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What defines a wave? 
•  Mechanical Example: 
–  Sound, string, water 

•  Energy transfer 
•  Restoring forces: 
–  Pressure, tension, gravity 

•  Characteristics: 
–  Wave speed 
–  Motion of medium 
–  Direction of propagation 

•  Dispersion relation – very important 



Simple wave representation 
•  For plane waves propagating with wave vector k = (kx, ky, kz) and 

angular frequency ω, [where r = (x, y, z) is the position vector] 

•  And for propagation in only the x-direction 

•  Constant phase is maintained for a point on the wave when, 

U = CU exp[i(k · r � �t)]

U = CU exp[i(kx� �t)]

d
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Wave group speed 
•  Phase speed is not the rate of information (i.e., energy) transfer 
•  Group speed is similarly defined, but for constant phase on a 

modulated wave envelope, 
 
•  Giving, 

U � exp[i(�kx���t)]

d

dt
(�kx���t) = 0
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��
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Wave dispersion relation 
•  Everything is contained in 

dispersion relation, 

•  k often complex, but wave 
propagate only for, 

  

•  Dispersion relation indicates 
cutoffs and resonances 

� = �(k)

R(�(k)) �= 0



What makes plasma waves 

•  Gas-like  

Plasma properties  

•  charged  

•  Magnetic 
field 

•  Fluid equations 
•  mass continuity 
•  equation of motion 
•  energy equation 
•  ideal equation of state  

•  Electromagnetic equations  
•  Maxwell’s equations  
• induction equation 
•  Ohm’s law  



Fluid equation 
•  Mass continuity:  

•  Using vector identity, it expands as: 

•  Consider gravity force (ρg), equation of Motion: 

•  Ideal Equation of state: 

•  Energy (entropy) 
equation: 

•  L represents all energy losses. Only consider adiabatic case (L=0)  
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Modified energy equation 
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Electromagnetic equation 
Ampere’s law:  ��B = µ0J

Solenoidal constraints:  � · B = 0

Faraday’s law:  �B

�t
= ���E

Gauss’s law:  � · E =
�e

�0

Ohm’s law:  J = �(E + v �B)

Induction equation:  �B

�t
= �� (v �B)

diffusivity term is ignored 



Wave assumptions 
•  Wave amplitudes are small 

⇒ allows for linearization of MHD equations 
•  Basic state is a static equilibrium 

•  Quantities X0 and X0 are the initial equilibrium state 
•  Not necessary to static  

0 = ��p0 + J0 �B0 + �0gEquation of motion: 

Solenoidal constraints: � · B0 = 0

Ideal equation of state: p0 =
R

µ
�0T0

(A) 

(B) 

(C) 



Wave perturbations 
•  After wave initiation, 

–  X and X are perturbed quantities 
–  X1 and X1 are applied perturbation (<< X0 and X0 quantities)  

•  Static initial condition: 
–  v0 = 0,  v = v1(r, t) 
–  Initial quantities are  time independent 

B = B0 + B1(r, t)
v = v0 + v1(r, t)
� = �0 + �1(r, t)
p = p0 + p1(r, t)
T = T0 + T1(r, t)

�X0

�t
= 0,

�X0

�t
= 0,



MHD linearization 
•  Put perturbed quantities into MHD equations and neglect products 

of small terms (i.e., X1Y1) 
•  Continuity equation:  

•  But with                  and dropping X1Y1 terms, 
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MHD linearization (cont.)	  
•  Equation of motion: 

•  Neglecting X1Y1 terms and substituting for J, 

•  But, 
  

�
�v

�t
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�0
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�t
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�v1

�t
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MHD linearization (cont.)	  
•  Adiabatic energy equation: 

 
•  But                 and dropping X1Y1 terms,  

•  Induction equation:  

•  But                     and dropping X1Y1 terms,  
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MHD linearization (cont.)	  
•  Ideal equation of state: 

•  But                     and dropping X1Y1 terms, 

•  Solenoidal constraints: 
 
•  But with    

p =
R

µ
�T

p0 + p1 =
R

µ
�0T0 +

R

µ
�1T0 +

R

µ
�0T1 +

R

µ
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µ
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µ
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� · B = 0
� · B0 +� · B1 = 0
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�0
�v1

�t
= ��p1 +

��B0

µ0
�B1 +

��B1

µ0
�B0 + �1g

�p1

�t
+ (v1 ·�)p0 = ��p0� · v1
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p1 =
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µ
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µ
�0T1

� · B1 = 0

Summary of linearized MHD equations 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 



Simple wave solutions 
•  Looking for plane waves of form, 

•  with angular frequency ω, wave vector k = (kx, ky, kz), with 
position vector r = (x, y, z). Note, k = 2π /λ. 

 
 
•  Useful solutions for Fourier analysis since, 

U = CU exp [i(k · r � �t)]

k · r = kxx + kyy + kzz

k · k = k2 = k2
x + k2

y + k2
z

�

�t
� �i�,

�2

�t2
� ��2,

�

�x
� �ikx,

�2

�x2
� �k2

x

� � ik, �·� ik·, �� � ik�



Acoustic (pressure) wave equations 
•  Ignore magnetic field and gravity (i.e., B = g = 0) 
•  Assume homogeneous medium 
•  From equilibrium (A),                    and  
•  From simplicity,  

•  Linearized equations reduce to: 

�p0 = 0 p0 = const.

�0 = const.

��1

�t
+ �0� · v1 = 0 � �i��1 + i�0(k · v1) = 0

�0
�v1

�t
= ��p1 � �i��0v1 = �ikp1

�p1

�t
= ��p0� · v1 � �i�p1 = �i�p0(k · v1)

(5.1) 

(5.2) 

(5.3) 

(5.7) 

(5.8) 

(5.9) 



Acoustic wave properties	  
•  From (5.8) 

–  v1 parallel to k 
–  particle motion along propagation direction (longitudinal) 

•  Also  
•  From (5.7) 

•  From (5.9) 

•  Defining the sound speed  

–   for                    then                         (compressive)  

v1 =
�

p1

��0

�
k (5.10) 

�1

�0
=

(k · v1)
�

p1 = �p0
(k · v1)

�
=

�p0�1

�0

p1 = c2
s�1

k · v1 �= 0, �1 and p1 �= 0

(5.11) 

(5.12) 

c2
s =

�p0

�0



Acoustic dispersion relation	  
•  Taking scalar product with k to eq(5.10), 

•  Rearranging eq(5.11) and (5.12), 

•  Substitute, 
•  Equating  

k · v1 =
�
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��0

�
k · k =

�
p1

��0

�
k2

(k · v1) =
��1

�0

�1 =
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s
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��0
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k2 =

�p1

c2
s�0

�2 = k2c2
s Dispersion relation (5.13) 



Acoustic phase and group speeds 
•  Phase speed:  
–  From eq (5.13): 

•  Group velocity:   

–  From eq (5.13):  
–  Differentiating,  
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=
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Acoustic wave complications 
•  Consider hydrostatic equilibrium, 

•  Where H is the pressure scale height, 

•  Pressure variations follow 

•  Real solutions (propagation) for kz > 0 

�p0 = ��0g

p0(z) = p0(0) exp (�z/H)
�0(z) = �0(0) exp (�z/H)

H =
p0

�0g
=

RT

g

�2Q

�t2
� c2

s(z)
�2Q

�z2
+ �2

s(z)Q = 0

�2 = k2
zc

2
s + �2

s

� > �s = �ac =
cs

2H



Acoustic wave summary 

•  Restoring force: pressure 
•  Directionality: isotropic 

vp=vg=cs 

•  Phase speed: cs 
•  Group speed: cs 

θ	
 k 

ω	




Waves in magnetic field 

•  There are two type of propagating waves in magnetic field  
•  Because magnetic field has two forces, magnetic tension and 

magnetic pressure. 
•  Both forces are coming J x B force 



Alfven wave equations 
•  Ignore pressure and gravity (i.e., p0 = g = 0) 
–  From equilibrium (A), 
–  Assume no pressure variations, 
–  Assume uniform equilibrium field distribution, 

•  Linearized equations reduce to:  

0 = µ0(J0 �B0) = (��B0)�B0

p1 = �1 = 0
B0 = B0ẑ

� · v1 = 0 � i(k · v1) = 0(5.1) 

(5.2) 

�B1

�t
= �� (v1 �B0) � �i�B1 = ik � (v1 �B0)(5.4) 

� · B1 � ik · B1 = 0(5.6) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

�0
�v1

�t
=

(��B1)
µ0

�B0 � i��0v1 =
(ik �B1)

µ0
�B0



(shear) Alfven wave properties 
•  From eq (5.1),  
•  no divergent/convergent motions (incompressible) 
•  From eq (5.14), 

•  v1 at right angles to k (transverse) 
•  Taking scalar product with B0, 
•  From eq (5.15), 

•  v1 at right angles to B0 (perpendicular)  
 

� · v1 = 0

k · v1 � kv1 cos �kv1 = 0
�kv1 = 90�

���0v1 · B0 =
(k �B1)

µ0
�B0 · B0 = 0

v1 · B0 � v1B0 cos �v1B = 0

�v1B = 90� (5.18) 

� · B0 = 0(                       ) 



(Shear) Alfven wave properties (cont.)	  
•  Expand eq (5.16) using standard vector identity, 

•  But                      from eq (5.14),  
 
•  Taking scalar product with B0, 
 

•  But                          from eq (5.18),  

 

•  B1 at right angles to B0 (perpendicular) 

��B1 = k � (v1 �B0)
= (k · B0)v1 � (k · v1)B0

(k · v1) = 0
��B1 = (k · B0)v1 (5.19) 

��B1 · B0 = (k · B0)(v1 · B0)

(v1 · B0) = 0

B1 · B0 � B0B1 cos �B0B1 = 0

cos �B0B1 = 90�
(5.20) 



(Shear) Alfven dispersion relation 
•  Multiply eq (5.16) by ω and substitute for v1 from eq (5.15), 

•  Expanding inner triple vector product, 

•  But                           from eq (5.20), 

•  And                         from eq (5.17), 

�2B1 =
1

µ0�0
k � {[(k �B1)�B0]�B0} (5.21) 

(A�B)�C = (C · A)B � (C · B)A
(k �B1)�B0 = (B0 · k)B1 � (B0 · B1)k

(B0 · B1) = 0
k � {[(k �B1)�B0]�B0} = k � {[(B0 · k)B1]�B0}

= (k · B0)[(B0 · k)B1]� (k · [(B0 · k)B1])B0

= (k · B0)2B1 � (k · B1)(B0 · k)B0

k � {[(k �B1)�B0]�B0} = (k · B0)2B1

(k · B1) = 0



(Shear) Alfven dispersion relation (cont.)	  
•  From eq (5.21),  

•  Recall that                    and                                            ,  

•  Defining the Alfven speed, 

•  Dispersion relation is  

�2B1 =
(k · B0)2

µ0�0
B1

�2 =
(k · B0)2

µ0�0

B0 = B0ẑ (k · ẑ) = kz = k cos �kB0

�2 =
(k · ẑ)2B2

0

µ0�0
=

(k cos �kB0)2B2
0

µ0�0

v2
A =

B2
0

µ0�0

�2 = (k cos �kB0)
2v2

A (5.23) 

(5.22) 



(Shear) Alfven phase and group speeds 
•  Shear Alfven waves are anisotropic 

–                  term in eq (5.22), the generalized dispersion relation 
•  Phase speed: 
 
•  Group velocity:  

•  Differentiating:  
 

(k · B0)

�

k
= ±vA cos �kB0 = vpFrom eq (5.23) 

vg =
��

�k
=

�
��

�kx
,

��

�ky
,

��

�kz

�

From eq (5.23) 

��

�k
= ±vAẑ = vg

� = ±vAk cos �kB0

= ±vAkz



(shear) Alfven wave summary 

•  Restoring force: B-field tension 
•  Directionality: anisotropic 

vp=vAcosθkB0 

θkB0 

vg=vA 

•  Phase speed: vAcosθkB0 
•  Group speed: vA 

B0 

k 

ω	




Torsional Alfven wave 
•  In cylindrically symmetric geometry 

with an axial field (Bz), there exist 
waves which posses only azimuthal 
component 

•  Such wave as known as torsional 
Alfven wave 

•  Torsional Alfven wave propagates with 
vp= vA along axial magnetic field 



Compressional Alfven wave 
•  In shear Alfven wave, we assume incompressible (                   ). 
•  If we consider compression (by magnetic pressure), we obtain 

another solution of Alfven wave. This is called compressional 
Alfven wave   

•  Dispersion relation is  

•  The phase velocity and group velocity is vp=vg=vA  
•   Compressional Alfven wave is isotropic  
•  If                      (perpendicular direction against B0) , v1 || k. So it is 

compression wave 
•  If                  (parallel direction to B0), compressional wave is 

matched with shear Alfven wave  (not compressional)  

� · v1 = 0

� = kvA

�kB0 = �/2

�kB0 = 0



Compressional Alfven wave summary	  

θkB0 

vp=vg=vA 

B0 compressional 

shear 

•  Restoring force: B-field tension & magnetic pressure 
•  Directionality: isotropic 

k 

ω	




Alfven wave example 
Alfven wave in solar corona (Hinode, Ca 
II H spectral line) 

Double helix nebula in the 
galaxy (IR) 

Movie	  here	  



Magnetoacoustic wave equation 
•  Ignore gravity (i.e., g = 0), consider compressible (gas pressure & 

magnetic pressure) 
–  assume uniform equilibrium field distribution, 

•  Linearized equations reduce to,  

 
•  with resulting dispersion relation, 

B0 = B0ẑ

�2v1

v2
A

= k2cos2(�kB0)v1 � (k · v1)k cos(�kB0)B̂0

+
��

1 +
c2
s

v2
A

�
(k · v1)� k cos(�kB0)(B̂0 · v1)

�
k

�4 � �2k2(c2
s + v2

A) + c2
sv

2
Ak4 cos2 �kB0 = 0

(5.24) 

B̂0 � B0/B0



Derivation of dispersion relation for 
magnetoacoustic wave 

•  First Eq(5.24) * k & Eq (5.24) * B0 (dot product) 

•  From these two equations, deleted               &   (v1 · k) (v1 · B̂0)



Magnetoacoustic wave properties 
•  Phase velocities: 

Wave Mode Propagation Low-beta High-beta 

Alfven Along B0 Magnetic tension 
Fast isotropic Magnetic pressure Gas pressure 

Slow Roughly along B0 Gas pressure Magnetic 
tension 

 

�2

k2
= v2

f =
(c2

s + v2
A) +

�
(c2

s + v2
A)2 � 4c2

sv
2
A cos2(�kB0)

2

v2
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(c2
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A)�
�

(c2
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A)2 � 4c2
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2
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Magnetoacoustic wave phase and 
group speeds 

vp
f 

θkB0 

B0 

vp
s 

vA
 vg

f 

B0 

vA
 

vg
s 

Phase speed Group speed 
For low-beta case (cs < vA) 

k 

ω	


k 

ω	




Magnetoacoustic 
wave phase and 

group speeds 
(cont.)	  

low beta 
(cs < vA) 

high beta 
(cs > vA) 

vf 

vA 

vs 

B 

•  Low beta case: 
•  Fast mode propagates 

at Alfven speed 
•  Slow mode ~ 1D sound 

wave guided by field 

•  High beta case:  
•  Fast mode behaves like 

sound wave (restoring 
force is magnetic 
pressure) 

•  Slow mode propagates 
at Alfven speed 



Summary 1 
•  Acoustic waves 

–  particle motion along k direction (longitudinal) 
–   phase and group speeds are cs in all directions (isotropic) 

•  (Shear) Alfven waves 
–  particle motion at right angles to k direction (transverse) 
–  B perturbation at right angles to k direction (perpendicular) 
–  phase speed varies as vAcos θkB0 (anisotropic) 
–   group speed is vA along B direction (anisotropic) 

•  Magnetoacoustic waves 
•  Alfven – as above 
•  Fast – gas and B pressure in phase, also isotropic 
•  Slow – gas and B pressure out of phase, also anisotropic 



Sound speed and Alfven speed	  
•  Typical velocity of Sound wave and Alfven wave in the universe  
 
Sound wave  
•  When γ=5/3, m=0.5mi, µ=0.5 (fully ionized hydrogen gas),  

•  T0~104 (stellar atmosphere) => cs ~ 16 km/s 
•  T0~108 (cluster of galaxies) => cs ~ 1.6 x 103 km/s 
Alfven wave 
 vA = 2.8� 105

�
B

1µG

� � n0

1cm�3

��1/2
(cm/s)

cs � 1.66� 104T 1/2
0 (cm/s) p = nkBT =

�

µmp
T



Waves in gravitational field 
•  Next, we consider the wave propagating in the gravitational 

field.  
•  Such waves, we called gravity wave (not gravitational wave) 

•  Internal gravity wave  
•  Acoustic gravity wave 



Internal gravity wave 

•  Consider a blob of plasma, which displaced  
vertically a distance δz from equilibrium 

•  Assumption: 
(1) Remains in pressure equilibrium with  
its surrounding 
(2) Density changes inside the blob are adiabatic 

•  At original height z, the blob are in equilibrium balance between 
pressure gradient and gravity  

z 

z+δz ρ0+δρ	


ρ0 

g 

dp0

dz
= ��0g (5.25) 



Internal gravity wave (cont.)	  
•  Outside the blob the pressure and density at height z+δz are 

p0+δp0 & ρ0+δρ0, by eq (5.25), 

•  Inside the blob the pressure and density at height z+δz are p0+δp 
& ρ0+δρ, by assumption (1), 

•  Assumption (2) means that, as the  blob rises, its pressure and 
density obey p/ργ= const, So that δp=cs

2δρ, from eq (5.27) internal 
density change as 

�p0 = ��0g�z, ��0 =
d�0

dz
�z

�p = �p0 = ��0g�z

(5.26) 

(5.27) 

�� = ��0g�z

c2
s

(5.28) 



Internal gravity wave (cont.)	  
•  Since the new density inside the blob differs from the ambient 

density at its new height, the blob experiences a buoyancy force 
•  From eq (5.26) & (5.28),  

•  An alternative expression is obtained by eq(5.25) & adiabatic EoS 
(p0=ρ0RT0/µ, p0/ρ0

γ=const): 

•  where 

g(��0 � ��) = �N2�0�z

N2 = �g

�
1
�0

d�0

dz
+

g

c2
s

�

Brunt-Vaisala frequency 

N2 = � g

T0

�
dT0

dz
+

�
dT

dz

�

ad

�

�
dT

dz

�

ad

= �(� � 1)
T0g

c2
s

(5.29) 



Internal gravity wave (cont.)	  
•  In general, N varies with height z but, in particular case when the 

equilibrium temperature (T0) is uniform (no dependence on height), 

•  In the presence of a horizontal magnetic field, Brunt-Vaisala 
frequency is increased to 

 
•  Or in case of uniform temperature 

N2 =
(� � 1)g2

c2
s

N2 = �g

�
1
�0

d�0

dz
+

g

c2
s + v2

A

�

N2 =
g2

c2
s

�
� � c2

s

c2
s + v2

A

�



Internal gravity wave (cont.)	  
•  If the only resultant force acting on the plasma blob is due to 

buoyancy, (eq. 5.29), the equation of motion becomes  

•  When N2> 0, this is simple harmonic motion with frequency ω=N 
•  So that the temperature decreases with height more slowly than 

adiabatic (= isothermal) 

•  If temperature decreases with height faster than adiabatic, the 
condition N2> 0 is violated => solution of eq(5.30) is exponentially 
growing (convective instability) 

•  The region of the solar interior where this is so is convection zone 
•  (Using entropy, we can also discuss this criterion) 

�0
d2(�z)

dt2
= �N2�0�z

�dT0

dz
< �

�
dT

dz

�

ad

Schwarzschild criterion for 
convective stability 

(5.30) 



Internal gravity wave (cont.)	  
•  The simple harmonic motion leads to expect the existence of gravity 

waves when N2> 0 due to the tendency for plasma to oscillate slowly 
with frequency N  

•  Linearize equation: 

•  Taking scalar product with k and \hat{z} in turn and gathering 
together terms in v1z and k*v1, 

•  Then an elimination of (k*v1)/v1z 

�2v1 = c2
sk(k · v1) + i(� � 1)g(k · v1)ẑ + igkv1z

igk2v1z = (k · v1){�2 � c2
sk

2 � i(� � 1)gkz}
(�2 � igkz)v1z = (k · v1){c2

skz + i(� � 1)g}

(�2 � igkz){�2 � c2
sk

2 � i(� � 1)gkz} = igk2{c2
skz + i(� � 1)g}

(5.31) 



Internal gravity wave (cont.)	  
•  The object is to seek waves with a frequency of the order of Brunt-

Vaisala frequency (N) and much slower than that of sound waves, 
so 

•  The wavelength is much smaller than a scale-height,. Eq (5.31) 
reduces to 

•                               : the inclination between the propagation 
direction and z-axis 

•  The dispersion relation (temperature is uniform) is 
 
 
•  Typical value for N-1 is 50s. So the gravity mode tends to be rather 

slow by comparison with other wave 

� � g/cs � kcs

�2c2
s � (� � 1)g2(1� k2

z/k2)
�g = cos�1(kz/k)

� = N sin �g Internal gravity wave N2 =
(� � 1)g2

c2
s

where 



Properties of internal gravity wave	  
•  Phase speed: 

•  They propagate along two cones with angle θg 
(not propagate in vertical direction) 

•  z-component of  group velocity: 

•  A group of upwind propagating wave carries 
energy downward (negative direction) 

•  group velocity is in a direction perpendicular to 
the surface of the cone with angle θg 

vp =
�

k
=

N

k
sin �g

vgz =
��

�kz
= ��kz

k2



Acoustic-gravity wave 
•  Consider propagation of sound (acoustic) wave in gravitational field 

(consider compressibility and buoyancy forces are present together)  
•  Using linearize equation is the same as internal gravity wave: 

•  We consider k=(kx, kz) and v1=(vx, vz) 
•  After some calculation, we get dispersion relation 

 

�2v1 = c2
sk(k · v1) + i(� � 1)g(k · v1)ẑ + igkv1z

�4 �
�

k2
x +

�
kz + i

�g

2c2
s

�2

+
�2g2

4c4
s

�
c2
s�

2 + (� � 1)g2k2
x = 0



Acoustic-gravity wave (cont.)	  
•  We define  

•  The dispersion relation is rewritten as 

•  When γ=2, Ns=N. But this is not realistic. When γ=5/3, 
So usually 

•  When                    ,                          . This is internal gravity mode (g-
mode). 

•  When                ,                  . This is acoustic wave mode (p-mode).  

�4 �
�
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s

c2
s

�
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s�

2 + N2c2
sk

�2 sin2 ��
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�2 � N � � k�cs

N2 =
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s

,

k� = k + i
Ns

cs
ẑ, sin2 �g = 1� k�2

z
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Acoustic-gravity wave (cont.)	  
•  When this wave propagates perpendicular direction (            ), 

•  Therefore, p-mode only exists when 

•  If acoustic-gravity wave propagates not perpendicular direction, 
there are two solution (k’2 > 0, ω2 > 0) 

•  Dispersion relation is 

•  From this, the solutions are                         or 

��
g = 0

�2 = N2
s + k�2c2

s

� > Ns

�2 =
1
2

�
k�2c2

s + N2
s ±

�
(k�2c2

s + N2
s )2 � 4N2c2

sk
�2 sin2 ��

g

�

� < N sin ��
g � > Ns



Acoustic-gravity wave (cont.)	  
•  higher frequency mode (              ) is usually p-mode  

but group velocity is vg < cs even though phase velocity is vp > cs  
•   In the limit of                , 

•  Lower frequency mode (                       ) is usually g-mode 
and phase velocity is vp < cs 

•  In the limit of                         , 

•  The wave with the frequency between Ns and N sinθ’g does not 
propagate (decays in short distance), called evanescent  

•  If k’ is purely imaginary, the standing wave can exist in this frequency. 
But no energy can be propagated.  

� � Ns

� > Ns

vp �� and vg � 0

� < N sin ��
g

� � N sin ��
g vp � 0



Acoustic-gravity wave (cont.)	  
•  Next, we investigate the wave which propagates perpendicular 

direction against kx and ω (θ’g = π/2)	


•  The dispersion relation is 

•  From this, the two solution is kx
2 > 0, ω2>0  

Therefore the condition for k’z > 0 is 
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Acoustic-gravity wave (cont.)	  

•  This condition divides the ω - kx plane. This figure sometimes 
referred as a diagnostic diagram 



Acoustic gravity wave example 

Helioseismology 



Summary 2	  
•  We have two type of waves propagating in the gravitational 

field. 
–  g-mode (internal gravity wave) restoring by buoyancy force 
–  p-mode (acoustic wave) restoring by pressure 

•  Between these two modes, evanescent region exists. 





Exercise 2-3 
Derivation of dispersion relation of magneto-acoustic waves 
 
From linearized equation: 

�2v1

v2
A

= k2 cos2(�kB0)v1 � (k · v1)k cos(�kB0)B̂0

+
��

1 +
c2
s

v2
A

�
(k · v1)� k cos(�kB0)(B̂0 · v1)

�
k



Exercise 2-3 (cont.)	  
•  Dot product of k 
 
=> 
 
 
 
=>  

�2v1

v2
A

· k = k2 cos2(�kB0)v1 · k � k cos(�kB0)(k · v1)(k · B̂0)

+
��
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k · B̂0 = k cos(�kB0)



Exercise 2-3 (cont.)	  
•  Dot product of        => B̂0

�2v1

v2
A

· B̂0 = k2 cos2(�kB0)v1 · B̂0 � (k · v1)k cos(�kB0)

+
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Exercise 2-3 (cont.)	  
•  From eq(4) & (5), vanish               and 

 
=>  

(k · v1) (v1 · B̂0)
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