Plasma Astrophysics
 Chapter 5: Waves in Plasma

Yosuke Mizuno
Institute of Astronomy
National Tsing-Hua University

What defines a wave?

- Mechanical Example:
- Sound, string, water
- Energy transfer

- Restoring forces:
- Pressure, tension, gravity
- Characteristics:
- Wave speed
- Motion of medium
- Direction of propagation
- Dispersion relation - very important

Simple wave representation

- For plane waves propagating with wave vector $\boldsymbol{k}=\left(k_{\mathrm{x}}, k_{\mathrm{y}}, k_{\mathrm{z}}\right)$ and angular frequency ω, [where $\boldsymbol{r}=(x, y, z)$ is the position vector]

$$
U=C_{U} \exp [i(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]
$$

- And for propagation in only the x -direction

$$
U=C_{U} \exp [i(k x-\omega t)]
$$

- Constant phase is maintained for a point on the wave when,

$$
\begin{aligned}
& \frac{d}{d t}(k x-\omega t)=0 \\
& \frac{d(k x)}{d t}-\omega=0
\end{aligned}
$$

$$
\frac{d x}{d t}=\frac{\omega}{k}=v_{p} \quad \text { Phase speed }
$$

Wave group speed

- Phase speed is not the rate of information (i.e., energy) transfer
- Group speed is similarly defined, but for constant phase on a modulated wave envelope,

$$
U \propto \exp [i(\Delta k x-\Delta \omega t)]
$$

- Giving,

$$
\begin{aligned}
& \frac{d}{d t}(\Delta k x-\Delta \omega t)=0 \\
& \frac{d x}{d t}=\frac{\Delta \omega}{\Delta k} \\
& \lim _{\Delta \omega \rightarrow 0}\left(\frac{\Delta \omega}{\Delta k}\right)=\frac{d \omega}{d k}=v_{g} \text { group speed }
\end{aligned}
$$

Wave dispersion relation

- Everything is contained in dispersion relation,

$$
\omega=\omega(k)
$$

- k often complex, but wave propagate only for,

$$
\mathcal{R}(\omega(k)) \neq 0
$$

- Dispersion relation indicates cutoffs and resonances

What makes plasma waves

Plasma properties

- Gas-like
- charged
- Magnetic field
- Fluid equations
- mass continuity
- equation of motion
- energy equation
- ideal equation of state
- Electromagnetic equations
- Maxwell's equations
- induction equation
- Ohm's law

Fluid equation

- Mass continuity: $\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \boldsymbol{v})=0$
- Using vector identity, it expands as:

$$
\frac{\partial \rho}{\partial t}+(\boldsymbol{v} \cdot \nabla) \rho+\rho \nabla \cdot \boldsymbol{v}=0
$$

- Consider gravity force ($\rho \mathbf{g}$), equation of Motion:

$$
\rho \frac{\partial \boldsymbol{v}}{\partial t}+\rho(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}=-\nabla p+\boldsymbol{J} \times \boldsymbol{B}+\rho \boldsymbol{g}
$$

- Ideal Equation of state:

$$
p=\frac{R}{\mu} \rho T
$$

$R=k_{B} / m_{i}$
μ is mean atomic weight

$$
\frac{D}{D t}=\frac{\partial}{\partial t}+\boldsymbol{v} \cdot \nabla
$$

Convective time derivative

- L represents all energy losses. Only consider adiabatic case $(L=0)$

Modified energy equation

Apply change rule

$$
\frac{D}{D t}\left(\frac{p}{\rho^{\gamma}}\right)=\frac{1}{\rho^{\gamma}} \frac{D p}{D t}-\frac{\gamma p}{\rho^{\gamma+1}} \frac{D \rho}{D t}=0
$$

Expand $D / D t$

$$
\begin{aligned}
& \frac{1}{\rho^{\gamma}} \frac{\partial p}{\partial t}+\frac{1}{\rho^{\gamma}}(\boldsymbol{v} \cdot \nabla) p-\frac{\gamma p}{\rho^{\gamma+1}} \frac{\partial \rho}{\partial t}-\frac{\gamma p}{\rho^{\gamma+1}}(\boldsymbol{v} \cdot \nabla) \rho=0 \\
& \frac{\partial p}{\partial t}+(\boldsymbol{v} \cdot \nabla) p-\frac{\gamma p}{\rho}\left[\frac{\partial \rho}{\partial t}+(\boldsymbol{v} \cdot \nabla) \rho\right]=0
\end{aligned}
$$

But $-\left[\frac{\partial \rho}{\partial t}+(\boldsymbol{v} \cdot \nabla) \rho\right]=\rho \nabla \cdot \boldsymbol{v}$ from mass continuity equation,

$$
\begin{aligned}
& \frac{\partial p}{\partial t}+(\boldsymbol{v} \cdot \nabla) p+\frac{\gamma p}{\rho}(\rho \nabla \cdot \boldsymbol{v})=0 \\
& \frac{\partial p}{\partial t}+(\boldsymbol{v} \cdot \nabla) p=-\gamma p \nabla \cdot \boldsymbol{v}
\end{aligned}
$$

Electromagnetic equation

Ampere's law: $\nabla \times \boldsymbol{B}=\mu_{0} \boldsymbol{J}$
Solenoidal constraints:

$$
\nabla \cdot \boldsymbol{B}=0
$$

Faraday's law: $\frac{\partial \boldsymbol{B}}{\partial t}=-\nabla \times \boldsymbol{E}$
Gauss's law: $\nabla \cdot \boldsymbol{E}=\frac{\rho_{e}}{\epsilon_{0}}$
Ohm's law:

$$
\boldsymbol{J}=\sigma(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B})
$$

Induction equation: $\frac{\partial \boldsymbol{B}}{\partial t}=\nabla \times(\boldsymbol{v} \times \boldsymbol{B})$
diffusivity term is ignored

Wave assumptions

- Wave amplitudes are small
\Rightarrow allows for linearization of MHD equations
- Basic state is a static equilibrium

Equation of motion: $0=-\nabla p_{0}+\boldsymbol{J}_{0} \times \boldsymbol{B}_{0}+\rho_{0} \boldsymbol{g}$
Solenoidal constraints: $\quad \nabla \cdot \boldsymbol{B}_{0}=0$
Ideal equation of state: $p_{0}=\frac{R}{\mu} \rho_{0} T_{0}$

- Quantities X_{0} and X_{0} are the initial equilibrium state
- Not necessary to static

Wave perturbations

- After wave initiation,

$$
\begin{aligned}
\boldsymbol{B} & =\boldsymbol{B}_{0}+\boldsymbol{B}_{1}(\boldsymbol{r}, t) \\
\boldsymbol{v} & =\boldsymbol{v}_{0}+\boldsymbol{v}_{1}(\boldsymbol{r}, t) \\
\rho & =\rho_{0}+\rho_{1}(\boldsymbol{r}, t) \\
p & =p_{0}+p_{1}(\boldsymbol{r}, t) \\
T & =T_{0}+T_{1}(\boldsymbol{r}, t)
\end{aligned}
$$

$-X$ and X are perturbed quantities

- \boldsymbol{X}_{1} and X_{1} are applied perturbation ($\ll \boldsymbol{X}_{0}$ and X_{0} quantities)
- Static initial condition:
$-\boldsymbol{v}_{0}=0, \boldsymbol{v}=\boldsymbol{v}_{1}(\boldsymbol{r}, t)$
- Initial quantities are time independent $\frac{\partial \boldsymbol{X}_{0}}{\partial t}=0, \frac{\partial X_{0}}{\partial t}=0$,

MHD linearization

- Put perturbed quantities into MHD equations and neglect products of small terms (i.e., $X_{1} Y_{1}$)
- Continuity equation:

$$
\begin{gathered}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \boldsymbol{v})=0 \\
\frac{\partial \rho \phi}{\partial t}+\frac{\partial \rho_{1}}{\partial t}+\nabla \cdot\left(\rho_{0} \boldsymbol{v}_{1}\right)+\nabla \cdot\left(\rho_{1} \boldsymbol{v}_{1}\right)=0
\end{gathered}
$$

- But with $\frac{\partial \rho_{0}}{\partial t}=0$ and dropping $X_{1} Y_{1}$ terms,

$$
\frac{\partial \rho_{1}}{\partial t}+\nabla \cdot\left(\rho_{0} \boldsymbol{v}_{1}\right)=0
$$

MHD linearization (cont.)

- Equation of motion:

$$
\underline{\rho \frac{\partial \boldsymbol{v}}{\partial t}}+\underline{\rho(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}}=\underline{-\nabla p+\boldsymbol{J} \times \boldsymbol{B}+\underline{\rho \boldsymbol{g}}}
$$

$\rho_{0} \frac{\partial \boldsymbol{v}_{1}}{\partial t}+\rho_{1} \frac{\partial \boldsymbol{\mu}_{1}}{\partial t}+\rho_{0}\left(\boldsymbol{v}_{1} \cdot \nabla\right) \boldsymbol{v}_{1}+\rho_{1}\left(\boldsymbol{v}_{1} \cdot \nabla\right) \boldsymbol{v}_{1}=$
$-\nabla p_{0}-\nabla p_{1}+\boldsymbol{J}_{0} \times \boldsymbol{B}_{0}+\boldsymbol{J}_{0} \times \boldsymbol{B}_{1}+\boldsymbol{J}_{1} \times \boldsymbol{B}_{0}+\boldsymbol{J}_{1} \times \boldsymbol{B}_{1}+\rho_{0} \boldsymbol{g}+\rho_{1} \boldsymbol{g}$

- Neglecting $X_{1} Y_{1}$ terms and substituting for \boldsymbol{J},
$\rho_{0} \frac{\partial \boldsymbol{v}_{1}}{\partial t}=-\nabla p_{1}+\frac{\nabla \times \boldsymbol{B}_{0}}{\mu_{0}} \times \boldsymbol{B}_{1}+\frac{\nabla \times \boldsymbol{B}_{1}}{\mu_{0}} \times \boldsymbol{B}_{0}+\rho_{1} \boldsymbol{g}+\left(-\nabla p_{0}+\boldsymbol{J}_{0} \times \boldsymbol{B}_{0}+\rho_{0} \boldsymbol{g}\right)$
- But, $-\nabla p_{0}+\boldsymbol{J}_{0} \times \boldsymbol{B}_{0}+\rho_{0} \boldsymbol{g}=0$

$$
\rho_{0} \frac{\partial \boldsymbol{v}_{1}}{\partial t}=-\nabla p_{1}+\frac{\nabla \times \boldsymbol{B}_{0}}{\mu_{0}} \times \boldsymbol{B}_{1}+\frac{\nabla \times \boldsymbol{B}_{1}}{\mu_{0}} \times \boldsymbol{B}_{0}+\rho_{1} \boldsymbol{g}
$$

MHD linearization (cont.)

- Adiabatic energy equation: $\frac{\partial p}{\partial t}+(\boldsymbol{v} \cdot \nabla) p=-\gamma p \nabla \cdot \boldsymbol{v}$

$$
\frac{\partial p_{0}}{\partial t}+\frac{\partial p_{1}}{\partial t}+\left(\boldsymbol{v}_{1} \cdot \nabla\right) p_{0}+\left(\underline{\boldsymbol{v}_{1}} \cdot \nabla\right) p_{1}=-\gamma p_{0} \nabla \cdot \boldsymbol{v}_{1}-\gamma p_{1} \nabla \widetilde{\boldsymbol{\sigma}}_{1}
$$

- But $\frac{\partial p_{0}}{\partial t}=0$ and dropping $X_{1} Y_{1}$ terms,

$$
\frac{\partial p_{1}}{\partial t}+\left(\boldsymbol{v}_{1} \cdot \nabla\right) p_{0}=-\gamma p_{0} \nabla \cdot \boldsymbol{v}_{1}
$$

- Induction equation:

$$
\frac{\partial \boldsymbol{B}}{\partial t}=\nabla \times(\boldsymbol{v} \times \boldsymbol{B})
$$

$$
\frac{\partial \boldsymbol{B}_{0}^{\prime}}{\partial t}+\frac{\partial \boldsymbol{B}_{1}}{\partial t}=\nabla \times\left(\boldsymbol{v}_{1} \times \boldsymbol{B}_{0}\right)+\nabla \times\left(\boldsymbol{v}_{1} \times \overline{\boldsymbol{B}}_{1}\right)
$$

- But $\frac{\partial \boldsymbol{B}_{0}}{\partial t}=0$ and dropping $X_{1} Y_{1}$ terms,

$$
\frac{\partial \boldsymbol{B}_{1}}{\partial t}=\nabla \times\left(\boldsymbol{v}_{1} \times \boldsymbol{B}_{0}\right)
$$

MHD linearization (cont.)

- Ideal equation of state: $p=\frac{R}{\mu} \rho T$

$$
p_{6}+p_{1}=\frac{R}{\mu} \rho_{0} T_{0}+\frac{R}{\mu} \rho_{1} T_{0}+\frac{R}{\mu} \rho_{0} T_{1}+\frac{R}{\mu} \rho_{1} T_{1}
$$

- But $p_{0}=\frac{R}{\mu} \rho_{0} T_{0}$ and dropping $X_{1} Y_{1}$ terms,

$$
p_{1}=\frac{R}{\mu} \rho_{1} T_{0}+\frac{R}{\mu} \rho_{0} T_{1}
$$

- Solenoidal constraints: $\nabla \cdot \boldsymbol{B}=0$

$$
\nabla \boldsymbol{B}_{0}+\nabla \cdot \boldsymbol{B}_{1}=0
$$

- But with $\nabla \cdot \boldsymbol{B}_{0}=0$

$$
\nabla \cdot \boldsymbol{B}_{1}=0
$$

Summary of linearized MHD equations

$$
\begin{align*}
& \frac{\partial \rho_{1}}{\partial t}+\nabla \cdot\left(\rho_{0} \boldsymbol{v}_{1}\right)=0 \\
& \rho_{0} \frac{\partial \boldsymbol{v}_{1}}{\partial t}=-\nabla p_{1}+\frac{\nabla \times \boldsymbol{B}_{0}}{\mu_{0}} \times \boldsymbol{B}_{1}+\frac{\nabla \times \boldsymbol{B}_{1}}{\mu_{0}} \times \boldsymbol{B}_{0}+\rho_{1} \boldsymbol{g} \tag{5.2}\\
& \frac{\partial p_{1}}{\partial t}+\left(\boldsymbol{v}_{1} \cdot \nabla\right) p_{0}=-\gamma p_{0} \nabla \cdot \boldsymbol{v}_{1} \tag{5.3}\\
& \frac{\partial \boldsymbol{B}_{1}}{\partial t}=\nabla \times\left(\boldsymbol{v}_{1} \times \boldsymbol{B}_{0}\right) \tag{5.4}\\
& p_{1}=\frac{R}{\mu} \rho_{1} T_{0}+\frac{R}{\mu} \rho_{0} T_{1} \\
& \nabla \cdot \boldsymbol{B}_{1}=0
\end{align*}
$$

Simple wave solutions

- Looking for plane waves of form,

$$
U=C_{U} \exp [i(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]
$$

- with angular frequency ω, wave vector $\boldsymbol{k}=\left(k_{x}, k_{y}, k_{z}\right)$, with position vector $\boldsymbol{r}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$. Note, $k=2 \pi / \lambda$.

$$
\begin{gathered}
\boldsymbol{k} \cdot \boldsymbol{r}=k_{x} x+k_{y} y+k_{z} z \\
\boldsymbol{k} \cdot \boldsymbol{k}=k^{2}=k_{x}^{2}+k_{y}^{2}+k_{z}^{2}
\end{gathered}
$$

- Useful solutions for Fourier analysis since,

$$
\begin{aligned}
& \frac{\partial}{\partial t} \rightarrow-i \omega, \quad \frac{\partial^{2}}{\partial t^{2}} \rightarrow-\omega^{2}, \quad \frac{\partial}{\partial x} \rightarrow-i k_{x}, \quad \frac{\partial^{2}}{\partial x^{2}} \rightarrow-k_{x}^{2} \\
& \nabla \rightarrow i \boldsymbol{k}, \quad \nabla \cdot \rightarrow i \boldsymbol{k}, \quad \nabla \times \rightarrow i \boldsymbol{k} \times
\end{aligned}
$$

Acoustic (pressure) wave equations

- Ignore magnetic field and gravity (i.e., $\boldsymbol{B}=\boldsymbol{g}=0$)
- Assume homogeneous medium
- From equilibrium (A), $\nabla p_{0}=0$ and $p_{0}=$ const.
- From simplicity, $\rho_{0}=$ const .
- Linearized equations reduce to:
(5.1) $\frac{\partial \rho_{1}}{\partial t}+\rho_{0} \nabla \cdot \boldsymbol{v}_{1}=0 \quad \rightarrow \quad-i \omega \rho_{1}+i \rho_{0}\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right)=0$

$$
\begin{equation*}
\rho_{0} \frac{\partial \boldsymbol{v}_{1}}{\partial t}=-\nabla p_{1} \quad \rightarrow \quad-i \omega \rho_{0} \boldsymbol{v}_{1}=-i \boldsymbol{k} p_{1} \tag{5.7}
\end{equation*}
$$

(5.3) $\frac{\partial p_{1}}{\partial t}=-\gamma p_{0} \nabla \cdot \boldsymbol{v}_{1} \quad \rightarrow \quad-i \omega p_{1}=-i \gamma p_{0}\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right)$

Acoustic wave properties

- From (5.8)

$$
\begin{equation*}
\boldsymbol{v}_{1}=\left(\frac{p_{1}}{\omega \rho_{0}}\right) \boldsymbol{k} \tag{5.10}
\end{equation*}
$$

- \boldsymbol{v}_{1} parallel to \boldsymbol{k}
- particle motion along propagation direction (longitudinal)
- Also
- From (5.7) $\quad \frac{\rho_{1}}{\rho_{0}}=\frac{\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right)}{\omega}$
- $\operatorname{From}(5.9) \quad p_{1}=\gamma p_{0} \frac{\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right)}{\omega}=\frac{\gamma p_{0} \rho_{1}}{\rho_{0}}$
$\begin{aligned} & \text { - Defining the sound speed } c_{s}^{2}=\frac{\gamma p_{0}}{\rho_{0}} \\ & p_{1}=c_{s}^{2} \rho_{1}\end{aligned}$
- for $\boldsymbol{k} \cdot \boldsymbol{v}_{1} \neq 0$, then ρ_{1} and $p_{1} \neq 0$ (compressive)

Acoustic dispersion relation

- Taking scalar product with \boldsymbol{k} to eq(5.10),

$$
\boldsymbol{k} \cdot \boldsymbol{v}_{1}=\left(\frac{p_{1}}{\omega \rho_{0}}\right) \boldsymbol{k} \cdot \boldsymbol{k}=\left(\frac{p_{1}}{\omega \rho_{0}}\right) k^{2}
$$

- Rearranging eq(5.11) and (5.12),

$$
\begin{aligned}
& \left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right)=\frac{\omega \rho_{1}}{\rho_{0}} \\
& \rho_{1}=\frac{p_{1}}{c_{s}^{2}}
\end{aligned}
$$

- Substitute, $\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right)=\frac{\omega p_{1}}{c_{s}^{2} \rho_{0}}$
- Equating $\boldsymbol{k} \cdot \boldsymbol{v}_{1}$,

$$
\begin{aligned}
& \left(\frac{p_{1}}{\omega \rho_{0}}\right) k^{2}=\frac{\omega p_{1}}{c_{s}^{2} \rho_{0}} \\
& \omega^{2}=k^{2} c_{s}^{2} \quad \text { (5.13) Dispersion relation }
\end{aligned}
$$

Acoustic phase and group speeds

- Phase speed:
- From eq (5.13): $\frac{\omega}{k}= \pm c_{s}$

$$
\boldsymbol{v}_{p}=v_{p} \boldsymbol{k}^{\prime}= \pm c_{s} \boldsymbol{k}^{\prime}
$$

- Group velocity:

$$
\boldsymbol{v}_{g}=\frac{\partial \omega}{\partial \boldsymbol{k}}=\left(\frac{\partial \omega}{\partial k_{x}}, \frac{\partial \omega}{\partial k_{y}}, \frac{\partial \omega}{\partial k_{z}}\right)
$$

- From eq (5.13): $\omega^{2}=c_{s}^{2}\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right)$
- Differentiating,

$$
\begin{aligned}
& 2 \omega \frac{\partial \omega}{\partial \boldsymbol{k}}=c_{s}^{2}\left(2 k_{x}, 2 k_{y}, 2 k_{z}\right) \\
& \frac{\partial \omega}{\partial \boldsymbol{k}}=\frac{c_{s}^{2}}{\omega}\left(k_{x}, k_{y}, k_{z}\right) \\
& \boldsymbol{v}_{g}=c_{s}^{2} \frac{k}{\omega} \boldsymbol{k}^{\prime}= \pm c_{s} \boldsymbol{k}^{\prime}
\end{aligned}
$$

Acoustic wave complications

- Consider hydrostatic equilibrium, $\nabla p_{0}=-\rho_{0} \boldsymbol{g}$

$$
\begin{aligned}
& p_{0}(z)=p_{0}(0) \exp (-z / H) \\
& \rho_{0}(z)=\rho_{0}(0) \exp (-z / H)
\end{aligned}
$$

- Where H is the pressure scale height,

$$
H=\frac{p_{0}}{\rho_{0} g}=\frac{R T}{g}
$$

- Pressure variations follow

$$
\begin{aligned}
& \frac{\partial^{2} Q}{\partial t^{2}}-c_{s}^{2}(z) \frac{\partial^{2} Q}{\partial z^{2}}+\Omega_{s}^{2}(z) Q=0 \\
& \omega^{2}=k_{z}^{2} c_{s}^{2}+\Omega_{s}^{2}
\end{aligned}
$$

- Real solutions (propagation) for $k_{z}>0$

$$
\omega>\Omega_{s}=\omega_{a c}=\frac{c_{s}}{2 H}
$$

Acoustic wave summary

- Restoring force: pressure
- Directionality: isotropic

- Phase speed: c_{s}
- Group speed: c_{s}

Waves in magnetic field

- There are two type of propagating waves in magnetic field
- Because magnetic field has two forces, magnetic tension and magnetic pressure.
- Both forces are coming $\boldsymbol{J} \times \boldsymbol{B}$ force

Alfven wave equations

- Ignore pressure and gravity (i.e., $p_{0}=\boldsymbol{g}=0$)
- From equilibrium (A), $\quad 0=\mu_{0}\left(\boldsymbol{J}_{0} \times \boldsymbol{B}_{0}\right)=\left(\nabla \times \boldsymbol{B}_{0}\right) \times \boldsymbol{B}_{0}$
- Assume no pressure variations, $\quad p_{1}=\rho_{1}=0$
- Assume uniform equilibrium field distribution, $\boldsymbol{B}_{0}=B_{0} \hat{z}$
- Linearized equations reduce to:

$$
\begin{equation*}
\nabla \cdot \boldsymbol{v}_{1}=0 \rightarrow i\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right)=0 \tag{5.1}
\end{equation*}
$$

(5.2) $\rho_{0} \frac{\partial \boldsymbol{v}_{1}}{\partial t}=\frac{\left(\nabla \times \boldsymbol{B}_{1}\right)}{\mu_{0}} \times \boldsymbol{B}_{0} \rightarrow i \omega \rho_{0} \boldsymbol{v}_{1}=\frac{\left(i \boldsymbol{k} \times \boldsymbol{B}_{1}\right)}{\mu_{0}} \times \boldsymbol{B}_{0}$ (5.15)
(5.4) $\frac{\partial \boldsymbol{B}_{1}}{\partial t}=\nabla \times\left(\boldsymbol{v}_{1} \times \boldsymbol{B}_{0}\right) \rightarrow-i \omega \boldsymbol{B}_{1}=i \boldsymbol{k} \times\left(\boldsymbol{v}_{1} \times \boldsymbol{B}_{0}\right)$

$$
\begin{equation*}
\nabla \cdot \boldsymbol{B}_{1} \rightarrow i \boldsymbol{k} \cdot \boldsymbol{B}_{1}=0 \tag{5.16}
\end{equation*}
$$

(shear) Alfven wave properties

- From eq (5.1), $\nabla \cdot \boldsymbol{v}_{1}=0$
- no divergent/convergent motions (incompressible)
- From eq (5.14), $\boldsymbol{k} \cdot \boldsymbol{v}_{1} \equiv k v_{1} \cos \theta_{k v_{1}}=0$

$$
\theta_{k v_{1}}=90^{\circ}
$$

- \boldsymbol{v}_{1} at right angles to \boldsymbol{k} (transverse)
- Taking scalar product with \boldsymbol{B}_{0},
- From eq (5.15),

$$
\begin{align*}
-\omega \rho_{0} \boldsymbol{v}_{1} \cdot \boldsymbol{B}_{0} & =\frac{\left(\boldsymbol{k} \times \boldsymbol{B}_{1}\right)}{\mu_{0}} \times \boldsymbol{B}_{0} \cdot \boldsymbol{B}_{0}=0 \quad\left(\nabla \cdot \boldsymbol{B}_{0}=0\right) \\
\boldsymbol{v}_{1} \cdot \boldsymbol{B}_{0} & \equiv v_{1} B_{0} \cos \theta_{v_{1} B}=0 \\
\theta_{v_{1} B} & =90^{\circ} \quad(5.18) \tag{5.18}
\end{align*}
$$

- \boldsymbol{v}_{1} at right angles to \boldsymbol{B}_{0} (perpendicular)

(Shear) Alfven wave properties (cont.)

- Expand eq (5.16) using standard vector identity,

$$
\begin{aligned}
-\omega \boldsymbol{B}_{1} & =\boldsymbol{k} \times\left(\boldsymbol{v}_{1} \times \boldsymbol{B}_{0}\right) \\
& =\left(\boldsymbol{k} \cdot \boldsymbol{B}_{0}\right) \boldsymbol{v}_{1}-\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right) \boldsymbol{B}_{0}
\end{aligned}
$$

- $\operatorname{But}\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right)=0$ from eq (5.14),

$$
\begin{equation*}
-\omega \boldsymbol{B}_{1}=\left(\boldsymbol{k} \cdot \boldsymbol{B}_{0}\right) \boldsymbol{v}_{1} \tag{5.19}
\end{equation*}
$$

- Taking scalar product with \boldsymbol{B}_{0},

$$
-\omega \boldsymbol{B}_{1} \cdot \boldsymbol{B}_{0}=\left(\boldsymbol{k} \cdot \boldsymbol{B}_{0}\right)\left(\boldsymbol{v}_{1} \cdot \boldsymbol{B}_{0}\right)
$$

- But $\left(\boldsymbol{v}_{1} \cdot \boldsymbol{B}_{0}\right)=0$ from eq (5.18),

$$
\begin{align*}
& \boldsymbol{B}_{1} \cdot \boldsymbol{B}_{0} \equiv B_{0} B_{1} \cos \theta_{B_{0} B_{1}}=0 \tag{5.20}\\
& \quad \cos \theta_{B_{0} B_{1}}=90^{\circ}
\end{align*}
$$

- \boldsymbol{B}_{1} at right angles to \boldsymbol{B}_{0} (perpendicular)

(Shear) Alfven dispersion relation

- Multiply eq (5.16) by ω and substitute for \boldsymbol{v}_{1} from eq (5.15),

$$
\begin{equation*}
\omega^{2} \boldsymbol{B}_{1}=\frac{1}{\mu_{0} \rho_{0}} \boldsymbol{k} \times\left\{\left[\left(\boldsymbol{k} \times \boldsymbol{B}_{1}\right) \times \boldsymbol{B}_{0}\right] \times \boldsymbol{B}_{0}\right\} \tag{5.21}
\end{equation*}
$$

- Expanding inner triple vector product,

$$
\begin{aligned}
(\boldsymbol{A} \times \boldsymbol{B}) \times \boldsymbol{C} & =(\boldsymbol{C} \cdot \boldsymbol{A}) \boldsymbol{B}-(\boldsymbol{C} \cdot \boldsymbol{B}) \boldsymbol{A} \\
\left(\boldsymbol{k} \times \boldsymbol{B}_{1}\right) \times \boldsymbol{B}_{0} & =\left(\boldsymbol{B}_{0} \cdot \boldsymbol{k}\right) \boldsymbol{B}_{1}-\left(\boldsymbol{B}_{0} \cdot \boldsymbol{B}_{1}\right) \boldsymbol{k}
\end{aligned}
$$

- But $\left(\boldsymbol{B}_{0} \cdot \boldsymbol{B}_{1}\right)=0$ from eq (5.20),

$$
\begin{aligned}
\boldsymbol{k} \times\left\{\left[\left(\boldsymbol{k} \times \boldsymbol{B}_{1}\right) \times \boldsymbol{B}_{0}\right] \times \boldsymbol{B}_{0}\right\} & =\boldsymbol{k} \times\left\{\left[\left(\boldsymbol{B}_{0} \cdot \boldsymbol{k}\right) \boldsymbol{B}_{1}\right] \times \boldsymbol{B}_{0}\right\} \\
& =\left(\boldsymbol{k} \cdot \boldsymbol{B}_{0}\right)\left[\left(\boldsymbol{B}_{0} \cdot \boldsymbol{k}\right) \boldsymbol{B}_{1}\right]-\left(\boldsymbol{k} \cdot\left[\left(\boldsymbol{B}_{0} \cdot \boldsymbol{k}\right) \boldsymbol{B}_{1}\right]\right) \boldsymbol{B}_{0} \\
& =\left(\boldsymbol{k} \cdot \boldsymbol{B}_{0}\right)^{2} \boldsymbol{B}_{1}-\left(\boldsymbol{k} \cdot \boldsymbol{B}_{1}\right)\left(\boldsymbol{B}_{0} \cdot \boldsymbol{k}\right) \boldsymbol{B}_{0}
\end{aligned}
$$

- And $\left(\boldsymbol{k} \cdot \boldsymbol{B}_{1}\right)=0$ from eq (5.17),

$$
\boldsymbol{k} \times\left\{\left[\left(\boldsymbol{k} \times \boldsymbol{B}_{1}\right) \times \boldsymbol{B}_{0}\right] \times \boldsymbol{B}_{0}\right\}=\left(\boldsymbol{k} \cdot \boldsymbol{B}_{0}\right)^{2} \boldsymbol{B}_{1}
$$

(Shear) Alfven dispersion relation (cont.)

- From eq (5.21), $\omega^{2} \boldsymbol{B}_{1}=\frac{\left(\boldsymbol{k} \cdot \boldsymbol{B}_{0}\right)^{2}}{\mu_{0} \rho_{0}} \boldsymbol{B}_{1}$

$$
\begin{equation*}
\omega^{2}=\frac{\left(\boldsymbol{k} \cdot \boldsymbol{B}_{0}\right)^{2}}{\mu_{0} \rho_{0}} \tag{5.22}
\end{equation*}
$$

- Recall that $\boldsymbol{B}_{0}=B_{0} \hat{\boldsymbol{z}}$ and $(\boldsymbol{k} \cdot \hat{\boldsymbol{z}})=k_{z}=k \cos \theta_{k B_{0}}$,

$$
\omega^{2}=\frac{(\boldsymbol{k} \cdot \hat{\boldsymbol{z}})^{2} B_{0}^{2}}{\mu_{0} \rho_{0}}=\frac{\left(k \cos \theta_{k B_{0}}\right)^{2} B_{0}^{2}}{\mu_{0} \rho_{0}}
$$

- Defining the Alfven speed,

$$
v_{A}^{2}=\frac{B_{0}^{2}}{\mu_{0} \rho_{0}}
$$

- Dispersion relation is

$$
\begin{equation*}
\omega^{2}=\left(k \cos \theta_{k B_{0}}\right)^{2} v_{A}^{2} \tag{5.23}
\end{equation*}
$$

(Shear) Alfven phase and group speeds

- Shear Alfven waves are anisotropic
- $\left(\boldsymbol{k} \cdot \boldsymbol{B}_{0}\right)$ term in eq (5.22), the generalized dispersion relation
- Phase speed:

From eq (5.23) $\quad \bar{k}= \pm v_{A} \cos \theta_{k B_{0}}=v_{p}$

- Group velocity:

$$
\boldsymbol{v}_{g}=\frac{\partial \omega}{\partial \boldsymbol{k}}=\left(\frac{\partial \omega}{\partial k_{x}}, \frac{\partial \omega}{\partial k_{y}}, \frac{\partial \omega}{\partial k_{z}}\right)
$$

From eq (5.23)

$$
\begin{aligned}
\omega & = \pm v_{A} k \cos \theta_{k B_{0}} \\
& = \pm v_{A} k_{z}
\end{aligned}
$$

- Differentiating:

$$
\frac{\partial \omega}{\partial \boldsymbol{k}}= \pm v_{A} \hat{\boldsymbol{z}}=v_{g}
$$

(shear) Alfven wave summary

- Restoring force: B-field tension
- Directionality: anisotropic
- Phase speed: $v_{\mathrm{A}} \cos \theta_{\mathrm{kB} 0}$
- Group speed: v_{A}

Torsional Alfven wave

- In cylindrically symmetric geometry with an axial field $\left(B_{\mathrm{z}}\right)$, there exist waves which posses only azimuthal component
- Such wave as known as torsional Alfven wave
- Torsional Alfven wave propagates with $v_{\mathrm{p}}=v_{\mathrm{A}}$ along axial magnetic field

Compressional Alfven wave

- In shear Alfven wave, we assume incompressible $\left(\nabla \cdot \boldsymbol{v}_{1}=0\right)$.
- If we consider compression (by magnetic pressure), we obtain another solution of Alfven wave. This is called compressional Alfuen wave
- Dispersion relation is

$$
\omega=k v_{A}
$$

- The phase velocity and group velocity is $v_{\mathrm{p}}=v_{\mathrm{g}}=v_{\mathrm{A}}$
- Compressional Alfven wave is isotropic
- If $\theta_{k B_{0}}=\pi / 2$ (perpendicular direction against $\left.\boldsymbol{B}_{0}\right), \boldsymbol{v}_{1} \| \boldsymbol{k}$. So it is compression wave
- If $\theta_{k B_{0}}=0$ (parallel direction to \boldsymbol{B}_{0}), compressional wave is matched with shear Alfven wave (not compressional)

Compressional Alfven wave summary

- Restoring force: B-field tension \& magnetic pressure
- Directionality: isotropic

Alfven wave example

Alfven wave in solar corona (Hinode, Ca II H spectral line)
Double helix nebula in the galaxy (IR)

Movie here

Magnetoacoustic wave equation

- Ignore gravity (i.e., $\boldsymbol{g}=0$), consider compressible (gas pressure \& magnetic pressure)
- assume uniform equilibrium field distribution, $\boldsymbol{B}_{0}=B_{0} \hat{\boldsymbol{z}}$
- Linearized equations reduce to,

$$
\hat{\boldsymbol{B}}_{0} \equiv B_{0} / \boldsymbol{B}_{0}
$$

$$
\begin{align*}
\frac{\omega^{2} \boldsymbol{v}_{1}}{v_{A}^{2}} & =k^{2} \cos ^{2}\left(\theta_{k B_{0}}\right) \boldsymbol{v}_{1}-\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right) k \cos \left(\theta_{k B_{0}}\right) \hat{\boldsymbol{B}}_{0} \\
& +\left[\left(1+\frac{c_{s}^{2}}{v_{A}^{2}}\right)\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right)-k \cos \left(\theta_{k B_{0}}\right)\left(\hat{\boldsymbol{B}}_{0} \cdot \boldsymbol{v}_{1}\right)\right] \boldsymbol{k} \tag{5.24}
\end{align*}
$$

- with resulting dispersion relation,

$$
\omega^{4}-\omega^{2} k^{2}\left(c_{s}^{2}+v_{A}^{2}\right)+c_{s}^{2} v_{A}^{2} k^{4} \cos ^{2} \theta_{k B_{0}}=0
$$

Derivation of dispersion relation for magnetoacoustic wave

- First $\operatorname{Eq}(5.24) * \boldsymbol{k} \& \operatorname{Eq}(5.24) * \boldsymbol{B}_{0}(\operatorname{dot}$ product $)$
- From these two equations, deleted $\left(\boldsymbol{v}_{1} \cdot \boldsymbol{k}\right) \&\left(\boldsymbol{v}_{1} \cdot \hat{\boldsymbol{B}}_{0}\right)$

Magnetoacoustic wave properties

- Phase velocities:

$$
\begin{aligned}
\frac{\omega^{2}}{k^{2}}=v_{f}^{2} & =\frac{\left(c_{s}^{2}+v_{A}^{2}\right)+\sqrt{\left(c_{s}^{2}+v_{A}^{2}\right)^{2}-4 c_{s}^{2} v_{A}^{2} \cos ^{2}\left(\theta_{k B_{0}}\right)}}{2} \\
v_{s}^{2} & =\frac{\left(c_{s}^{2}+v_{A}^{2}\right)-\sqrt{\left(c_{s}^{2}+v_{A}^{2}\right)^{2}-4 c_{s}^{2} v_{A}^{2} \cos ^{2}\left(\theta_{k B_{0}}\right)}}{2}
\end{aligned}
$$

Wave Mode	Propagation	Low-beta	High-beta
Alfven	Along B_{0}	Magnetic tension	
Fast	isotropic	Magnetic pressure	Gas pressure
Slow	Roughly along B_{0}	Gas pressure	Magnetic tension

Magnetoacoustic wave phase and group speeds

For low-beta case $\left(c_{\mathrm{s}}<v_{\mathrm{A}}\right)$

Phase speed

Magnetoacoustic wave phase and group speeds (cont.)

- Low beta case:
- Fast mode propagates at Alfven speed
- Slow mode \sim 1D sound wave guided by field
- High beta case:
- Fast mode behaves like sound wave (restoring force is magnetic pressure)
- Slow mode propagates at Alfven speed
low beta $\left(c_{\mathrm{s}}<v_{\mathrm{A}}\right)$

(a) Phase diagrams
$c / b=1.0$

(b) Group diagrams

high beta
$\left(c_{\mathrm{s}}>v_{\mathrm{A}}\right)$

Summary 1

- Acoustic waves
- particle motion along k direction (longitudinal)
- phase and group speeds are c_{s} in all directions (isotropic)
- (Shear) Alfven waves
- particle motion at right angles to k direction (transverse)
- B perturbation at right angles to k direction (perpendicular)
- phase speed varies as $v_{\mathrm{A}} \cos \theta_{\mathrm{kB} 0}$ (anisotropic)
- group speed is v_{A} along B direction (anisotropic)
- Magnetoacoustic waves
- Alfven - as above
- Fast - gas and B pressure in phase, also isotropic
- Slow - gas and B pressure out of phase, also anisotropic

Sound speed and Alfven speed

- Typical velocity of Sound wave and Alfven wave in the universe

Sound wave

- When $\gamma=5 / 3, m=0.5 m_{\mathrm{i}}, \mu=0.5$ (fully ionized hydrogen gas),

$$
c_{s} \simeq 1.66 \times 10^{4} T_{0}^{1 / 2}(\mathrm{~cm} / \mathrm{s}) \quad p=n k_{B} T=\frac{\rho}{\mu m_{p}} T
$$

- $T_{0} \sim 10^{4}$ (stellar atmosphere) $\Rightarrow c_{\mathrm{s}} \sim 16 \mathrm{~km} / \mathrm{s}$
- $T_{0} \sim 10^{8}$ (cluster of galaxies) $\Rightarrow c_{\mathrm{s}} \sim 1.6 \times 10^{3} \mathrm{~km} / \mathrm{s}$

Alfven wave

$$
v_{A}=2.8 \times 10^{5}\left(\frac{B}{1 \mu \mathrm{G}}\right)\left(\frac{n_{0}}{1 \mathrm{~cm}^{-3}}\right)^{-1 / 2}(\mathrm{~cm} / \mathrm{s})
$$

Waves in gravitational field

- Next, we consider the wave propagating in the gravitational field.
- Such waves, we called gravity wave (not gravitational wave)
- Internal gravity wave
- Acoustic gravity wave

Internal gravity wave

- Consider a blob of plasma, which displaced vertically a distance δz from equilibrium
- Assumption:

- At original height z, the blob are in equilibrium balance between pressure gradient and gravity

$$
\begin{equation*}
\frac{d p_{0}}{d z}=-\rho_{0} g \tag{5.25}
\end{equation*}
$$

Internal gravity wave (cont.)

- Outside the blob the pressure and density at height $z+\delta z$ are $p_{0}+\delta p_{0} \& \rho_{0}+\delta \rho_{0}$, by eq (5.25),

$$
\begin{equation*}
\delta p_{0}=-\rho_{0} g \delta z, \quad \delta \rho_{0}=\frac{d \rho_{0}}{d z} \delta z \tag{5.26}
\end{equation*}
$$

- Inside the blob the pressure and density at height $z+\delta z$ are $p_{0}+\delta p$ $\& \rho_{0}+\delta \rho$, by assumption (1),

$$
\begin{equation*}
\delta p=\delta p_{0}=-\rho_{0} g \delta z \tag{5.27}
\end{equation*}
$$

- Assumption (2) means that, as the blob rises, its pressure and density obey $p / \rho^{\gamma}=$ const, So that $\delta p=c_{\mathrm{s}}^{2} \delta \rho$, from eq (5.27) internal density change as

$$
\begin{equation*}
\delta \rho=-\frac{\rho_{0} g \delta z}{c_{s}^{2}} \tag{5.28}
\end{equation*}
$$

Internal gravity wave (cont.)

- Since the new density inside the blob differs from the ambient density at its new height, the blob experiences a buoyancy force
- From eq (5.26) \& (5.28),

$$
\begin{align*}
& g\left(\delta \rho_{0}-\delta \rho\right)=-N^{2} \rho_{0} \delta z \tag{5.29}\\
& N^{2}=-g\left(\frac{1}{\rho_{0}} \frac{d \rho_{0}}{d z}+\frac{g}{c_{s}^{2}}\right)
\end{align*}
$$

Brunt-Vaisala frequency

- An alternative expression is obtained by eq(5.25) \& adiabatic EoS ($p_{0}=\rho_{0} R T_{0} / \mu, p_{0} / \rho_{0}{ }^{\gamma}=$ const):

$$
N^{2}=-\frac{g}{T_{0}}\left[\frac{d T_{0}}{d z}+\left(\frac{d T}{d z}\right)_{a d}\right]
$$

- where $\left(\frac{d T}{d z}\right)_{a d}=-(\gamma-1) \frac{T_{0} g}{c_{s}^{2}}$

Internal gravity wave (cont.)

- In general, N varies with height z but, in particular case when the equilibrium temperature (T_{0}) is uniform (no dependence on height),

$$
N^{2}=\frac{(\gamma-1) g^{2}}{c_{s}^{2}}
$$

- In the presence of a horizontal magnetic field, Brunt-Vaisala frequency is increased to

$$
N^{2}=-g\left(\frac{1}{\rho_{0}} \frac{d \rho_{0}}{d z}+\frac{g}{c_{s}^{2}+v_{A}^{2}}\right)
$$

- Or in case of uniform temperature

$$
N^{2}=\frac{g^{2}}{c_{s}^{2}}\left(\gamma-\frac{c_{s}^{2}}{c_{s}^{2}+v_{A}^{2}}\right)
$$

Internal gravity wave (cont.)

- If the only resultant force acting on the plasma blob is due to buoyancy, (eq. 5.29), the equation of motion becomes

$$
\begin{equation*}
\rho_{0} \frac{d^{2}(\delta z)}{d t^{2}}=-N^{2} \rho_{0} \delta z \tag{5.30}
\end{equation*}
$$

- When $N^{2}>0$, this is simple harmonic motion with frequency $\omega=N$
- So that the temperature decreases with height more slowly than adiabatic (= isothermal)

$$
-\frac{d T_{0}}{d z}<-\left(\frac{d T}{d z}\right)_{a d} \quad \begin{aligned}
& \text { Schwarzschild criterion for } \\
& \text { convective stability }
\end{aligned}
$$

- If temperature decreases with height faster than adiabatic, the condition $N^{2}>0$ is violated $=>$ solution of eq(5.30) is exponentially growing (convective instability)
- The region of the solar interior where this is so is convection zone
- (Using entropy, we can also discuss this criterion)

Internal gravity wave (cont.)

- The simple harmonic motion leads to expect the existence of gravity waves when $N^{2}>0$ due to the tendency for plasma to oscillate slowly with frequency N
- Linearize equation:

$$
\omega^{2} \boldsymbol{v}_{1}=c_{s}^{2} \boldsymbol{k}\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right)+i(\gamma-1) g\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right) \hat{\boldsymbol{z}}+i g k v_{1 z}
$$

- Taking scalar product with \boldsymbol{k} and $\backslash \operatorname{hat}\{\boldsymbol{z}\}$ in turn and gathering together terms in $v_{1 \mathrm{z}}$ and $\boldsymbol{k}^{*} \boldsymbol{v}_{1}$,

$$
\begin{aligned}
i g k^{2} v_{1 z} & =\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right)\left\{\omega^{2}-c_{s}^{2} k^{2}-i(\gamma-1) g k_{z}\right\} \\
\left(\omega^{2}-i g k_{z}\right) v_{1 z} & =\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right)\left\{c_{s}^{2} k_{z}+i(\gamma-1) g\right\}
\end{aligned}
$$

- Then an elimination of $\left(\boldsymbol{k}^{*} \boldsymbol{v}_{1}\right) / v_{1 \mathrm{z}}$

$$
\begin{equation*}
\left(\omega^{2}-i g k_{z}\right)\left\{\omega^{2}-c_{s}^{2} k^{2}-i(\gamma-1) g k_{z}\right\}=i g k^{2}\left\{c_{s}^{2} k_{z}+i(\gamma-1) g\right\} \tag{5.31}
\end{equation*}
$$

Internal gravity wave (cont.)

- The object is to seek waves with a frequency of the order of BruntVaisala frequency (N) and much slower than that of sound waves, so

$$
\omega \approx g / c_{s} \ll k c_{s}
$$

- The wavelength is much smaller than a scale-height,. Eq (5.31) reduces to

$$
\omega^{2} c_{s}^{2} \approx(\gamma-1) g^{2}\left(1-k_{z}^{2} / k^{2}\right)
$$

- $\theta_{g}=\cos ^{-1}\left(k_{z} / k\right)$: the inclination between the propagation direction and z-axis
- The dispersion relation (temperature is uniform) is where

$$
\omega=N \sin \theta_{g} \quad \text { Internal gravity wave } N^{2}=\frac{(\gamma-1) g^{2}}{c_{s}^{2}}
$$

- Typical value for N^{-1} is 50 s. So the gravity mode tends to be rather slow by comparison with other wave

Properties of internal gravity wave

- Phase speed: $v_{p}=\frac{\omega}{k}=\frac{N}{k} \sin \theta_{g}$
- They propagate along two cones with angle θ_{g} (not propagate in vertical direction)
- z-component of group velocity:

$$
v_{g z}=\frac{\partial \omega}{\partial k_{z}}=-\frac{\omega k_{z}}{k^{2}}
$$

- A group of upwind propagating wave carries energy downward (negative direction)
- group velocity is in a direction perpendicular to the surface of the cone with angle θ_{g}

Acoustic-gravity wave

- Consider propagation of sound (acoustic) wave in gravitational field (consider compressibility and buoyancy forces are present together)
- Using linearize equation is the same as internal gravity wave:

$$
\omega^{2} \boldsymbol{v}_{1}=c_{s}^{2} \boldsymbol{k}\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right)+i(\gamma-1) g\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right) \hat{\boldsymbol{z}}+i g k v_{1 z}
$$

- We consider $\boldsymbol{k}=\left(k_{\mathrm{x}}, k_{\mathrm{z}}\right)$ and $\boldsymbol{v}_{1}=\left(v_{\mathrm{x}}, v_{\mathrm{z}}\right)$
- After some calculation, we get dispersion relation

$$
\omega^{4}-\left\{k_{x}^{2}+\left(k_{z}+i \frac{\gamma g}{2 c_{s}^{2}}\right)^{2}+\frac{\gamma^{2} g^{2}}{4 c_{s}^{4}}\right\} c_{s}^{2} \omega^{2}+(\gamma-1) g^{2} k_{x}^{2}=0
$$

Acoustic-gravity wave (cont.)

- We define $N^{2}=\frac{(\gamma-1) g^{2}}{c_{s}^{2}}, \quad N_{s}^{2}=\frac{\gamma^{2} g^{2}}{4 c_{s}^{2}}$,

$$
\boldsymbol{k}^{\prime}=\boldsymbol{k}+i \frac{N_{s}}{c_{s}} \hat{z}, \quad \sin ^{2} \theta_{g}=1-\frac{k_{z}^{\prime 2}}{k^{\prime 2}}=\frac{k_{x}^{2}}{k^{\prime 2}}
$$

- The dispersion relation is rewritten as

$$
\omega^{4}-\left(k^{\prime 2}+\frac{N_{s}^{2}}{c_{s}^{2}}\right) c_{s}^{2} \omega^{2}+N^{2} c_{s}^{2} k^{\prime 2} \sin ^{2} \theta_{g}^{\prime}=0
$$

- When $\gamma=2, N_{\mathrm{s}}=N$. But this is not realistic. When $\gamma=5 / 3, N_{s} \simeq 1.02 N$ So usually $N_{s} \geq N$
- When $\omega^{2} \ll k^{\prime 2} c_{s}^{2}, \omega \simeq N \sin ^{2} \theta_{g}^{\prime}$. This is internal gravity mode (g mode).
- When $\omega^{2} \gg N, \omega \simeq k^{\prime} c_{s}$. This is acoustic wave mode (p-mode).

Acoustic-gravity wave (cont.)

- When this wave propagates perpendicular direction $\left(\theta_{g}^{\prime}=0\right)$,

$$
\omega^{2}=N_{s}^{2}+k^{2} c_{s}^{2}
$$

- Therefore, p-mode only exists when $\omega>N_{s}$
- If acoustic-gravity wave propagates not perpendicular direction, there are two solution $\left(k^{\prime 2}>0, \omega^{2}>0\right)$
- Dispersion relation is

$$
\omega^{2}=\frac{1}{2}\left(k^{\prime 2} c_{s}^{2}+N_{s}^{2} \pm \sqrt{\left(k^{\prime 2} c_{s}^{2}+N_{s}^{2}\right)^{2}-4 N^{2} c_{s}^{2} k^{\prime 2} \sin ^{2} \theta_{g}^{\prime}}\right)
$$

- From this, the solutions are $\omega<N \sin \theta_{g}^{\prime}$ or $\omega>N_{s}$

Acoustic-gravity wave (cont.)

- higher frequency mode $\left(\omega>N_{s}\right)$ is usually p-mode but group velocity is $v_{\mathrm{g}}<c_{\mathrm{s}}$ even though phase velocity is $v_{\mathrm{p}}>c_{\mathrm{s}}$
- In the limit of $\omega \rightarrow N_{s}, v_{p} \rightarrow \infty$ and $v_{g} \rightarrow 0$
- Lower frequency mode $\left(\omega<N \sin \theta_{g}^{\prime}\right)$ is usually g-mode and phase velocity is $v_{\mathrm{p}}<c_{\mathrm{s}}$
- In the limit of $\omega \rightarrow N \sin \theta_{g}^{\prime}, v_{p} \rightarrow 0$
- The wave with the frequency between N_{s} and $N \sin \theta^{\prime}{ }_{\mathrm{g}}$ does not propagate (decays in short distance), called evanescent
- If k^{\prime} is purely imaginary, the standing wave can exist in this frequency. But no energy can be propagated.

Acoustic-gravity wave (cont.)

- Next, we investigate the wave which propagates perpendicular direction against k_{x} and $\omega\left(\theta_{\mathrm{g}}^{\prime}=\pi / 2\right)$
- The dispersion relation is

$$
\begin{array}{r}
\omega^{4}-\left(k_{x}^{2}+k_{z}^{\prime 2}+\frac{N_{s}^{2}}{c_{s}^{2}}\right) c_{s}^{2} \omega^{2}+N^{2} c_{s}^{2} k_{x}^{2}=0 \\
\rightarrow \omega^{2}\left(\omega^{2}-N_{s}^{2}\right)-\left(\omega^{2}-N^{2}\right) c_{s}^{2} k_{x}^{2}=k_{z}^{2} c_{s}^{2} \omega^{2}
\end{array}
$$

- From this, the two solution is $k_{x}^{2}>0, \omega^{2}>0$ Therefore the condition for $k_{z}^{\prime}>0$ is

$$
\omega^{2}\left(\omega^{2}-N_{s}^{2}\right)>\left(\omega^{2}-N^{2}\right) c_{s}^{2} k_{x}^{2}
$$

Acoustic-gravity wave (cont.)

- This condition divides the $\omega-k_{\mathrm{x}}$ plane. This figure sometimes referred as a diagnostic diagram

Acoustic gravity wave example

Helioseismology

Summary 2

- We have two type of waves propagating in the gravitational field.
- g-mode (internal gravity wave) restoring by buoyancy force
- p-mode (acoustic wave) restoring by pressure
- Between these two modes, evanescent region exists.

Exercise 2-3

Derivation of dispersion relation of magneto-acoustic waves

From linearized equation:

$$
\begin{aligned}
\frac{\omega^{2} \boldsymbol{v}_{1}}{v_{A}^{2}}= & k^{2} \cos ^{2}\left(\theta_{k B_{0}}\right) \boldsymbol{v}_{1}-\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right) k \cos \left(\theta_{k B_{0}}\right) \hat{\boldsymbol{B}}_{0} \\
& +\left[\left(1+\frac{c_{s}^{2}}{v_{A}^{2}}\right)\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right)-k \cos \left(\theta_{k B_{0}}\right)\left(\hat{\boldsymbol{B}}_{0} \cdot \boldsymbol{v}_{1}\right)\right] \boldsymbol{k}
\end{aligned}
$$

Exercise 2-3 (cont.)

- Dot product of \boldsymbol{k}
$\boldsymbol{k} \cdot \hat{\boldsymbol{B}}_{0}=k \cos \left(\theta_{k B_{0}}\right)$

$$
\begin{aligned}
=>\frac{\omega^{2} \boldsymbol{v}_{1}}{v_{A}^{2}} \cdot \boldsymbol{k}= & k^{2} \cos ^{2}\left(\theta_{k B_{0}}\right) \boldsymbol{v}_{1} \cdot \boldsymbol{k}-\underline{k \cos \left(\theta_{k B_{0}}\right)\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right)\left(\boldsymbol{k} \cdot \hat{\boldsymbol{B}}_{0}\right)} \\
& +\left[\left(1+\frac{c_{s}^{2}}{v_{A}^{2}}\right)\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right)-k \cos \left(\theta_{k B_{0}}\right)\left(\hat{\boldsymbol{B}}_{0} \cdot \boldsymbol{v}_{1}\right)\right] k^{2}
\end{aligned}
$$

$$
=>=\left[k^{2} \cos ^{2}\left(\theta_{k B_{0}}\right)+k^{2}\left(1+\frac{c_{s}^{2}}{v_{A}^{2}}\right)-k^{2} \cos ^{2}\left(\theta_{k B_{0}}\right)\right]\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right)
$$

$$
\frac{-k^{3} \cos \left(\theta_{k B_{0}}\right)\left(\boldsymbol{v}_{1} \cdot \hat{\boldsymbol{B}}_{0}\right)}{/}
$$

$$
=k^{2}\left(1+\frac{c_{s}^{2}}{v_{A}^{2}}\right)\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right)-k^{3} \cos \left(\theta_{k B_{0}}\right)\left(\boldsymbol{v}_{1} \cdot \hat{\boldsymbol{B}}_{0}\right)
$$

$$
\begin{equation*}
\left[\frac{\omega^{2}}{v_{A}^{2}}-k^{2}\left(1+\frac{c_{s}^{2}}{v_{A}^{2}}\right)\right]\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right)=k^{3} \cos \left(\theta_{k B_{0}}\right)\left(\boldsymbol{v}_{1} \cdot \hat{\boldsymbol{B}}_{0}\right) \tag{4}
\end{equation*}
$$

Exercise 2-3 (cont.)

- Dot product of $\hat{\boldsymbol{B}}_{0}=>$

$$
\boldsymbol{k} \cdot \hat{\boldsymbol{B}}_{0}=k \cos \left(\theta_{k B_{0}}\right)
$$

$$
\frac{\omega^{2} \boldsymbol{v}_{1}}{v_{A}^{2}} \cdot \hat{\boldsymbol{B}}_{0}=\underline{k^{2} \cos ^{2}\left(\theta_{k B_{0}}\right) \boldsymbol{v}_{1} \cdot \hat{\boldsymbol{B}}_{0}}-\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right) k \cos \left(\theta_{k B_{0}}\right)
$$

$$
\left.\left.\begin{array}{rl}
& +\left[\left(1+\frac{c_{s}^{2}}{v_{A}^{2}}\right)\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right)-k \cos \left(\theta_{k B_{0}}\right)\left(\boldsymbol{v}_{1} \cdot \hat{\boldsymbol{B}}_{0}\right)\right.
\end{array}\right] \boldsymbol{k} \cdot \hat{\boldsymbol{B}}_{0}\right)
$$

Exercise 2-3 (cont.)

- From eq(4) \& (5), vanish $\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right)$ and $\left(\boldsymbol{v}_{1} \cdot \hat{\boldsymbol{B}}_{0}\right)$

$$
\begin{aligned}
& {\left[\frac{\omega^{2}}{v_{A}^{2}}-k^{2}\left(1+\frac{c_{s}^{2}}{v_{A}^{2}}\right)\right] \frac{v_{A}^{2}}{c_{s}^{2} k \cos \left(\theta_{k B_{0}}\right)}=k^{3} \cos \left(\theta_{k B_{0}}\right) \frac{v_{A}^{2}}{\omega^{2}} } \\
=> & \omega^{4}-k^{2}\left(c_{s}^{2}+v_{A}^{2}\right) \omega^{2}-c_{s}^{2} v_{A}^{2} k^{4} \cos ^{2}\left(\theta_{k B_{0}}\right)=0
\end{aligned}
$$

