Plasma Astrophysics
 Chapter 4: Single-Fluid Theory of Plasma - Magnetohydrodynamics

Yosuke Mizuno
Institute of Astronomy
National Tsing-Hua University

Exercise 1

- Plasma frequency: $\omega_{p}=\sqrt{\frac{n e^{2}}{m_{e} \epsilon_{0}}}$
- Debye length:

$$
\lambda_{D}=\sqrt{\frac{\epsilon_{0} k_{B} T_{e}}{e^{2} n}}
$$

- Plasma number: $\quad \Lambda=4 \pi n \lambda_{D}^{3}=\frac{1.38 \times 10^{6} T_{e}^{3 / 2}}{n^{1 / 2}}$
- Mean free path: $\quad \lambda_{m f p} \approx \frac{36 \pi}{n}\left(\frac{\epsilon_{0} k_{B} T}{e^{2}}\right)^{2}$

$$
\approx 36 \pi n \lambda_{D}^{4} \sim \lambda_{D} N_{D}
$$

Exercise 1 (cont.)

- Gyro frequency: $\omega_{c}=-\frac{q B}{m}$
- Larmor radius: $r_{L}=\frac{m v_{\perp}}{|q| B}=\frac{v_{\perp}}{\omega_{c}}$
- Electron volts is energy units = particle's kinetic energy
- For Larmor radius, we need to get perpendicular components of velocity.

Single-Fluid Theory: MHD

- Under certain circumstances, appropriate to consider entire plasma as a single fluid.
- Do not have any difference between ions and electrons.
- Approach is called magnetohydrodynamics (MHD).
- General method for modeling highly conductive fluids, including low-density astrophysical plasmas.
- Single-fluid approach appropriate when dealing with slowly varying conditions.
- MHD is useful when plasma is highly ionized and electrons and ions are forced to act in unison, either because of frequent collisions or by the action of a strong external magnetic field.

Single-fluid equations for fully ionized plasma

- Can combine multiple-fluid equations into a set of equations for a single fluid.
- Assuming two-specials plasma of electrons and ions $(j=e$ or $i)$:

$$
\begin{align*}
\frac{\partial n_{j}}{\partial t}+\nabla \cdot\left(n_{j} \boldsymbol{v}_{j}\right) & =0 \tag{4.1a}\\
m_{j} n_{j}\left[\frac{\partial \boldsymbol{v}_{j}}{\partial t}+\left(\boldsymbol{v}_{j} \cdot \nabla\right) \boldsymbol{v}_{j}\right] & =-\nabla \cdot \boldsymbol{P}_{j}+q_{j} n_{j}\left(\boldsymbol{E}+\boldsymbol{v}_{\boldsymbol{j}} \times \boldsymbol{B}\right)+P_{i j} \tag{4.1b}
\end{align*}
$$

- For a fully ionized two-species plasma, total momentum must be conserved:

$$
P_{e i}=-P_{i e}
$$

- As $m_{\mathrm{i}} \gg m_{\mathrm{e}}$ the time-scales in continuity and momentum equations for ions and electrons are very different. The characteristic frequencies of a plasma, such as plasma frequency or cyclotron frequency are much larger for electrons.

Single-fluid equations for fully ionized plasma (cont.)

- When plasma phenomena are large-scale $\left(L \gg \lambda_{\mathrm{D}}\right)$ and have relatively low frequencies ($\omega \ll \omega_{\text {plasma }}$ and $\omega \ll \omega_{\text {cyclotron }}$), on average plasma is electrically neutral ($n_{\mathrm{i}} \sim n_{\mathrm{e}}$). Independent motion of electrons and ions can then be neglected.
- Can therefore treat plasma as single conducting fluid, whose inertia is provided by mass of ions.
- Governing equations are obtained by combining eqn (4.1)
- First, define macroscopic parameters of plasma fluid:

$$
\begin{array}{ll}
\rho_{m}=n_{e} m_{e}+n_{i} m_{i} & \text { Mass density } \\
\rho_{e}=n_{e} q_{e}+n_{i} q_{i} & \text { Charge density } \\
\boldsymbol{J}=n_{e} q_{e} v_{e}+n_{i} q_{i} v_{i}=n_{e} q_{e}\left(v_{e}-v_{i}\right) \quad \text { Electric current } \\
\boldsymbol{v}=\left(n_{e} m_{e} \boldsymbol{v}_{e}+n_{i} m_{i} \boldsymbol{v}_{i}\right) / \rho_{m} \text { Center of Mass Velocity } \\
\boldsymbol{P}=\boldsymbol{P}_{e}+\boldsymbol{P}_{i} & \text { Total pressure tensor }
\end{array}
$$

MHD mass and charge conservation

- Using eq (4.1a): $\frac{\partial n_{j}}{\partial t}+\nabla \cdot\left(n_{j} \boldsymbol{v}_{j}\right)=0$
- Multiply by q_{i} and q_{e} and add continuity equations to get:

$$
\frac{\partial \rho_{e}}{\partial t}+\nabla \cdot(\boldsymbol{J})=0
$$

Charge conservation

- where J is the electric current density: $\boldsymbol{J}=n_{e} q_{e} \boldsymbol{v}_{e}+n_{i} q_{i} \boldsymbol{v}_{i}$ and the electric charge: $\rho_{e}=n_{e} q_{e}+n_{i} q_{i}$
- Multiply eq (4.1a) by m_{i} and m_{e},

$$
\frac{\partial \rho_{m}}{\partial t}+\nabla \cdot\left(\rho_{m} \boldsymbol{v}\right)=0
$$

Mass conservation / continuity equation

- where $\rho_{m}=n_{e} m_{e}+n_{i} m_{i}$ is the single-fluid mass density and \boldsymbol{v} is the fluid mass velocity

$$
\boldsymbol{v}=\left(n_{e} m_{e} \boldsymbol{v}_{e}+n_{i} m_{i} \boldsymbol{v}_{i}\right) / \rho_{m}
$$

MHD equation of motion

- Equation of motion for bulk plasma can be obtained by adding individual momentum transport equations for ions and electrons.
- LHS of eq(4.1b): $m_{j} n_{j}\left[\frac{\partial \boldsymbol{v}_{j}}{\partial t}+\left(\boldsymbol{v}_{j} \cdot \nabla\right) \boldsymbol{v}_{j}\right]$
- Difficulty is that convective term is non-linear.
- But note that since $m_{\mathrm{e}} \ll m_{\mathrm{i}}$ contribution of electron momentum is much less than that from ion. So we ignore it in equation
- Approximation: Center of mass velocity is ion velocity: $\boldsymbol{v} \simeq \boldsymbol{v}_{i}$
- LHS:

$$
m_{j} n_{j}\left[\frac{\partial \boldsymbol{v}_{j}}{\partial t}+\left(\boldsymbol{v}_{j} \cdot \nabla\right) \boldsymbol{v}_{j}\right] \simeq \rho_{m}\left[\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}\right]
$$

MHD equation of motion (cont.)

- RHS of eq(4.1b) : $-\nabla \cdot\left(\boldsymbol{P}_{e}+\boldsymbol{P}_{i}\right)+\left(n_{e} q_{e}+n_{i} q_{i}\right) \boldsymbol{E}+\boldsymbol{J} \times \boldsymbol{B}$
- In general, second term (Electric body force) is much smaller than \boldsymbol{J} $\mathrm{x} \boldsymbol{B}$ term. So we ignored.
- Therefore, LHS+RHS:

$$
\rho_{m}\left[\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}\right]=-\nabla \cdot \boldsymbol{P}+\boldsymbol{J} \times \boldsymbol{B}
$$

Equation of motion

- For an isotropic plasma, $\nabla \cdot \boldsymbol{P}=\nabla p$ where total pressure is $p=p_{\mathrm{e}}+$ p_{i} and

$$
\rho_{m}\left[\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}\right]=-\nabla p+\boldsymbol{J} \times \boldsymbol{B}
$$

Equation of motion

MHD equation of motion (cont.)

- $\rho_{\mathrm{e}} \boldsymbol{E}$ term is generally much smaller than $\boldsymbol{J} \times \boldsymbol{B}$ term. To see this take order of magnitudes.
- from Maxwell's equations:

$$
\begin{aligned}
\nabla \cdot \boldsymbol{E} & =\rho_{e} / \epsilon_{0} \quad \text { so } \quad \rho_{e} \sim E \epsilon_{0} / L \\
\nabla \times \boldsymbol{B} & =\mu_{0} \boldsymbol{J} \quad \text { so } \quad \sigma E \sim j \sim B / \mu_{0} L
\end{aligned}
$$

- Therefore,

$$
\frac{\rho_{e} E}{j B} \sim \frac{\epsilon_{0}}{L}\left(\frac{B^{2}}{\mu_{0} \sigma L}\right)^{2} \frac{L \mu_{0}}{B^{2}} \sim \frac{L^{2} / c^{2}}{\left(\mu_{0} \sigma L^{2}\right)^{2}}=\left(\frac{\text { light crossing time }}{\text { resistive skin time }}\right)^{2}
$$

- This is generally very small number.
- Example: small cold plasma, $T_{\mathrm{e}}=1 \mathrm{eV}, L=1 \mathrm{~cm}$, this ratio is about 10^{-8}

Generalized Ohm's law

- The final single-fluid MHD equation describes the variation of current density \boldsymbol{J}.
- Consider the momentum equations for electron and ions (eq.4.1b):

$$
m_{j} n_{j}\left[\frac{\partial \boldsymbol{v}_{j}}{\partial t}+\left(\boldsymbol{v}_{j} \cdot \nabla\right) \boldsymbol{v}_{j}\right]=-\nabla \cdot \boldsymbol{P}_{j}+q_{j} n_{j}\left(\boldsymbol{E}+\boldsymbol{v}_{\boldsymbol{j}} \times \boldsymbol{B}\right)+P_{i j}
$$

- Multiple electron equation by $q_{\mathrm{e}} / m_{\mathrm{e}}$ and ion equation by $q_{\mathrm{i}} / m_{\mathrm{i}}$ and add:

$$
\frac{\partial \boldsymbol{J}}{\partial t}=-\frac{q_{e}}{m_{e}} \nabla \cdot \boldsymbol{P}_{e}-\frac{q_{i}}{m_{i}} \nabla \cdot \boldsymbol{P}_{i}
$$

(We ignore second term of LHS as we dealing with small perturbation)

$$
\begin{aligned}
& +\left(\frac{n_{e} q_{e}^{2}}{m_{e}}+\frac{n_{i} q_{i}^{2}}{m_{i}}\right) \boldsymbol{E} \\
& +\left(\frac{n_{e} q_{e}^{2}}{m_{e}} \boldsymbol{v}_{e}+\frac{n_{i} q_{i}^{2}}{m_{i}} \boldsymbol{v}_{i}\right) \times \boldsymbol{B} \\
& +\frac{q_{e}}{m_{e}} \boldsymbol{P}_{e i}+\frac{q_{i}}{m_{i}} \boldsymbol{P}_{i e}
\end{aligned}
$$

Generalized Ohm's law (cont.)

In forth term of RHS:

$$
\begin{aligned}
& \frac{n_{e} q_{e}^{2}}{m_{e}} \boldsymbol{v}_{e}+\frac{n_{i} q_{i}^{2}}{m_{i}} \boldsymbol{v}_{i} \\
& =\frac{q_{e} q_{i}}{m_{e} m_{i}}\left(\frac{n_{e} q_{e} m_{i}}{q_{i}} \boldsymbol{v}_{e}+\frac{n_{i} q_{i} m_{e}}{q_{e}} \boldsymbol{v}_{i}\right) \\
& =-\frac{q_{e} q_{i}}{m_{e} m_{i}}\left[n_{e} m_{e} \boldsymbol{v}_{e}+n_{i} m_{i} \boldsymbol{v}_{i}-\left(\frac{m_{i}}{q_{i}}+\frac{m_{e}}{q_{e}}\right)\left(q_{e} n_{e} \boldsymbol{v}_{e}+q_{i} n_{i} \boldsymbol{v}_{i}\right)\right] \\
& =-\frac{q_{e} q_{i}}{m_{e} m_{i}}\left[\rho_{m} \boldsymbol{v}-\left(\frac{m_{i}}{q_{i}}+\frac{m_{e}}{q_{e}}\right) \boldsymbol{J}\right] \\
& =\left(\frac{n_{e} q_{e}^{2}}{m_{e}}+\frac{n_{i} q_{i}^{2}}{m_{i}}\right) \boldsymbol{v}+\left(\frac{q_{e}}{m_{e}}+\frac{q_{i}}{m_{i}}\right) \boldsymbol{J}
\end{aligned}
$$

Generalized Ohm's law (cont.)

- For an electrically neutral plasma $\left|q_{e} n_{e}\right| \approx\left|q_{i} n_{i}\right|$ and using
$\boldsymbol{J}=n_{e} q_{e} \boldsymbol{v}_{e}+n_{i} q_{i} \boldsymbol{v}_{i}$ and $\boldsymbol{v}=\left(n_{e} m_{e} \boldsymbol{v}_{e}+n_{i} m_{i} \boldsymbol{v}_{i}\right) / \rho_{m}$, We can write

$$
\begin{aligned}
\frac{\partial \boldsymbol{J}}{\partial t}= & -\frac{q_{e}}{m_{e}} \nabla \cdot \boldsymbol{P}_{e}-\frac{q_{i}}{m_{i}} \nabla \cdot \boldsymbol{P}_{i} \\
& +\left(\frac{n_{e} q_{e}^{2}}{m_{e}}+\frac{n_{i} q_{i}^{2}}{m_{i}}\right)(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B}) \\
& +\left(\frac{q_{e}}{m_{e}}+\frac{q_{i}}{m_{i}}\right)(\boldsymbol{J} \times \boldsymbol{B}) \\
& +\left(\frac{q_{e}}{m_{e}}-\frac{q_{i}}{m_{i}}\right) \boldsymbol{P}_{e i}
\end{aligned}
$$

- As $m_{e} \ll m_{i} \rightarrow q_{e} / m_{e} \gg q_{i} / m_{i}$ and $n_{e} q_{e}^{2} / m_{e} \gg n_{i} q_{i}^{2} / m_{i}$. In thermal equilibrium, kinetic pressures of electrons is similar to ion pressure ($P_{\mathrm{e}} \sim P_{\mathrm{i}}$)
$\frac{\partial \boldsymbol{J}}{\partial t}=-\frac{q_{e}}{m_{e}} \nabla \cdot \boldsymbol{P}_{e}+\frac{n_{e} q_{e}^{2}}{m_{e}}(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B})+\frac{q_{e}}{m_{e}}(\boldsymbol{J} \times \boldsymbol{B})+\frac{q_{e}}{m_{e}} \boldsymbol{P}_{e i}$

Generalized Ohm's law (cont.)

- The collisional term can be written: $\boldsymbol{P}_{e i}=\eta q^{2} n_{e}^{2}\left(\boldsymbol{v}_{i}-\boldsymbol{v}_{e}\right)$ where η is the specific resistivity, q^{2} relates to fact that collisions result from Coulomb force between ions $\left(q_{\mathrm{i}}\right)$ and electrons $\left(q_{\mathrm{e}}\right)$ and total momentum transferred to electrons in an elastic collision with an ion is $\boldsymbol{v}_{\mathrm{i}}-\boldsymbol{v}_{\mathrm{e}}$.
- Now $q_{\mathrm{i}}=-q_{\mathrm{e}}$ and $n_{\mathrm{e}}=n_{\mathrm{i}}$ and $\boldsymbol{J}=n_{\mathrm{e}} q_{\mathrm{e}}\left(\boldsymbol{v}_{\mathrm{e}}-\boldsymbol{v}_{\mathrm{i}}\right),=>\boldsymbol{P}_{e i}=-n_{e} q_{e} \eta \boldsymbol{J}$
- Eq. (4.2) can be written as

$$
\begin{equation*}
\frac{\partial \boldsymbol{J}}{\partial t}=-\frac{q_{e}}{m_{e}} \nabla \cdot \boldsymbol{P}_{e}+\frac{n_{e} q_{e}^{2}}{m_{e}}(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B})+\frac{q_{e}}{m_{e}}(\boldsymbol{J} \times \boldsymbol{B})-\frac{n_{e} q_{e}^{2}}{m_{e}} \hat{\eta} \cdot \boldsymbol{J} \tag{4.3}
\end{equation*}
$$

- Where η is a tensor. This is generalized Ohm's law

Generalized Ohm's law (cont.)

- For a steady current in a uniform $\boldsymbol{E}, \partial \boldsymbol{J} / \partial t=0, \nabla \cdot \boldsymbol{P}=0$ and $\boldsymbol{B}=0$ so that

$$
\boldsymbol{E}=\eta \boldsymbol{J} \rightarrow \boldsymbol{J}=1 / \eta \boldsymbol{E}
$$

- In general form, the electric field \boldsymbol{E} can be found from Eq (4.3):

$$
\boldsymbol{E}=-\boldsymbol{v} \times \boldsymbol{B}-\frac{\boldsymbol{J} \times \boldsymbol{B}}{n_{e} q_{e}}+\frac{\nabla \cdot \boldsymbol{P}}{n_{e} q_{e}}+\hat{\eta} \cdot \boldsymbol{J}+\frac{m_{e}}{n_{e} q_{e}} \frac{\partial \boldsymbol{J}}{\partial t}
$$

- Consider right hand side of this equation:
- First term: \boldsymbol{E} associated with plasma motion
- Second term: Hall effect
- Third term: Ambipolar diffusion from E-field generated by pressure gradients
- Fourth term: Ohmic losses/Joule heating by resistivity
- Fifth term: Electron inertia

One fluid MHD Ohm's law

- Generalized Ohm’s law

$$
\frac{\partial \boldsymbol{J}}{\partial t}=-\frac{q_{e}}{m_{e}} \nabla \cdot \boldsymbol{P}_{e}+\frac{n_{e} q_{e}^{2}}{m_{e}}(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B})+\frac{q_{e}}{m_{e}}(\boldsymbol{J} \times \boldsymbol{B})-\frac{n_{e} q_{e}^{2}}{m_{e}} \hat{\eta} \cdot \boldsymbol{J}
$$

- Now assume plasma is isotropic, so that $\nabla \cdot \boldsymbol{P}=\nabla p$

Also we neglect Hall effect and Ambipolar diffusion in generalized Ohm's law since not important in one-fluid MHD.
For slow variations, $\boldsymbol{J}=$ constant, so can write generalized Ohm's law as:

$$
0=\frac{n_{e} q_{e}^{2}}{m_{e}}(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B})-\frac{n_{e} q_{e}^{2}}{m_{e}} \eta \boldsymbol{J}
$$

- Rearranging gives,

$$
\boldsymbol{J}=\sigma(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B}) \quad \text { One-fluid MHD Ohm's law }
$$

- Where $\sigma=1 / \eta$ is electrical conductivity

Simplified MHD equations

- A set of simplified MHD equations can be written:

$$
\begin{aligned}
\frac{\partial \rho_{m}}{\partial t}+\nabla\left(\rho_{m} \boldsymbol{v}\right) & =0 \\
\rho_{m}\left[\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}\right] & =-\nabla p+\boldsymbol{J} \times \boldsymbol{B} \\
\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B} & =\eta \boldsymbol{J}
\end{aligned}
$$

- Fluid equations must be solved with reduced Maxwell equations

$$
\begin{aligned}
& \nabla \times \boldsymbol{B}=\mu_{0} \boldsymbol{J}, \quad \nabla \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t} \\
& \nabla \cdot \boldsymbol{B}=0, \quad \nabla \cdot \boldsymbol{E}=0
\end{aligned}
$$

(displacement current term
is ignored for low
frequency phenomena)

- Here we have assumed that there is no accumulation of charge (i.e., $\rho_{\mathrm{e}}=0$)
- Complete set of equations only when equation of state for relationship between p and $n(\rho)$ is specified.

$$
p \rho_{m}^{-\gamma}=\mathrm{const}
$$

Plasma β

- The MHD equation of motion contains $J \times B$ term, which can given rise to effects that are similar to those of the pressure term.
- Current is given by $\boldsymbol{J}=\frac{1}{\mu_{0}} \nabla \times \boldsymbol{B}$
- Taking cross product with the magnetic field,

$$
\boldsymbol{J} \times \boldsymbol{B}=\frac{1}{\mu_{0}}(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}=\frac{1}{\mu_{0}}\left[(\boldsymbol{B} \cdot \nabla) \boldsymbol{B}-\nabla\left(\frac{B^{2}}{2}\right)\right]
$$

- Inserting into MHD equation of motion

$$
\rho_{m}\left[\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}\right]=\frac{1}{\mu_{0}}(\boldsymbol{B} \cdot \nabla) \boldsymbol{B}-\nabla\left(p+\frac{B^{2}}{2 \mu_{0}}\right)
$$

- In second term of RHS, the first term acted on by gradient is plasma pressure and the second term is magnetic pressure.
- The dimensionless parameter, plasma $\beta: \beta \equiv \frac{2 \mu_{0} p}{B^{2}} \quad$ Plasma beta
- $\beta \ll 1$: dominated by magnetization effects
- $\beta \gg 1$: behaves more like a fluid

The induction equation

- Taking the curl of one-fluid MHD Ohm's law:

$$
\nabla \times \boldsymbol{E}=-\nabla \times(\boldsymbol{v} \times \boldsymbol{B})+\frac{1}{\sigma} \nabla \times \boldsymbol{J}
$$

- Assuming $\sigma=$ const. Substituting for $\boldsymbol{J}=\nabla \times \boldsymbol{B} / \mu_{0}$ from Ampere's law and using the law of induction equations (Faraday's law):

$$
-\frac{\partial \boldsymbol{B}}{\partial t}=-\nabla \times(\boldsymbol{v} \times \boldsymbol{B})+\frac{1}{\mu_{0} \sigma} \nabla \times(\nabla \times \boldsymbol{B})
$$

- The double curl can be expanding from vector identity

$$
-\frac{\partial \boldsymbol{B}}{\partial t}=-\nabla \times(\boldsymbol{v} \times \boldsymbol{B})+\frac{1}{\mu_{0} \sigma} \nabla(\nabla \cdot \boldsymbol{B})-\frac{1}{\mu_{0} \sigma} \nabla^{2} \boldsymbol{B}
$$

- The second term in R.H.S. is zero by Gauss's law $(\nabla \cdot \boldsymbol{B}=0)$. So

$$
\frac{\partial \boldsymbol{B}}{\partial t}=\nabla \times(\boldsymbol{v} \times \boldsymbol{B})+\frac{1}{\mu_{0} \sigma} \nabla^{2} \boldsymbol{B}
$$

MHD induction equation

The induction equation (cont.)

- The MHD induction equation, together with fluid mass, momentum, and energy equations (EoS), a close set of equations for MHD state variables $\left(\rho_{m}, \boldsymbol{v}, p, \boldsymbol{B}\right)$

$$
\begin{aligned}
\frac{\partial \rho_{m}}{\partial t}+\nabla\left(\rho_{m} \boldsymbol{v}\right) & =0 \\
\rho_{m}\left[\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}\right] & =\frac{1}{\mu_{0}}(\boldsymbol{B} \cdot \nabla) \boldsymbol{B}-\nabla\left(p+\frac{B^{2}}{2 \mu_{0}}\right) \\
p \rho_{m}^{\gamma} & =\text { const } \\
\frac{\partial \boldsymbol{B}}{\partial t} & =\nabla \times(\boldsymbol{v} \times \boldsymbol{B})+\frac{1}{\mu_{0} \sigma} \nabla^{2} \boldsymbol{B}
\end{aligned}
$$

Here, $\boldsymbol{J}=\nabla \times \boldsymbol{B} / \mu_{0}$

$$
\boldsymbol{E}=-\boldsymbol{v} \times \boldsymbol{B}+\boldsymbol{J} / \sigma
$$

Ideal MHD

- In the case where the conductivity is very high $(\sigma \rightarrow \infty)$, the electric field is $\boldsymbol{E}=-\boldsymbol{v} \times \boldsymbol{B}$ (motional electric field only). It is known as ideal Magnetohydrodynamics.
- A set of equations:

$$
\begin{aligned}
\frac{\partial \rho_{m}}{\partial t}+\nabla\left(\rho_{m} \boldsymbol{v}\right) & =0 \\
\rho_{m}\left[\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}\right] & =\frac{1}{\mu_{0}}(\boldsymbol{B} \cdot \nabla) \boldsymbol{B}-\nabla\left(p+\frac{B^{2}}{2 \mu_{0}}\right) \\
p \rho_{m}^{\gamma} & =\text { const } \\
\frac{\partial \boldsymbol{B}}{\partial t} & =\nabla \times(\boldsymbol{v} \times \boldsymbol{B})
\end{aligned}
$$

- This is the most simplest assumption for MHD. But this is commonly used in Astrophysics.

The pressure equations

- The above formulation of the ideal MHD equations exploits $\rho, \boldsymbol{v}, p, \boldsymbol{B}$ as the basic variables
- Equation of states is often replaced by pressure evolution equation.
- It is also work out the evolution equation for the other thermodynamical variables, such as
$-e$: internal energy per unit mass (which is equivalent to T)
- s : entropy per unit mass

$$
\begin{aligned}
& e \equiv \frac{1}{\gamma-1} \frac{p}{\rho_{m}} \approx C_{v} T \\
& s \equiv C_{v} \ln S, \quad S \equiv p / \rho_{m}^{\gamma}
\end{aligned}
$$

C_{v} : specific heat capacity

- Neglect thermal conduction and heat flow, i.e., considering adiabatic processes, the entropy convected by the fluid is constant:

$$
\frac{D s}{D t}=0, \quad \text { or } \quad \frac{D S}{D t} \equiv \frac{D}{D t}\left(\frac{p}{\rho_{m}^{\gamma}}\right)=0
$$

The pressure equations (cont.)

Apply change rule

$$
\frac{D}{D t}\left(\frac{p}{\rho_{m}^{\gamma}}\right)=\frac{1}{\rho_{m}^{\gamma}} \frac{D p}{D t}-\frac{\gamma p}{\rho_{m}^{\gamma+1}} \frac{D \rho_{m}}{D t}=0
$$

Expand $D / D t$

$$
\begin{gathered}
\frac{1}{\rho_{m}^{\gamma}} \frac{\partial p}{\partial t}+\frac{1}{\rho_{m}^{\gamma}}(\boldsymbol{v} \cdot \nabla) p-\frac{\gamma p}{\rho_{m}^{\gamma+1}} \frac{\partial \rho_{m}}{\partial t}-\frac{\gamma p}{\rho_{m}^{\gamma+1}}(\boldsymbol{v} \cdot \nabla) \rho_{m}=0 \\
\frac{\partial p}{\partial t}+(\boldsymbol{v} \cdot \nabla) p-\frac{\gamma p}{\rho_{m}}\left[\frac{\partial \rho_{m}}{\partial t}+(\boldsymbol{v} \cdot \nabla) \rho_{m}\right]=0 \\
\text { But }-\left[\frac{\partial \rho_{m}}{\partial t}+(\boldsymbol{v} \cdot \nabla) \rho_{m}\right]=\rho_{m} \nabla \cdot \boldsymbol{v} \\
\frac{\partial p}{\partial t}+(\boldsymbol{v} \cdot \nabla) p+\frac{\gamma p}{\rho_{m}}\left(\rho_{m} \nabla \cdot \boldsymbol{v}\right)=0 \\
\frac{\partial p}{\partial t}+(\boldsymbol{v} \cdot \nabla) p=-\gamma p \nabla \cdot \boldsymbol{v} \quad \text { Pressure evolution equation }
\end{gathered}
$$

The internal energy equation

- From pressure evolution equations, using equations of state

$$
p=(\gamma-1) \rho_{m} e
$$

we can write the internal energy equations

$$
\frac{\partial e}{\partial t}+(\boldsymbol{v} \cdot \nabla) e=-(\gamma-1) e \nabla \cdot \boldsymbol{v}
$$

Internal energy equation

Magnetic field behavior in MHD

- MHD induction equation:

$$
\frac{\partial \boldsymbol{B}}{\partial t}=\nabla \times(\boldsymbol{v} \times \boldsymbol{B})+\frac{1}{\mu_{0} \sigma} \nabla^{2} \boldsymbol{B}
$$

- $\nabla \times(\boldsymbol{v} \times \boldsymbol{B})$ Dominant: convection
- Infinite conductivity limit: ideal MHD.
- Flow and field are intimately connected. Field lines convect with the flow. (flux fleezing)
- The flow response to the field motion via $\boldsymbol{J} \times \boldsymbol{B}$ force
- $\left(1 / \mu_{0} \sigma\right) \nabla^{2} \boldsymbol{B}$ Dominant: Diffusion
- Induction equation takes the form of a diffusion equation.
- Field lines diffuse through the plasma down any field gradient
- No coupling between magnetic field and fluid flow
- Characteristic Diffusion time: $\tau=\mu_{0} \sigma L^{2}=\mu_{0} L^{2} / \eta$

Here using
$\nabla=1 / L$

- Ratio of the convection term to the diffusion term:

$$
R_{m}=\frac{\boldsymbol{v} \boldsymbol{B} / L}{\boldsymbol{B} / \mu_{0} \sigma L^{2}}=\mu_{0} \sigma \boldsymbol{v} L
$$

Magnetic Reynold's number

Magnetic field behavior in MHD

Magnetic Reynold's number (cont.)

$$
R_{m}=\frac{\boldsymbol{v} \boldsymbol{B} / L}{\boldsymbol{B} / \mu_{0} \sigma L^{2}}=\mu_{0} \sigma \boldsymbol{v} L
$$

- If R_{m} is large, convection dominates, magnetic field frozen into the plasma.
Else if R_{m} is small, diffusion dominates.
- In astrophysics generally, R_{m} is very

Earth's magetosphere
 large.

- Solar flare: 10^{8},
- planetary magnetosphere: 10^{11}
- But, not large everywhere
- Thin boundary layers form where $R_{m} \sim 1$ and ideal MHD breaks down

Magnetic field behavior in MHD (cont.)

- Rewrite continuity equation:

$$
\frac{\partial \rho_{m}}{\partial t}=-\rho_{m}(\nabla \cdot \boldsymbol{v})-(\boldsymbol{v} \cdot \nabla) \rho_{m}
$$

- first term describes compression (fluid contracts or expansion)
- Second term describes advection
- The induction equation (ideal MHD) can be written as, using standard vector identities:

$$
\frac{\partial \boldsymbol{B}}{\partial t}=-\boldsymbol{B}(\nabla \cdot \boldsymbol{v})-(\boldsymbol{v} \cdot \nabla) \boldsymbol{B}+(\boldsymbol{B} \cdot \nabla) \boldsymbol{v}
$$

- Equation is similar to continuity equation.
- First term: compression
- Second term: advection
- Third term: new term describes stretching. It is related magnetic field amplification

Flux freezing

- Alfven's theorem (1947): "field is frozen into the fluid"
- This is extremely important concept in MHD, since it allows us to study the evolution of the field by finding out about the plasma flow
- MHD induction equation: $\frac{\partial \boldsymbol{B}}{\partial t}=\nabla \times(\boldsymbol{v} \times \boldsymbol{B})$
- The magnetic flux though a closed loop $l: \Phi_{B} \equiv \oint_{l} \boldsymbol{B} \cdot \hat{n} d S$

Where $d S$ is the area element of any surfaces which has l as a perimeter. The quantity Φ_{B} is independent of the specific surface chosen, as can be proven from $\nabla \cdot \boldsymbol{B}=0$.

- So the flux freezing law is expressed as: $\frac{d \Phi_{B}}{d t}=0$
where use total derivative $d / d t$ to indicate that the time derivative is calculated with respect to fluid elements moving with the flow

Flux freezing (cont.)

- The quantity Φ_{B} is not locally defined. So explicit calculation for its time derivative
- Consider a loop of fluid elements l at two instants in time, t and $t+\Delta t$
- Two surfaces S_{1} and S_{2} have $l(t)$ and $l(t+\Delta t)$
- "cylinder" S_{3} generated by the fluid motion between the two instants of the elements making up l.
- Let Φ_{B} be the flux enclosed by l and $\Phi_{\mathrm{B} 1}$ be the flux through surface S_{1} (similarity for S_{2} and S_{3})
- Then $\frac{d \Phi_{B}}{d t}=\lim _{\Delta t \rightarrow 0}\left(\frac{\Phi_{B 2}(t+\Delta t)-\Phi_{B 1}(t)}{\Delta t}\right)$

Flux freezing (cont.)

- From $\nabla \cdot \boldsymbol{B}=0$ the net flux through the surfaces at any time is zero

$$
-\Phi_{B 1}(t+\Delta t)+\Phi_{B 2}(t+\Delta t)+\Phi_{B 3}(t+\Delta t)=0
$$

- (Note that negative sign indicated as inward into the volume)
- We can eliminate $\Phi_{\mathrm{B} 2}(t+\Delta t)$ and use definition of flux in expressing $\Phi_{\mathrm{B} 1} \& \Phi_{\mathrm{B} 3}$

$$
\begin{equation*}
\frac{d \Phi_{B}}{d t}=\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t}\left[\iint_{S 1}(\boldsymbol{B}(t+\Delta t)-\boldsymbol{B}(t)) \cdot \hat{n} d S-\iint_{S 3} \boldsymbol{B} \cdot \hat{n} d S\right] \tag{4.4}
\end{equation*}
$$

- The first term in RHS in eq (4.4):

$$
\iint_{S 1} \frac{\partial \boldsymbol{B}}{\partial t} \cdot \hat{n} d S
$$

Flux freezing (cont.)

- The area element for S_{3} can be written $\hat{n} d S=(\boldsymbol{d} l \times \boldsymbol{v}) \Delta t$, where $d l$ is a line element of the loop of fluid elements.
- The second term in RHS of eq (4.4):

$$
\iint_{S 3} \boldsymbol{B} \cdot \hat{n} d S=\oint_{l(t)} \boldsymbol{B} \cdot(\boldsymbol{l} \times \boldsymbol{v}) \Delta t=\oint_{l(t)}(\boldsymbol{v} \times \boldsymbol{B}) \cdot \boldsymbol{d} l \Delta t
$$

- By using Stokes theorem to convert the line integral to a surface integral

$$
\iint_{S 3} \boldsymbol{B} \cdot \hat{n} d S=\iint_{S 1} \nabla \times(\boldsymbol{v} \times \boldsymbol{B}) \cdot \hat{n} d S \Delta t
$$

- So finally putting these results into eq(4.4) :

$$
\frac{d \Phi_{B}}{d t}=\iint\left[\frac{\partial \boldsymbol{B}}{\partial t}-\nabla \times(\boldsymbol{v} \times \boldsymbol{B})\right] \cdot \hat{n} d S=0
$$

Magnetic pressure and curvature force

- Lorentz force:

$$
\boldsymbol{J} \times \boldsymbol{B}=\frac{1}{\mu_{0}}(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}=\frac{1}{\mu_{0}}\left[(\boldsymbol{B} \cdot \nabla) \boldsymbol{B}-\nabla\left(\frac{B^{2}}{2}\right)\right]
$$

- First term: magnetic curvature force, which relates to rate of change of \mathbf{B} along the direction of \mathbf{B}.
- Second term: magnetic pressure
- To show the role of magnetic curvature force, we consider $\boldsymbol{B}=B \hat{\boldsymbol{b}}$,where B is the local intensity of \boldsymbol{B} and $\hat{\boldsymbol{b}}$ is unit vector
- The Lorentz force then becomes

$$
\boldsymbol{F}_{L}=-\nabla\left(\frac{B^{2}}{2 \mu_{0}}\right)+\hat{\boldsymbol{b}} \hat{\boldsymbol{b}} \cdot \nabla\left(\frac{B^{2}}{2 \mu_{0}}\right)+\frac{B^{2}}{\mu_{0}} \hat{\boldsymbol{b}} \cdot \nabla \hat{\boldsymbol{b}}
$$

Magnetic pressure and curvature force (cont.)

- Combine first two term:

$$
\boldsymbol{F}_{L}=-\nabla_{\perp}\left(\frac{B^{2}}{2 \mu_{0}}\right)+\frac{B^{2}}{\mu_{0}} \hat{\boldsymbol{b}} \cdot \nabla \hat{\boldsymbol{b}}
$$

- Where ∇_{\perp} is the projection of the gradient operator on a plane perpendicular to \boldsymbol{B}
- Second term contains the effects of field line curvature.
- Its magnitude is $\left|\frac{B^{2}}{\mu_{0}} \hat{\boldsymbol{b}} \cdot \nabla \hat{\boldsymbol{b}}\right|=\frac{B^{2}}{\mu_{0} R_{c}}$ where $R_{c}=1 /|\hat{\boldsymbol{b}} \cdot \nabla \hat{\boldsymbol{b}}|$ is radius of curvature of path $\hat{\boldsymbol{b}}$
- $(\hat{\boldsymbol{b}} \cdot \nabla \equiv \partial / \partial s$ is the derivative along a field line)
- The curvature force is directed toward a center of curvature (\hat{n}). It is often referred as hoop stress

Magnetic pressure and curvature force

 (cont.)- Example of magnetic curvature force
- Consider an pure toroidal (azimuthal) magnetic field, $\boldsymbol{B}=B \hat{\phi}$ in cylindrical coordinates (R, ϕ, z)
- The strength of B is function of R and z only.
- The unit vector in toroidal (azimuthal) direction $\hat{\phi}$ has the property $\hat{\phi} \cdot \nabla \hat{\phi}=-\hat{R} / R$ so that

$$
\frac{1}{\mu_{0}}(\boldsymbol{B} \cdot \nabla) \boldsymbol{B}=-\frac{1}{\mu_{0}} \frac{B^{2}}{R} \hat{R}
$$

- The curvature force is directed inward, toward the center of curvature.

Magnetic stress tensor

- The most useful alternative form of Lorentz force is in terms of magnetic stress tensor
- Writing a vector operators in terms of permutation (Levi-Civita)

$$
\begin{aligned}
\begin{aligned}
\text { symbol } \varepsilon, \text {,one has } \\
{[(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}]_{i} }
\end{aligned} & =\epsilon_{i j k} \epsilon_{j l m} \frac{\partial B_{m}}{\partial x_{l}} B_{k} \\
& =\left(\delta_{k l} \delta_{i m}-\delta_{k m} \delta_{i l}\right) \frac{\partial B_{m}}{\partial x_{l}} B_{k} \\
& =\frac{\partial}{\partial x_{k}}\left(B_{i} B_{k}-\frac{1}{2} B^{2} \delta_{i k}\right) .
\end{aligned}
$$

Levi-Civita symbol is related to Kronecker delta
where the summing convention over repeated indices and $\nabla \cdot \boldsymbol{B}=0$ have been used. Define the magnetic stress tensor \boldsymbol{M} by its components:

$$
M_{i j}=\frac{1}{2 \mu_{0}} B^{2} \delta_{i j}-\frac{1}{\mu_{0}} B_{i} B_{j}
$$

- The Lorentz force is written as:

$$
\begin{equation*}
\frac{1}{\mu_{0}}(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}=-\nabla \cdot \boldsymbol{M} \tag{4.5}
\end{equation*}
$$

Magnetic stress tensor (cont.)

- If V is a volume bounded by a closed surface S, eq (4.5) yields by the divergence theorem

$$
\int_{V} \frac{1}{\mu_{0}}(\nabla \times \boldsymbol{B}) \times \boldsymbol{B} d V=\oint_{S}-\boldsymbol{n} \cdot \boldsymbol{M} d S
$$

- Where \boldsymbol{n} is the outward normal to the surface S.
- This shows how the net Lorentz force acting on a volume V of fluid can be written as an integral of a magnetic stress vector acting on its surface S
- The force \boldsymbol{F}_{S} exerted by the volume on its surroundings

$$
\boldsymbol{F}_{S}=-\boldsymbol{n} \cdot \boldsymbol{M}=\frac{1}{2 \mu_{0}} B^{2} \boldsymbol{n}-\frac{1}{\mu_{0}} \boldsymbol{B} B_{n}
$$

- Where $B_{n}=\boldsymbol{B} \cdot \boldsymbol{n}$ is the component of \boldsymbol{B} along the outward normal \boldsymbol{n} to the surface of the volume.

Magnetic stress tensor (cont.)

- To get the behavior of magnetic stresses, consider simple case of a uniform magnetic field, $\boldsymbol{B}=B_{z}$
- The force $\boldsymbol{F}_{\mathrm{S}}$ in right side of the box is $\boldsymbol{F}_{\text {right }}=\hat{\boldsymbol{x}} \cdot \boldsymbol{M}$. The components are

$$
\boldsymbol{F}_{\text {right }, x}=\frac{1}{2 \mu_{0}} B^{2}-\frac{1}{\mu_{0}} B_{x} B_{z}=\frac{1}{2 \mu_{0}} B^{2} \quad \boldsymbol{F}_{\text {right }, y}=\boldsymbol{F}_{\text {right }, z}=0
$$

- The magnetic field exerts a force in the positive x-direction, away from the volume.
- The force $\boldsymbol{F}_{\mathrm{S}}$ in top of the box is

$$
\boldsymbol{F}_{t o p, z}=\frac{1}{2 \mu_{0}} B^{2}-\frac{1}{\mu_{0}} B_{z} B_{z}=-\frac{1}{2 \mu_{0}} B^{2} \quad \boldsymbol{F}_{t o p, x}=\boldsymbol{F}_{t o p, y}=0
$$

- The magnetic field exerts a force in the negative z-direction, inward to the volume

Magnetic stress tensor (cont.)

- The magnetic pressure makes the volume of magnetic field expand in the perpendicular directions, x and y . But in the direction along a magnetic field line the volume would contract.
- Along the field lines the magnetic stress thus acts like a negative pressure, as in a stretched elastic wire
- This negative stress is referred to as the tension along the magnetic field lines.
- The stress tensor plays a role analogous like the gas pressure, but unlike gas pressure is extremely anisotropic.

Momentum equation

- From equation of motion and continuity equations

$$
\begin{aligned}
\rho_{m} \frac{\partial \boldsymbol{v}}{\partial t}+\rho_{m} \boldsymbol{v} \cdot \nabla \boldsymbol{v} & =\frac{\partial}{\partial t}\left(\rho_{m} \boldsymbol{v}\right)+\boldsymbol{v} \nabla \cdot\left(\rho_{m} \boldsymbol{v}\right)+\rho_{m} \boldsymbol{v} \cdot \nabla \boldsymbol{v} \\
& =\frac{\partial}{\partial t}\left(\rho_{m} \boldsymbol{v}\right)+\nabla \cdot\left(\rho_{m} \boldsymbol{v} \boldsymbol{v}\right)
\end{aligned}
$$

- Using definition of magnetic stress tensor, the momentum equation is ($\boldsymbol{B} \rightarrow \boldsymbol{B} / \sqrt{\mu_{0}}$ for SI unit)

$$
\frac{\partial}{\partial t}\left(\rho_{m} \boldsymbol{v}\right)+\nabla \cdot\left[\rho_{m} \boldsymbol{v} \boldsymbol{v}+\left(p+\frac{1}{2} B^{2}\right) \boldsymbol{I}-\boldsymbol{B} \boldsymbol{B}\right]=0
$$

$$
\frac{\partial \boldsymbol{M}}{\partial t}+\nabla \cdot \boldsymbol{\Pi}=0
$$

I is three-dimensional identity tensor
$\mathcal{M}_{i}=\rho_{m} v_{i} \quad$ Momentum density

$$
\Pi_{i j}=\rho_{m} v_{i} v_{j}+\left(p+\frac{1}{2} B^{2}\right) \delta_{i j}-B_{i} B_{j}=0 \quad \text { Stress tensor }
$$

Conservation form of ideal MHD equations

$$
\begin{array}{|lr}
\hline \frac{\partial \rho_{m}}{\partial t}+\nabla \cdot\left(\rho_{m} \boldsymbol{v}\right)=0 & \text { Mass conservation } \\
\frac{\partial}{\partial t}\left(\rho_{m} \boldsymbol{v}\right)+\nabla \cdot\left[\rho_{m} \boldsymbol{v} \boldsymbol{v}+\left(p+\frac{1}{2} B^{2}\right) \boldsymbol{I}-\boldsymbol{B} \boldsymbol{B}\right]=0 \begin{array}{l}
\text { Momentum } \\
\text { conservation }
\end{array} \\
\frac{\partial}{\partial t}\left(\frac{1}{2} \rho_{m} v^{2}+\rho_{m} e+\frac{1}{2} B^{2}\right) & \text { Energy conservation } \\
+\nabla \cdot\left[\left(\frac{1}{2} \rho_{m} v^{2}+\rho_{m} e+p+B^{2}\right) \boldsymbol{v}-(\boldsymbol{v} \cdot \boldsymbol{B}) \boldsymbol{B}\right]=0 \\
\frac{\partial \boldsymbol{B}}{\partial t}+\nabla \cdot(\boldsymbol{v} \boldsymbol{B}-\boldsymbol{B} \boldsymbol{v})=0 & \text { Magnetic flux conservation } \\
\begin{array}{l}
\nabla \cdot \boldsymbol{B}=0
\end{array} & \begin{array}{l}
\text { Ideal equation of state }
\end{array} \\
p=(\gamma-1) \rho_{m} e & \left(\boldsymbol{B} \rightarrow \boldsymbol{B} / \sqrt{\mu_{0}}\right. \text { for SI unit) }
\end{array}
$$

Poynting flux

- From energy conservation equation, energy flux is

$$
\boldsymbol{Y} \equiv\left(\frac{1}{2} \rho_{m} v^{2}+\frac{\gamma}{\gamma-1} p\right) \boldsymbol{v}+\frac{1}{\mu_{0}}\left(B^{2} \boldsymbol{v}-\boldsymbol{v} \cdot \boldsymbol{B} \boldsymbol{B}\right)
$$

- This compose hydrodynamic part and magnetic part.
- The magnetic part can be transformed:

$$
\begin{aligned}
\boldsymbol{Y}_{e m} & \equiv \frac{1}{\mu_{0}}\left(B^{2} \boldsymbol{v}-\boldsymbol{v} \cdot \boldsymbol{B} \boldsymbol{B}\right) \\
& =-\frac{1}{\mu_{0}}(\boldsymbol{v} \times \boldsymbol{B}) \times \boldsymbol{B} \\
& =\boldsymbol{E} \times \boldsymbol{B}
\end{aligned}
$$

- This is called Poynting flux (Poynting vector), which represents the flow of electromagnetic energy

Entropy conservation equation

- The best representation of the conservation form of MHD equation is in terms of the variables, ρ, \boldsymbol{v}, e and \boldsymbol{B}.
- A peculiar additional variable is the specific entropy s
- For adiabatic process of ideal gas, conservation of entropy is

$$
\frac{D S}{D t} \equiv \frac{\partial S}{\partial t}+(\boldsymbol{v} \cdot \nabla) S=0
$$

- But this is not in conservation form (but expresses the conservation of specific entropy co-moving with the fluid)
- A genuine conservation form is obtained by variable $\rho_{m} S$, the entropy per unit volume

$$
\frac{\partial}{\partial t}\left(\rho_{m} S\right)+\nabla \cdot\left(\rho_{m} S \boldsymbol{v}\right)=0
$$

Entropy conservation equation

Summary

- Single fluid approach is called magnetohydrodynamics (MHD).
- In the case where the conductivity is very high, the electric field is $\boldsymbol{E}=-\boldsymbol{v} \times \boldsymbol{B}$. It is known as ideal MHD.
- In ideal MHD, magnetic field is frozen into the fluid
- Lorentz force divides two different forces: magnetic pressure \& curvature force
- The induction equation in ideal MHD shows evolution of magnetic field. It is including compression, advection and stretching
- The induction equation in resistive MHD includes diffusion of magnetic field.
- From energy conservation equation, energy flux composes hydrodynamic part and magnetic part. Magnetic part is called Poynting flux.

Hydro vs MHD

MHD equation is shown the coupling of hydrodynamics with magnetic field

$$
\begin{aligned}
\frac{\partial \rho_{m}}{\partial t}+\nabla\left(\rho_{m} \boldsymbol{v}\right) & =0 \\
\rho_{m}\left[\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}\right] & =\frac{1}{\mu_{0}}(\boldsymbol{B} \cdot \nabla) \boldsymbol{B}-\nabla\left(p+\frac{B^{2}}{2 \mu_{0}}\right) \\
p \rho_{m}^{\gamma} & =\text { const } \\
\frac{\partial \boldsymbol{B}}{\partial t} & =\nabla \times(\boldsymbol{v} \times \boldsymbol{B})
\end{aligned}
$$

MHD equation is recovered hydrodynamic equations when $\mathrm{B}=0$.

$$
\begin{aligned}
\frac{\partial \rho_{m}}{\partial t}+\nabla\left(\rho_{m} \boldsymbol{v}\right) & =0 \\
\rho_{m}\left[\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}\right] & =-\nabla p \\
p \rho_{m}^{\gamma} & =\text { const }
\end{aligned}
$$

Hydro vs MHD (cont.)

- Conservation form of hydrodynamic equations

$$
\begin{aligned}
& \frac{\partial \rho_{m}}{\partial t}+\nabla \cdot\left(\rho_{m} \boldsymbol{v}\right)=0 \\
& \frac{\partial}{\partial t}\left(\rho_{m} \boldsymbol{v}\right)+\nabla \cdot\left[\rho_{m} \boldsymbol{v} \boldsymbol{v}+p \boldsymbol{I}\right]=0 \\
& \frac{\partial}{\partial t}\left(\frac{1}{2} \rho_{m} v^{2}+\rho_{m} e\right)+\nabla \cdot\left[\left(\frac{1}{2} \rho_{m} v^{2}+\rho_{m} e+p\right) \boldsymbol{v}\right]=0 \\
& p=(\gamma-1) \rho_{m} e
\end{aligned}
$$

Exercise 2-1

Derivation of conservation form of total energy
From equation of motion: $\rho\left[\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}\right]+\nabla p-\boldsymbol{j} \times \boldsymbol{B}=0$
$\Rightarrow \rho \boldsymbol{v} \cdot\left[\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}\right]+\boldsymbol{v} \cdot \nabla p-\boldsymbol{v} \cdot(\boldsymbol{j} \times \boldsymbol{B})=0$
$\Rightarrow \frac{\partial}{\partial t}\left(\frac{1}{2} \rho v^{2}\right)-\frac{1}{2} v^{2} \frac{\partial \rho}{\partial t}+\frac{1}{2} \rho \boldsymbol{v} \cdot \nabla v^{2}+\boldsymbol{v} \cdot \nabla p-\boldsymbol{v} \cdot(\boldsymbol{j} \times \boldsymbol{B})=0$
Using continuity equation

$$
\begin{equation*}
\Rightarrow \frac{\partial}{\partial t}\left(\frac{1}{2} \rho v^{2}\right)+\nabla \cdot\left(\frac{1}{2} \rho v^{2} \boldsymbol{v}\right)+\boldsymbol{v} \cdot \nabla p-\boldsymbol{v} \cdot(\boldsymbol{j} \times \boldsymbol{B})=0 \tag{1}
\end{equation*}
$$

Exercise 2-1 (cont.)

From pressure equation: $\frac{\partial p}{\partial t}+(\boldsymbol{v} \cdot \nabla) p+\gamma p \nabla \cdot \boldsymbol{v}=0$ Using ideal EoS and continuity equation,

$$
\begin{aligned}
\frac{\partial e}{\partial t}+(\boldsymbol{v} \cdot \nabla) e+(\gamma-1) e \nabla \cdot \boldsymbol{v} & =0 \\
\Rightarrow \rho \frac{\partial e}{\partial t}+\rho(\boldsymbol{v} \cdot \nabla) e+(\gamma-1) \rho e \nabla \cdot \boldsymbol{v} & =0 \\
\Rightarrow \quad \frac{\partial}{\partial t}(\rho e)-e \frac{\partial \rho}{\partial t}+\rho(\boldsymbol{v} \cdot \nabla) e+p \nabla \cdot \boldsymbol{v} & =0
\end{aligned}
$$

Using continuity equation,
$\Rightarrow \frac{\partial}{\partial t}(\rho e)+\nabla \cdot(\rho e \boldsymbol{v})+p \nabla \cdot \boldsymbol{v}=0$

Exercise 2-1 (cont.)

From induction equation: $\frac{\partial \boldsymbol{B}}{\partial t}-\nabla \times(\boldsymbol{v} \times \boldsymbol{B})=0$
$\Rightarrow \frac{\boldsymbol{B}}{\mu_{0}} \cdot \frac{\partial \boldsymbol{B}}{\partial t}-\frac{\boldsymbol{B}}{\mu_{0}} \cdot \nabla \times(\boldsymbol{v} \times \boldsymbol{B})=0$
Using D6 =>

$$
\frac{\partial}{\partial t}\left(\frac{B^{2}}{2 \mu_{0}}\right)+\frac{1}{\mu_{0}} \nabla \cdot[\boldsymbol{B} \times(\boldsymbol{v} \times \boldsymbol{B})]-\frac{1}{\mu_{0}}(\boldsymbol{v} \times \boldsymbol{B}) \cdot \nabla \times \boldsymbol{B}=0
$$

Using D1 \& D2 $=>$

$$
\frac{1}{\mu_{0}} \boldsymbol{B} \times(\nabla \times \boldsymbol{B})=-\boldsymbol{j} \times \boldsymbol{B}
$$

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\frac{B^{2}}{2 \mu_{0}}\right)+\frac{1}{\mu_{0}} \nabla \cdot[(\boldsymbol{B} \cdot \boldsymbol{B}) \boldsymbol{v}-(\boldsymbol{v} \cdot \boldsymbol{B}) \boldsymbol{B}]+\boldsymbol{v} \cdot \boldsymbol{j} \times \boldsymbol{B}=0 \tag{3}
\end{equation*}
$$

Exercise 2-1 (cont.)

- $(1)+(2)+(3)=0$

$$
\frac{\partial}{\partial t}\left(\frac{1}{2} \rho v^{2}+\rho e+\frac{B^{2}}{2 \mu_{0}}\right)+\nabla \cdot\left[\left(\frac{1}{2} \rho \boldsymbol{v}^{2}+\rho e+p+\frac{B^{2}}{\mu_{0}}\right) \boldsymbol{v}-(\boldsymbol{v} \cdot \boldsymbol{B}) \frac{\boldsymbol{B}}{\mu_{0}}\right]=0 .
$$

