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Formation of shock 
•  When the amplitude is so small that linear theory applies, that a 

disturbance propagates as a sound wave. 
•  The wave profile maintains a fixed shape, since each part of wave 

moves with the same speed 
•  But, when the wave have a finite amplitude, so that nonlinear terms 

becomes important, the crest of the sound wave moves faster than 
its leading and trailing edge. 

•  This causes a progressive steepening of the front portion of wave as 
the crest catches up 

•  Ultimately, the gradients of pressure, density, temperature and 
velocity becomes so large that dissipative processes (viscosity) are 
no longer negligible 

•  Then a steady wave-shape is attained, called a shock wave, with a 
balance between the steepening effect of nonlinear convective terms 
and broadening effect of dissipation.   



Shock wave 

•  The shock wave moves at a speed in excess of the sound speed 
•  So information cannot be propagated ahead to signal its 

imminent arrival. 
•  Since such information would travel at only cs, relative to the 

undisturbed medium ahead of the shock. 



Shock wave (cont.)	  	  

•  For example, suppose a long tube contains gas initially at rest and 
that a piston at one end of tube is accelerated into uniform motion 

•  If the piston is being withdrawn from the tube, an rarefaction 
(expansion) wave travels into a gas (pressure is decreased) 

•  If the piston is pushed into the tube, a compression wave is 
generated (pressure is increased) and this eventually steepens into 
a shock wave. 

gas 



Shock frame 
•  Models shock front by a plane discontinuity 

and the two states  
•  subscripts 1 for unshocked gas (ahead of 

shock, upstream, pre-shock), 2 for shocked 
gas (behind of shock, downstream, post-
shock) 

•  In rest frame, shock speed is u, while speed of 
shocked gas is u2 (< u) 

•  More convenient to use a frame of reference 
moving with shock wave.  

•  So unshocked gas enters the front of shock 
with speed, v1=u 

•  While the shocked gas leaves the back of 
shock with speed, v2=u-u2 

•  Since u2 is positive. So v2 < v1 
•  When v2=v1, there is no shock 

Rest frame 

Shock frame 

u2 u 

v2 v1(=u) 

Shocked gas 
(downstream) 

unshocked gas 
(upstream) 

Shocked gas 
(downstream) 

unshocked gas 
(upstream) 



Thickness of shock 
•  A detailed determination of the thickness of the shock and its 

internal structure is very complicated.  
•  However, if the dominant dissipation mechanism is known, an order-

of-magnitude estimate of the shock width (δx) may be obtained. 
•  In the case of viscous dissipation, the amount of energy (δE) 

dissipated during a small time (δt) is give by 

•  Where ν is the kinetic viscosity 
•  δt ~ δx/v1 as the time for the shock front to move a distance δx and 

putting δv ~ v1-v2 
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Thickness of shock (cont.)	  
•  For strong shock,                         , so that 

•  In other words, the Reynolds number (              ) is order of 
unity. 
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Hydrodynamic shocks 
•  Consider a plane shock wave propagating  

steadily with constant speed into a stationary  
gas with density ρ1 and pressure p1 

•  In a frame of reference moving with the shock,  
the speed of shocked gas, v2, its density ρ2 and  
pressure p2 

•  Jump relation (condition) between the shock surface is given us a 
set of conservation equations 

                                             (Q: conserved quantities, F: flux) 
•  If shock is steady (               ) and 1D (                                    ), 

•  Which is implies that                                  
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Hydrodynamic shocks (cont.)	  
•  Conservation form of hydrodynamic equations 
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Hydrodynamic shocks (cont.)	  
•  From conservation of mass, momentum and energy between the 

shock surface 

•  These equations are referred to as the Rankine-Hugoniot (jump) 
relations  
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Hydrodynamic shocks (cont.)	  
•  Where (for perfect gas) the internal energy per unit mass is 

•  So eq (6.3) reduces to 

 
•  Let us define specific volume, V1=1/ρ1, V2=1/ρ2 and mass flux 

j=ρ1v1=ρ2v2. From eq (6.1) & (6.2), 
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Hydrodynamic shocks (cont.)	  
•  In principle this equation allows for two solutions,  
–  The post-shock medium has a higher pressure than the pre-

shock medium (p2 > p1),  
–  The post-shock medium has a lower pressure than the pre-shock 

medium (p2 < p1).  
•  The latter will turn out to be an unphysical solution. But such a 

solution will quickly smear out into a rarefaction (expansion) wave 
•  We focus here on the case p2 > p1 (shock wave case) 
•  Here we define 

•  Where M1 is shock Mach number, cs is sound speed 
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Hydrodynamic shocks (cont.)	  
•  Eq (6.2) => 

•  Eq (6.4) (using eq (6.5)) => 
    
•  => 

•   The nontrivial solution can be written 
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Properties of hydrodynamic shocks	  
•  From eq (6.6), when M1=1, density, pressure and velocity do not make 

any jump. So the shock is developed when M1>1 
•  Shock speed (v1) must exceed the sound speed (cs1) ahead of shock 
•  In the shock frame, flow is supersonic in front of shock but subsonic 

behind it (              ) 
•  Shock must be compressive with  
•                , shock wave slows the gas down but heat it up (convert  flow 

kinetic energy into thermal energy in the process). 
•  In                 (strong shock), 

•  When γ=5/3 (mono-atomic gas), x=ρ2 /ρ1=4. So in strong shock, the 
density jump at the shock (shock compression ratio) is only 4.  
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Hydrodynamic discontinuity 
•  Contact discontinuity: v1=v2=0, Density jump arbitrary, but 

other quantities (pressure for hydro) are continuous 
(temperature is also change) 

•  Rarefaction (expansion) wave: a simple wave or progressive 
disturbance (not shock). density and pressure decrease on 
crossing the wave 



•  Consider simple case of a 1D steady shock 
•  We will work in a frame where shock  

is stationary (shock fame) 
•  x-axis will be a aligned with the shock  

normal, so plane of shock is parallel to yz-plane 
•  The jump across the any quantities of X can  

be expressed using following notation: 

•  MHD jump relation is given us a set of   
conservation equations 

                                             (Q: conserved quantities, F: flux) 
•  If shock is steady (               ) and 1D (                                    ), 

•  Which is implies that                                =>  
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Conservation form of ideal MHD equations	  
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MHD shock jump relation	  
•  For MHD, from mass conservation (continuity) equation (eq 6.7), 

•  Which leads jump condition for shock: 
 
•  From momentum conservation equation (eq 6.8), we consider two 

jump condition. 
•  Firstly, the conservation of momentum normal to shock surface 

 
•  Transverse momentum also has to balance,  

•  Where the t subscript indicates transverse component to the shock. 
This reflects tangential stresses related to bend or kink of B-field   
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MHD shock jump relation (cont.)	  
•  The shock jump condition from energy conservation (eq.6.9) is 

•  From                  , the normal component of magnetic field is 
continuous (Bx=const) 

•  From magnetic flux conservation (eq 6.11), 
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MHD Rankine-Hugoniot (jump) 
relation 
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Possible type of MHD shock	  
•  Shock wave,              : Flow crosses surface of discontinuity 

accompanied  by compression and dissipation 
vn �= 0

Parallel shock Magnetic field unchanged by shock 
(hydrodynamic shock) 

Perpendicular 
shock 

Plasma pressure and field strength increases at 
shock 

Oblique shocks 

Fast shock Plasma pressure and field strength increases at shock, 
magnetic field bend away from normal. 

Slow shock Plasma pressure increases and field strength decreases at 
shock, magnetic field bend towards normal 

Intermediate shock Only shock-like in anisotropic plasma (magnetic field 
rotate of 180O in plane of shock, density jump) 

Bt = 0

Bn = 0

Bt �= 0, Bn �= 0



Possible type of MHD discontinuity 

Contact 
discontinuity 

Density jump arbitrary, but other 
quantities are continuous 

Tangential 
discontinuity 

Plasma pressure and field change 
maintaining static pressure balance 
(total pressure is constant)  

Rotational 
discontinuity 

Form of intermediate shock in 
isotropic plasma, field and flow 
change direction but not magnitude 

vn = 0, Bn = 0

vn = 0, Bn �= 0

vn = Bn/
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µ0�

Discontinuity 



Perpendicular shock 
•  Consider perpendicular shock (Bn=0). 

 In this case, the velocities of both the  
shock and plasma are perpendicular to  
the magnetic field 

•  The jump relation (eq 6.12) is  

•  Here we define  

Shock frame 
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Perpendicular shock (cont.)	  
•  From eq (6.14),  

•  From eq (6.15), 

•  Combine both eq (6.14) and eq(6.15) 

•  X=1 does not make a shock (not our solution). So 
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Perpendicular shock (cont.)	  
•  We need to find the positive solution of f(x) 
•  The fact that 1 < γ < 2 implies that this equation have just one 

positive root (a quadratic function with a single minimum) 
•  The solution reduces to the hydrodynamic value (eq 6.6) in the 

limit of large β1 

•  The effect of magnetic field is to reduce X below its hydrodynamic 
value, since the flow kinetic energy can be converted into magnetic 
energy as well as heat 

•  If X=1, f(1) < 0 => When X >1, we get a solution of f(X) = 0  
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Perpendicular shock (cont.)	  
•  In terms of sound and Alfven speeds, 

•  The shock speed (v1) must exceed the fast magnetosonic speed  
                        ahead of the shock 

•  Strong shock limit (M1 >> 1), 

 
•  For γ=5/3 case, 
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Oblique shock 
•  In this case, the magnetic field contains  

components both parallel and normal to  
the shock front 

•  Assume the velocity and magnetic field  
vectors lie in the xy plane. 
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Oblique shock (cont.)	  
•  The jump relation (from eq 6.12) is  
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Oblique shock (cont.)	  
•  An analysis of the jump relations can be considerably simplified by 

choosing axis moving along the y-axis parallel to the shock front at 
such a speed that 

•  In this frame of reference both side of eq (6.22) vanish, and plasma 
velocity becomes parallel to the magnetic field on both side of the 
shock front (v || B) (v x B =0). 

•  Using eq (6.17), (6.21), (6.23), we define as 
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Oblique shock (cont.)	  
•  From eq (6.19) and (6.23), 

•  Here we consider the frame which plasma velocity becomes parallel 
to the magnetic field. So  

•  From eq (6.24) and (6.25), 

•  From eq (6.20), (6.23) and (6.24),  
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Oblique shock (cont.)	  
•  Using eq (6.24) and (6.26), 

•  Where θ is inclination of upstream magnetic field to the shock 
normal such that v1x = v1 cosθ	


•  Based on eq (6.27), we can drive the equation related X (need long 
calculation) 
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Oblique shock (cont.)	  

•  Three solutions of eq (6.28), slow shock, intermediate (Alfven) shock 
and fast shock 

•  In the limit as X => 1 (no compression), reduce to three waves 
–                   for Alfven wave 
–                                                                        for the propagation 

speeds of slow and fast magnetosonic waves 
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Slow and Fast shocks 
•  Consider first, the slow and fast shocks. 
•  They are compressive, with X > 1, which implies that p2 > p1 

•  From X >1, 

•  When                                  , this equation implies that B2y/B1y < 1, 
called a slow shock.   

•  Magnetic field is refracted towards the shock normal and its 
strength decreases as the shock front passes by 

•  When                                  , this equation implies that B2y/B1y > 1, 
called a fast shock. 

•  Magnetic field is refracted away from the shock normal and its 
strength increases as the shock front passes by 
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Slow and Fast shocks (cont.)	  
•  Evolutionary condition: shock speed (v1x) relative to unshocked 

plasma must exceed the characteristic wave speed (slow magnetosonic 
wave speed in the case of slow shock, fast magnetosonic wave speed 
in the case of fast shock) 

•  The effect of shock is to slow down the flow in x-direction (v2x < v1x) 
•  The flow in y-direction is slowed down for a slow shock (v2y < v1y)  

but speeded up for a fast shock (v2y > v1y)  

•  In the limit Bx => 0, field becomes purely tangential, fast shock 
becomes a perpendicular shock. 

•  Slow shock reduces to a tangential discontinuity, for which both flow 
velocity and B-field are tangential to plane of discontinuity since 
v1x=v2x=B1x=B2x=0. 



Slow and Fast shocks (cont.)	  
•  The tangential discontinuity (v1x=v2x=B1x=B2x=0) is a boundary 

between two distinct plasmas, at which the jumps in the tangential 
components of velocity (vy) and B-field (By) are arbitrary. 

•  Subject only to the condition, 

 
•  That total pressure is continuous 

•  Consider the case: 
•  Magnetic field lines cross the boundary but there is no flow across it  
•  One trivial solution: velocity, magnetic field and pressure is 

continuous but density (temperature) may be discontinuous (p2=p1). 
•  This is known as a contact (entropy) discontinuity 
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Switch-off shock 
•  Two special cases of slow and fast shocks  

are of particular interest, so-called  
switch-off shock and switch-on shock. 

•  They occur in the limit when v1=vA1 and 
•  From eq (6.25),  

•  Even B1y is non-zero, The tangential magnetic field component 
behind the shock (B2y) can be vanished (slow shock).  

•  Such the case, we called switch-off shock 
•  Since v1 and B1 are parallel, a switch-off shock propagates at a 

Alfven speed                                                       based on the 
normal B-field component  
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Switch-off shock 

θ	


B2y

B1y
=

(v2
1 � v2

A1)X
v2
1 �Xv2

A1

v1x = vA1x(= B1x/(µ0�1)1/2)



Switch-off shock (cont.)	  
•  Using v1=vA1 and            , eq (6.28) reduces to 

 
     Where 
 
•  The solution f(X) = 0 is 

•  When θ => 0, 

•  When θ => π/2,   
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Switch-off shock (cont.)	  
•  The behavior of solution is different with the value of A > 1,  

or 0 < A < 1    (                     ) 

•  When A > 1, one of the solution for θ=0 case is reduced as 
 

•  It is not appropriate solution for shock (because X < 1).  
•  So A > 1 case,  the solution for X increases                                       

as the angle of incidence θ increase     
•  When 1/2 < A < 1,  the solution for X increases 

                                                                      as    
•  When 0 < A < 1/2, the solution for X decreases 

                                                                      as    

A = c2
s1/v2

A1

(� + 1)/(2A + � � 1) < 1

1� 1 + (2A + � � 1)�1

� = 0� �/2

(� + 1)/(2A + � � 1)� 1 + (2A + � � 1)�1 � = 0� �/2

(� + 1)/(2A + � � 1)� 1 + (2A + � � 1)�1 � = 0� �/2



Switch-on shock 
•  Consider a shock propagating along the magnetic field 

(so that B1y =0, θ=0) 
•  The eq (6.28) reduces to 

  
•                       corresponding to a switch-on shock 

•  Since X > 1, this occur only when the shock speed exceeds the Alfven 
speed (v1 > vA1) 

B1 B2 
Switch-on shock (6.31) 

Hydrodynamic shock fast shock 

X =
v2
1

v2
A1

�
c2
sX +

1
2
v2
1{X(� � 1)� (� + 1)}

�
(v2

1 �Xv2
A1)

2 = 0



Switch-on shock (cont.)	  
•  A shock propagating along magnetic field. So from eq (6.21), 

B2x=B1=B1x (B1y=0) 
•  Elimination of p2 from eq(6.18) and (6.20) yields, 

•  Since the right-hand side must be positive, the density ratio X is 

•  The upper limit is (γ+1)/(γ-1) when vA1 >> cs1 

•  The switch-on shock can exist only when the Alfven speed exceeds 
the sound speed in the unshocked plasma 

 

B2
2y/B2

2x = (X � 1){(� + 1)� (� � 1)X � 2µ0�p1/B2
1x}

1 < X <
� + 1� 2c2

s1/v2
A1

� � 1



Switch-on shock (cont.)	  
•  As X increases from 1, the deflection of field line (               ) 

increases from 0 to a maximum value of 
 

                                                  at  

•  Then it decreases to 0 at  

B2
2y/B2

2x

4(1� c2
s1/v2

A1)
2/(� � 1)2 X = (� � c2

s1/v2
A1)/(� � 1)

X = (� + 1� 2c2
s1/v2

A1)/(� � 1)



Intermediate shock 
•  When the wave-front propagates at the Alfven speed in the 

unshocked plasma, v1=vA1, one solution of eq (6.28) is X=1 
(another solution is fast & slow shocks).  

•  From eq (6.22) and (6.23), 

•  From eq (6.18) and (6.20), 

•  Thus, in addition to the trivial solution B2=B1, we have 

     for an intermediate (or transverse) wave (or rotational 
discontinuity for no density change) 

v2y/v1y = B2y/B1y

p2 = p1, B2
2y = B2

1y

B2y = �B1y, B2x = B1x,
v2y = �v1y, v2x = v1x,



Intermediate shock (cont.)	  
•  The tangential magnetic field component is reversed by the 

wave, and within the wave front magnetic field simply rotates 
out of the plane maintaining a constant magnitude  

•  This is just a finite-amplitude Alfven wave 
•  No change in pressure => not shock   



Summery 
•  Shock wave,              : Flow crosses surface of discontinuity 

accompanied  by compression and dissipation 
vn �= 0

Parallel shock Magnetic field unchanged by shock 
(hydrodynamic shock) 

Perpendicular 
shock 

Plasma pressure and field strength increases at 
shock 

Oblique shocks 

Fast shock Plasma pressure and field strength increases at shock, 
magnetic field bend away from normal. 

Slow shock Plasma pressure increases and field strength decreases at 
shock, magnetic field bend towards normal 

Intermediate shock Only shock-like in anisotropic plasma (magnetic field 
rotate of 180O in plane of shock, density jump) 

Bt = 0

Bn = 0

Bt �= 0, Bn �= 0



Summary (cont.) 

Contact 
discontinuity 

Density jump arbitrary, but other 
quantities are continuous 

Tangential 
discontinuity 

Plasma pressure and field change 
maintaining static pressure balance 
(total pressure is constant)  

Rotational 
discontinuity 

Form of intermediate shock in 
isotropic plasma, field and flow 
change direction but not magnitude 

vn = 0, Bn = 0

vn = 0, Bn �= 0

vn = Bn/
�

µ0�

Discontinuity 



Shock tube problem 

•  A common test for the accuracy of computational (magneto-)fluid 
code and laboratory experiments 

•  The test consist separated two different states of gas initially 
•  In time evolution, two different states make propagations of 

shocks or discontinuities 
•  We can calculate analytical solutions therefore can test the validity 

of numerical codes.  



Shock tube problem (cont.)	  
•  Sod’s shock tube test (the most famous test) 
•  Initial condition 

–  ρL=1, pL=1, vL=0 
–  ρR=0.125, pR=0.1, vR=0, with γ=1.4 

•  Results 
–  Three Characteristic velocities 
–  v \pm cs (shock/rafefaction to  

                right/left) 

–  v (entropy waves) 



Shock tube problem (cont.)	  

velocity 

density 

pressure 

energy 

Left-going 
Raferaction wave 

right-going 
Contact discontinuity 

right-going 
shock 

Movie 



MHD shock tube problem 
•  Brio & Wu MHD shock tube test (1D) 
•  Presence of magnetic field, shock structure becomes much 

complicated 
•  Initial condition 

–  ρL=1, pL=1, vL=0, ByL=-1, BzL=0 
–  ρR=0.125, pR=0.1, vR=0, ByR=1, BzR=0 with Bx=0.75 and γ=2 

•  Results 
–  7 characteristic velocities 
–  v \pm vf (fast shock/rarefaction) 
–  v \pm vA (rot discont.) 
–  v \pm cs (slow shock/rarefaction) 
–  v (entropy wave) 

(Alfven)	  
(Alfven)	  



density vx 

vy 

pressure 

By 

movie 

IS 

SR 

Regular solution: SS 
Non-regular solution: IS + SR 
(Takahashi & Yamada 2013) 



Astrophysical shocks 
•  Shock waves are common in astrophysical environments 

–  Bow (termination shock) shock of solar system (interaction between solar 
wind and interstellar medium) 

–  Supernova remnants (blast wave) 
–  Shock traveling through a massive star as it explodes in core collapse 

supernova 
–  Shock in insterstellar medium, caused by the collision between molecular 

clouds or by a gravitational collapse of clouds 
–  Accretion shock in cluster of galaxies 
–  Gamma-ray bursts (relativistic blast wave) 
–  Shocks in astronomical jets 
–  Termination shock in pulsar wind nebulae 

•  Shock is related particle accelerations (Fermi acceleration)  


