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 Exercise 1 
•  Plasma frequency: 

•  Debye length:  

•  Plasma number:  

•  Mean free path:  
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Exercise 1 (cont.)	  
•  Gyro frequency:  

•  Larmor radius:  

•  Electron volts is energy units = particle’s kinetic energy 
•  For Larmor radius, we need to get perpendicular components 

of velocity. 
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Single-Fluid Theory: MHD 
•  Under certain circumstances, appropriate to consider entire plasma 

as a single fluid. 
•  Do not have any difference between ions and electrons. 
•  Approach is called magnetohydrodynamics (MHD). 
•  General method for modeling highly conductive fluids, including 

low-density astrophysical plasmas. 
•  Single-fluid approach appropriate when dealing with slowly 

varying conditions. 
•  MHD is useful when plasma is highly ionized and electrons and 

ions are forced to act in unison, either because of frequent 
collisions or by the action of a strong external magnetic field. 



Single-fluid equations for fully ionized plasma 
•  Can combine multiple-fluid equations into a set of equations for a 

single fluid. 
•  Assuming two-specials plasma of electrons and ions (j = e or i): 

•  For a fully ionized two-species plasma, total momentum must be 
conserved:  

•  As mi >> me the time-scales in continuity and momentum equations 
for ions and electrons are very different. The characteristic 
frequencies of a plasma, such as plasma frequency or cyclotron 
frequency are much larger for electrons. 

mjnj
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�
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�nj
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(4.1a) 
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Single-fluid equations for fully ionized 
plasma (cont.)	  

•  When plasma phenomena are large-scale (L >> λD) and have 
relatively low frequencies (ω << ωplasma and ω << ωcyclotron), on 
average plasma is electrically neutral (ni ~ ne). Independent motion 
of electrons and ions can then be neglected. 

•  Can therefore treat plasma as single conducting fluid, whose inertia 
is provided by mass of ions. 

•  Governing equations are obtained by combining eqn (4.1) 
•  First, define macroscopic parameters of plasma fluid: 

�m = neme + nimi

P = P e + P i

Mass density 

Electric current 
Center of Mass Velocity 

Total pressure tensor 

J = neqeve + niqivi = neqe(ve � vi)
v = (nemeve + nimivi)/�m

�e = neqe + niqi Charge density 



MHD mass and charge conservation 
•  Using eq (4.1a): 
•   Multiply by qi and qe and add continuity equations to get: 

•  where J is the electric current density:                                  and the 
electric charge:  

•  Multiply eq (4.1a)  by mi and me, 

•  where                                is the single-fluid mass density and v is 
the fluid mass velocity 

�nj
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��e

�t
+� · (J) = 0

J = neqeve + niqivi

�e = neqe + niqi

�m = neme + nimi

��m

�t
+� · (�mv) = 0

v = (nemeve + nimivi)/�m

Charge conservation 

Mass conservation / 
continuity equation 



MHD equation of motion 
•  Equation of motion for bulk plasma can be obtained by adding 

individual momentum transport equations for ions and electrons. 

•  LHS of eq(4.1b):  

•  Difficulty is that convective term is non-linear.  
•  But note that since me << mi contribution of electron momentum is 

much less than that from ion. So we ignore it in equation 
•  Approximation: Center of mass velocity is ion velocity: 
•  LHS:   
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MHD equation of motion (cont.)	  	  
•  RHS of eq(4.1b) : 

•  In general, second term (Electric body force) is much smaller than J 
x B term. So we ignored. 

•  Therefore, LHS+RHS: 

•  For an isotropic plasma,                      where total pressure is p = pe + 
pi and 

 

�� · (P e + P i) + (neqe + niqi)E + J �B
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MHD equation of motion (cont.)	  	  
•  ρeE term is generally much smaller than J x B term. To see this take 

order of magnitudes. 
•   from Maxwell’s equations: 

•  Therefore, 

•  This is generally very small number. 
•  Example:  small cold plasma, Te=1eV, L=1cm, this ratio is about 10-8 

� · E = �e/�0 so �e � E�0/L

��B = µ0J so �E � j � B/µ0L

�eE

jB
� �0

L

�
B2

µ0�L

�2
Lµ0

B2
� L2/c2

(µ0�L2)2
=

�
light crossing time
resistive skin time

�2



Generalized Ohm’s law 
•  The final single-fluid MHD equation describes the variation of 

current density J. 
•  Consider the momentum equations for electron and ions (eq.4.1b): 

•  Multiple electron equation by qe/me and ion equation by qi/mi and 
add:  
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dealing with small 
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Generalized Ohm’s law (cont.)	  
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Generalized Ohm’s law (cont.)	  
•  For an electrically neutral plasma                        and using 

                                  and                                              , We can write 

•  As                                               and                                  . In thermal 
equilibrium, kinetic pressures of electrons is similar to ion pressure 
(Pe ~ Pi)   
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Generalized Ohm’s law (cont.)	  
•  The collisional term can be written: 

where η is the specific resistivity, q2 relates to fact that collisions 
result from Coulomb force between ions (qi) and electrons (qe) and 
total momentum transferred to electrons in an elastic collision with 
an ion is vi – ve . 

•  Now qi= - qe and ne = ni and J=neqe(ve-vi), => 
•  Eq. (4.2) can be written as 

•  Where η is a tensor. This is generalized Ohm’s law  
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Generalized Ohm’s law (cont.)	  
•  For a steady current in a uniform E,                                     and B = 0 

so that 

•  In general form, the electric field E can be found from Eq (4.3): 

•  Consider right hand side of this equation: 
–  First term: E associated with plasma motion 
–  Second term: Hall effect 
–  Third term: Ambipolar diffusion from E-field generated by pressure gradients 
–  Fourth term: Ohmic losses/Joule heating by resistivity 
–  Fifth term: Electron inertia 
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One fluid MHD Ohm’s law 
•  Generalized Ohm’s law 

 
•  Now assume plasma is isotropic, so that 

Also we neglect Hall effect and Ambipolar diffusion in generalized 
Ohm’s law since not important in one-fluid MHD.  
For slow variations, J = constant, so can write generalized Ohm’s 
law as: 

 
•  Rearranging gives,  

•  Where σ = 1/η is electrical conductivity 
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Simplified MHD equations 
•  A set of simplified MHD equations can be written: 

 
•  Fluid equations must be solved with reduced Maxwell equations 

 
 
•  Here we have assumed that there is no accumulation of charge (i.e., 
ρe = 0) 

•  Complete set of equations only when equation of state for 
relationship between p and n (ρ) is specified. 

��m
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�
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+ (v ·�)v
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= ��p + J �B

E + v �B = �J

��B = µ0J , ��E = ��B

�t
� · B = 0, � · E = 0

p���
m = const

(displacement current term 
is ignored for low 
frequency phenomena) 



Plasma β	

•  The MHD equation of motion contains J x B term, which can given 

rise to effects that are similar to those of the pressure term. 
•  Current is given by 
•  Taking cross product with the magnetic field, 

•  Inserting into MHD equation of motion 

•  In second term of RHS, the first term acted on by gradient is plasma 
pressure and the second term is magnetic pressure. 

•  The dimensionless parameter, plasma β : 
•  β <<1: dominated by magnetization effects 
•  β>>1: behaves more like a fluid 
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The induction equation 
•  Taking the curl of one-fluid MHD Ohm’s law: 
 
•  Assuming σ=const. Substituting for                          from Ampere’s law 

and using the law of induction equations (Faraday’s law): 

•  The double curl can be expanding from vector identity 

•  The second term in R.H.S. is zero by Gauss’s law (                 ). So 
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The induction equation (cont.)	  
•  The MHD induction equation, together with fluid mass, 

momentum, and energy equations (EoS), a close set of 
equations for MHD state variables (ρm, v, p, B) 

      
     Here, J = ��B/µ0
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Ideal MHD 
•  In the case where the conductivity is very high (            ), the 

electric field is E= -v x B (motional electric field only). It is 
known as ideal Magnetohydrodynamics.  

•  A set of equations: 

•  This is the most simplest assumption for MHD. But this is 
commonly used in Astrophysics.  
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The pressure equations 
•  The above formulation of the ideal MHD equations exploits ρ, v, p, B 

as the basic variables 
•  Equation of states is often replaced by pressure evolution equation. 
•  It is also work out the evolution equation for the other 

thermodynamical variables, such as 
–  e: internal energy per unit mass (which is equivalent to T) 
–  s: entropy per unit mass 

•  Neglect thermal conduction and heat flow, i.e., considering adiabatic 
processes, the entropy convected by the fluid is constant: 
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Cv: specific heat 
capacity 



The pressure equations (cont.) 
Apply change rule 

Expand D/Dt 

But 
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The internal energy equation 
•  From pressure evolution equations, using equations of state  

  
 
we can write the internal energy equations 

�e

�t
+ (v ·�)e = �(� � 1)e� · v Internal energy equation 

p = (� � 1)�me



Magnetic field behavior in MHD 
•  MHD induction equation: 

•                      Dominant: convection 
–  Infinite conductivity limit: ideal MHD.  
–  Flow and field are intimately connected. Field lines convect with the flow.  

(flux fleezing)   
–  The flow response to the field motion via J x B force  

•                        Dominant: Diffusion 
–  Induction equation takes the form of a diffusion equation. 
–  Field lines diffuse through the plasma down any field gradient 
–  No coupling between magnetic field and fluid flow 
–  Characteristic Diffusion time:  

•  Ratio of the convection term to the diffusion term: 
  

�B

�t
= �� (v �B) +

1
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�� (v �B)
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= µ0�vL Magnetic Reynold’s number	  	  

� = 1/L
Here using 



Magnetic field behavior in MHD 
(cont.)	  

•  If Rm is large, convection dominates, 
magnetic field frozen into the 
plasma.  
Else if Rm is small, diffusion 
dominates. 

•  In astrophysics generally, Rm is very 
large. 
–  Solar flare: 108,  
–  planetary magnetosphere: 1011   

•  But, not large everywhere 
–  Thin boundary layers form where Rm~1 

and ideal MHD breaks down 

Rm =
vB/L

B/µ0�L2
= µ0�vL

Magnetic Reynold’s number	  	  
Earth’s magetosphere 



Magnetic field behavior in MHD 
(cont.) 

•  Rewrite continuity equation: 

–  first term describes compression (fluid contracts or expansion) 
–  Second term describes advection  

•  The induction equation (ideal MHD) can be written as, using 
standard vector identities:   

•  Equation is similar to continuity equation. 
–  First term: compression 
–  Second term: advection 
–  Third term: new term describes stretching. It is related magnetic field 

amplification 

�B

�t
= �B(� · v)� (v ·�)B + (B ·�)v

��m

�t
= ��m(� · v)� (v ·�)�m



Flux freezing 
•  Alfven’s theorem (1947): “field is frozen into the fluid” 
•  This is extremely important concept in MHD, since it allows us to 

study the evolution of the field by finding out about the plasma flow 

•  MHD induction equation: 
 
•  The magnetic flux though a closed loop l :  
     
      Where dS is the area element of any surfaces which has l as a 
perimeter. The quantity ΦB is independent of the specific surface 
chosen, as can be proven from                  . 
•  So the flux freezing law is expressed as: 
      
where use total derivative d/dt to indicate that the time derivative is 
calculated with respect to fluid elements moving with the flow 

�B

�t
= �� (v �B)

�B �
�

l
B · n̂dS

� · B = 0
d�B

dt
= 0



Flux freezing (cont.)	  
•  The quantity ΦB is not locally defined.  

So explicit calculation for its time derivative  
 
•  Consider a loop of fluid elements l at two  

instants in time, t and t+Δt 
•  Two surfaces S1 and S2 have l(t) and l(t+Δt) 
•  “cylinder” S3 generated by the fluid motion between the two instants 

of the elements making up l. 
•  Let ΦB be the flux enclosed by l and ΦB1 be the flux through surface 

S1 (similarity for S2 and S3) 

•  Then d�B

dt
= lim

�t�0

�
�B2(t + �t)� �B1(t)

�t

�



Flux freezing (cont.) 
•  From                  the net flux through the surfaces at any time is zero 

•  (Note that negative sign indicated as inward into the volume)  

•  We can eliminate ΦB2(t+Δt) and use definition of flux in expressing 
ΦB1 & ΦB3 

 
 

•  The first term in RHS in eq (4.4):  
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(4.4) 



Flux freezing (cont.)	  
•  The area element for S3 can be written                              , where dl is 

a line element of the loop of fluid elements.  
•   The second term in RHS of eq (4.4): 

•  By using Stokes theorem to convert the line integral to a surface 
integral 

•  So finally putting these results into eq(4.4) : 
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Magnetic pressure and curvature force 
•  Lorentz force: 

•  First term: magnetic curvature force, which relates to rate of change 
of B along the direction of B. 

•  Second term:  magnetic pressure 

•  To show the role of magnetic curvature force, we consider 
                    ,where B is the local intensity of B and     is unit vector 
•  The Lorentz force then becomes 
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Magnetic pressure and curvature 
force (cont.)	  

•  Combine first two term: 

•  Where        is the projection of the gradient operator 
on a plane perpendicular to B 

•  Second term contains the effects of field line 
curvature. 

•  Its magnitude is                                   
  

    where                           is radius of curvature of path 
•  (                       is the derivative along a field line )   
•  The curvature force is directed toward a center of 

curvature (   ). It is often referred as hoop stress 
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Magnetic pressure and curvature force 
(cont.)	  

•  Example of magnetic curvature force 
•  Consider an pure toroidal (azimuthal) magnetic field,                        

in cylindrical coordinates (R, φ, z) 
•  The strength of B is function of R and z only. 
•  The unit vector in toroidal (azimuthal) direction     has the property 

                                so that 
  
 
 
•  The curvature force is directed inward, toward the center of 

curvature. 
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Magnetic stress tensor 
•  The most useful alternative form of Lorentz force is in terms of 

magnetic stress tensor  
•  Writing a vector operators in terms of permutation (Levi-Civita) 

symbol ε, one has 
 
 
 
 
 
where the summing convention over repeated indices and              
have been used. Define the magnetic stress tensor M by its 
components: 

•  The Lorentz force is written as: 
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Levi-Civita 
symbol is 
related to 
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Magnetic stress tensor (cont.)	  
•  If V is a volume bounded by a closed surface S, eq (4.5) yields by 

the divergence theorem 

•  Where n is the outward normal to the surface S. 
•  This shows how the net Lorentz force acting on a volume V of fluid 

can be written as an integral of a magnetic stress vector acting on its 
surface S 

•  The force FS exerted by the volume on its surroundings  

•  Where                      is the component of B along the outward 
normal n to the surface of the volume.         
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1
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2µ0
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Magnetic stress tensor (cont.)	  
•  To get the behavior of magnetic stresses,  

consider simple case of a uniform magnetic  
field, B=Bz  

•  The force FS in right side of the box is 
                         . The components are 

 

•  The magnetic field exerts a force in the positive x-direction, away 
from the volume.  

•  The force FS in top of the box is 
 

•  The magnetic field exerts a force in the negative z-direction, inward 
to the volume 

F right = x̂ · M
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1

2µ0
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µ0
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1
2µ0
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F right,y = F right,z = 0
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1

2µ0
B2 � 1

µ0
BzBz = � 1

2µ0
B2 F top,x = F top,y = 0



Magnetic stress tensor (cont.)	  
•  The magnetic pressure makes the volume of magnetic field 

expand in the perpendicular directions, x and y. But in the 
direction along a magnetic field line the volume would contract. 

•  Along the field lines the magnetic stress thus acts like a negative 
pressure, as in a stretched elastic wire 

•  This negative stress is referred to as the tension along the 
magnetic field lines. 

•  The stress tensor plays a role analogous like the gas pressure, but 
unlike gas pressure is extremely anisotropic. 



Momentum equation 
•  From equation of motion and continuity equations 

 
•  Using definition of magnetic stress tensor, the momentum 

equation is (                       for SI unit) 

�m
�v

�t
+ �mv ·�v =

�

�t
(�mv) + v� · (�mv) + �mv ·�v

=
�

�t
(�mv) +� · (�mvv)

�

�t
(�mv) +� ·

�
�mvv +

�
p +

1
2
B2

�
I �BB

�
= 0

�ij = �mvivj +
�

p +
1
2
B2

�
�ij �BiBj = 0

�M

�t
+� · � = 0

Momentum density 

Stress tensor 

B � B/
�

µ0

I	  is three-dimensional 
identity tensor 

Mi = �mvi



Conservation form of ideal MHD equations 

�

�t

�
1
2
�mv2 + �me +

1
2
B2

�

+� ·
��

1
2
�mv2 + �me + p + B2

�
v � (v · B)B

�
= 0

�

�t
(�mv) +� ·

�
�mvv +

�
p +

1
2
B2

�
I �BB

�
= 0

��m

�t
+� · (�mv) = 0

�B

�t
+� · (vB �Bv) = 0

� · B = 0

p = (� � 1)�me

Mass conservation 

Momentum 
conservation 

Energy conservation 

Magnetic flux conservation 

Ideal equation of state 

Neglecting gravity force. 
This form is often used in numerical simulation. 

(                       for SI unit) B � B/
�

µ0



Poynting flux 
•  From energy conservation equation, energy flux is 

•  This compose hydrodynamic part and magnetic part. 
•  The magnetic part can be transformed: 

•  This is called Poynting flux (Poynting vector), which 
represents the flow of electromagnetic energy 

Y �
�

1
2
�mv2 +

�

� � 1
p

�
v +

1
µ0

(B2v � v · BB)

Y em � 1
µ0

(B2v � v · BB)

= � 1
µ0

(v �B)�B

= E �B



Entropy conservation equation 
•  The best representation of the conservation form of MHD 

equation is in terms of the variables, ρ, v, e and B.  
•  A peculiar additional variable is the specific entropy s 
•   For adiabatic process of ideal gas, conservation of entropy is 

 
•  But this is not in conservation form (but expresses the 

conservation of specific entropy co-moving with the fluid) 
•  A genuine conservation form is obtained by variable ρmS, the 

entropy per unit volume 

DS

Dt
� �S

�t
+ (v ·�)S = 0

Entropy conservation equation 

�

�t
(�mS) +� · (�mSv) = 0



Summary 
•  Single fluid approach is called magnetohydrodynamics (MHD). 
•  In the case where the conductivity is very high, the electric field is 

E= -v x B. It is known as ideal MHD. 
•  In ideal MHD, magnetic field is frozen into the fluid 
•  Lorentz force divides two different forces: magnetic pressure & 

curvature force 
•  The induction equation in ideal MHD shows evolution of magnetic 

field. It is including compression, advection and stretching 
•  The induction equation in resistive MHD includes diffusion of 

magnetic field. 
•  From energy conservation equation, energy flux composes 

hydrodynamic part and magnetic part. Magnetic part is called 
Poynting flux. 



	  Hydro vs MHD	  

��m

�t
+�(�mv) = 0

�m

�
�v

�t
+ (v ·�)v

�
=

1
µ0

(B ·�)B ��(p +
B2

2µ0
)

p��
m = const

�B

�t
= �� (v �B)

MHD equation is shown the coupling of hydrodynamics with 
magnetic field  

MHD equation is recovered hydrodynamic equations when B=0. 
��m

�t
+�(�mv) = 0

�m

�
�v

�t
+ (v ·�)v

�
= ��p

p��
m = const



Hydro vs MHD (cont.)	  
•  Conservation form of hydrodynamic equations 
��m

�t
+� · (�mv) = 0

�

�t
(�mv) +� · [�mvv + pI] = 0

�

�t

�
1
2
�mv2 + �me

�
+� ·

��
1
2
�mv2 + �me + p

�
v

�
= 0

p = (� � 1)�me





Exercise 2-1 
Derivation of conservation form of total energy  
 
  From equation of motion:  

=> 

=> 
 
      Using continuity equation 
 
=>   
 

�

�
�v

�t
+ (v ·�)v

�
+�p� j �B = 0

�v ·
�
�v

�t
+ (v ·�)v

�
+ v ·�p� v · (j �B) = 0

�

�t

�
1
2
�v2

�
� 1

2
v2 ��

�t
+

1
2
�v ·�v2 + v ·�p� v · (j �B) = 0

�

�t

�
1
2
�v2

�
+� ·

�
1
2
�v2v

�
+ v ·�p� v · (j �B) = 0 (1) 



Exercise 2-1 (cont.) 
From pressure equation: 

Using ideal EoS and continuity equation, 

=> 
 
=>  
Using continuity equation, 
 
=>       

�p

�t
+ (v ·�)p + �p� · v = 0

�e

�t
+ (v ·�)e + (� � 1)e� · v = 0

�
�e

�t
+ �(v ·�)e + (� � 1)�e� · v = 0

�

�t
(�e)� e

��

�t
+ �(v ·�)e + p� · v = 0

�

�t
(�e) +� · (�ev) + p� · v = 0 (2) 



Exercise 2-1 (cont.)	  
From induction equation: 

=> 
 
Using D6 => 
 
 
 
Using D1 & D2=>   

�B

�t
��� (v �B) = 0

B

µ0
· �B

�t
� B

µ0
·�� (v �B) = 0

�

�t

�
B2

2µ0

�
+

1
µ0
� · [B � (v �B)]� 1

µ0
(v �B) ·��B = 0

�

�t

�
B2

2µ0

�
+

1
µ0
� · [(B · B)v � (v · B)B] + v · j �B = 0

1
µ0

B � (��B) = �j �B

(3) 



Exercise 2-1 (cont.)	  
•  (1) + (2) + (3) =0 

�

�t

�
1
2
�v2 + �e +

B2

2µ0

�
+� ·

��
1
2
�v2 + �e + p +

B2

µ0

�
v � (v · B)

B

µ0

�
= 0.


