation.

* Eq (3.15) 1s a statement of conservation of momentum and represents
force balance on components of plasma. On right are the Lorentz
force, pressure, and collisions



Summary of moments of Vlasov equation

* Equations of MHD and multi-fluid theory are obtained by taking the
moments of the Vlasov equation, corresponding to mass, momentum
and energy.

/ (Vlasov equation)dv = conservation of mass

/ (Vlasov equation)vdv = conservation of momentum

/ (Vlasov equation)v?/2dv = conservation of energy

« Zeroth moment of the Vlasov equation results in the MHD mass
continuity equation (eq. 3.8).

* First moment of the Vlasov equation gives the MHD momentum
equation (eq. 3.15)

* Second moment of the Vlasov equation give the MHD energy
transport equation



