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Instability 
•  Questions of stability and instability are important for many 

astrophysical phenomena. 
–  How a structure can remain stable for a long period 

•  Consider a particle motion in one-dimension 
•  Particle has a mass m and moves along x-axis under the action of 

conservative force 

•  Where W(x) is the potential energy. It is in equilibrium position at 
x=0 and its equation of motion is  

F (x)x̂ = �dW

dx
x̂

mẍ = F (x) � �
�

dW

dx

�



Instability (cont.)	  
•  For small displacements, this reduces to the linear form 

•  Where F1(x) is the first-order approximation to F(x). 
•  One approach is to seek normal-mode solutions of the form 
•  The equation of motion gives 

 

•  If W(x) has a minimum at the origin, (d2W/dx2)0 > 0 => ω2 > 0, 
so the particle oscillates about x = 0 

•  The force tends to restore its equilibrium (stable) 
•  If  W(x) has a maximum, (d2W/dx2)0 < 0 => ω2 < 0, 

the displacement increases from the equilibrium position (unstable) 
•  When (d2W/dx2)0 = 0, it said to naturally stable  

mẍ = F1(x) � �x

�
d2W

dx2
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Instability (cont.)	  
•  The stability of a MHD system is studied in a following way (in 

general) 

•  First: linearizes the equations 

•  Second: looks for normal modes  
•  Normal mode: can find a dispersion relation linking the frequency ω 

to the wave number k of the disturbance 

•  Another way: consider the variation of energy (Variation method)  
•  It may be applied more complex equilibrium states 



Instability (cont.)	  
•  Here we refer to linear stability 
•  But if considering deviations are not small, it is possible to 

investigate the nonlinear stability of a system 
–  Linearly stable but nonlinearly unstable (explosive) 
–  Linearly unstable but nonlinearly stable 

•  Metastability: naturally stable (d2W/dx2=0) to small-amplitude 
(linear) perturbation but unstable to large (finite-amplitude) one    
–  d3W/dx3=0 and d4W/dx4<0 

•  Transfer from stability to instability occurs via a state of marginal (or 
normal) stability 
–  ω2 is real and decreases through zero, monotonic growth in perturbation. The 

marginal state is stationary (ω=0) 
–  Frequency (ω) is complex and its Imaginary part decreases from + to -, a state 

of growing oscillations appears (overstability). Marginal state is oscillatory 
motion. 



Instability (cont.)	  
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Normal mode method 
•  Prescribe the equilibrium configuration and boundary condition 
•  The perturbed variables (ρ1, v1, p1, j1, and B1) are determined by the 

set of linearized equations 
•  Each variables may be decomposed into a spectrum of Fourier 

components which behave like eiωt  
•  The resulting “normal mode” equations may be solved to determine 

which values of ω are allowed by the boundary condition 
•  If all the normal modes have real frequencies (ω2 > 0), the system 

just oscillates in the equilibrium configuration = stable 
•  If at least one of frequencies is imaginary (ω2 < 0), the system is 

unstable, the corresponding perturbations grow exponentially 
(growth rate is γ = Im(ω) ) 



Rayleigh-Taylor & 
Kelvin-Helmholtz 

instabilities 
•  Very famous (usual) instabilities  

in the universe. 
•  Important for entrainment  

(mixing) materials in interstellar  
medium, supernova remnant, astrophysical jets etc. 

•  Consider a boundary separating two perfectly conducting plasmas, 
superscript (1) and (2)  

•  The boundary is situated at z=0, gravitational force acts normal to it (-
z direction), undisturbed magnetic field is parallel to the boundary (x-
direction) 

z 

z=0 



•  Consider denser  
(heavier) plasma  
rests on the top of  
lighter one (no velocity).  

•  If displacement is occurred at the boundary, the lighter plasma which 
pushed up by the displacement is lighter than surrounding plasma so 
that it has a buoyancy then continue to move up.  

•  Denser plasma which pushed down is heavier than surrounding 
plasma so that it has stronger gravity force then continue to down.  

•  Therefore, both dense and lighter plasmas are mixing each other.  
•  This is so-called Rayleigh-Taylor instability   

Rayleigh-Taylor 
instability  



•  Consider the velocity shear between the boundary (                   ) with 
no gravity force 

•  If displacement is occurred at the boundary, the plasma flowing 
parallel to the boundary is bended and feel a centrifugal force so that 
this bending is growing up.  

•  Then two plasmas are mixing each other.  
•  This is so-called kelvin-Helmholtz instability   

Kelvin-Helmholtz 
instability  

v(0)
0 �= v(1)

0



Linearized equations for RTI &KHI 
•  Assume: incompressible fluid,  
•  Mass conservation: 

•  Momentum conservation (including gravity):  

•  Induction equation: 

•  Gauss’s law:  

� · v = 0 (7.1) 

��

�t
+� · (�v) = 0 (7.2) 

�

�t
(�v) +� ·

�
�vv +

�
p +

B2

2µ0

�
I � 1

µ0
BB

�
= ��gẑ (7.3) 

�B

�t
= �� (v �B) (7.4) 

� · B = 0 (7.5) 



Linearized equations for RTI &KHI (cont.)	  
•  Initial state (unperturbed state) is steady and each physical quantities 

are 

•  In the current situation, ρ0, p0, v0 are only the function of z  
•  Assume: Magnetic field is uniform in x-direction 
•  From eq (7.1) – (7.5), 

� = �0, v = (v0, 0, 0), B = (B0, 0.0), p = p0

� · v0 = 0

� · (�0v0) = 0

� ·
�
�0v0v0 +

�
p0 +
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0

2µ0

�
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µ0
B0B0

�
= ��0gẑ

�� (v0 �B0) = 0

� · B0 = 0

(7.6) 
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Linearized equations for RTI &KHI (cont.)	  
•  Added small perturbation in initial state 

•  These put into eq (7.1) – (7.5) and taken First-order term, 

� = �0 + ��, v = v0 + �v = (v0 + �vx, 0, �vz),
B = B0 + �B = (B0 + �B, 0, �Bz), p = p0 + �p
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Linearized equations for RTI &KHI (cont.)	  

(7.11)� �

�x
�vx +

�

�z
�vz = 0

•  Divide into each components, linearized equations are given as 
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Linear analysis for RTI &KHI	  

•  We consider normal mode, 

•  It put into linearized equations  

��, �v, �B, �p � ei(kx��t)

(7.16)� �vx =
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k
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Here using (7.23) 



Linear analysis for RTI &KHI (cont.)	  
(7.20)� �i�0(� � kv0)�vz �

ik
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Here using 
(7.24) & (7.25) 
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Linear analysis for RTI &KHI (cont.)	  

•  From eq (7.26), (7.27), (7.28) x (k2/i) 
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(7.29) 
•  Equation of δvz only. 
•  Next we look for the profile of δvz and the boundary condition 



Linear analysis for RTI &KHI (cont.)	  

•  At           ,                                         (uniform density and velocity) 

•  Moreover, we expect that the perturbation becomes small in the 
region far from the boundary (z=0)   

•  So from eq (7.30), 

z �= 0 ��0/�z = �v0/�z = 0

(7.29)�
�
(� � kv0)2�0 �

k2B2
0
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�
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�vz = Ae�k|z| (7.31) 



Linear analysis for RTI &KHI (cont.)	  
•  Next, we consider the boundary which interact two plasma (fluid) 

(z=0) 
•  The boundary is deformed by the perturbation (displacement). 
•  The deformed form can be expected 
•  The boundary moves with fluid motion 
•  Therefore  

•  The perturbation of the boundary can be written as 
•  And we assume the amplitude is small then it can be linearized   

Y = �(x, t)

�vz =
D�

Dt
=

�
�

�t
+ (v0 + �vx)

�

�x
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�
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(7.32) �vz = [�i� + (v0 + �vx)ik]� � �i(� � kv0)�



Linear analysis for RTI &KHI (cont.)	  
•  From eq (7.32), at z=0 we take a ratio between upper (1) and lower 

(2) fluids 

 
•  Such condition is satisfied at the boundary 
•  From eq (7.31) & (7.33), at  

�v(1)
z

�v(2)
z

=
� � kv(1)

0

� � kv(2)
0

(7.33) 
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0 )ekz (7.34) 



Linear analysis for RTI &KHI (cont.)	  

•  Next derive the condition at boundary (z=0) of eq (7.29) 
•  Define the integral of the small region between the boundary [-ε : ε] 

as 

•  Consider the integral of eq (7.29) in the small region between the 
boundary [-ε : ε] with respect to z-direction 
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Linear analysis for RTI &KHI (cont.)	  
lim
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Here using eq(7.34) 



Linear analysis for RTI &KHI (cont.)	  
•  Combine eq (7.35) – (7.38), the boundary condition is 

 
•  To obtain the dispersion relation, put eq (7.34) into this equations 

�s
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�z
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Dispersion Relation for for RTI &KHI  

•  Consider (7.40)- (7.42), eq (7.39) is written as  

•  The (general) dispersion relation is 
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RTI in uniform magnetic field	  
•  If no velocity shear, i.e., 
•  The dispersion relation is 

•  In more general, we consider perturbation  
•  The dispersion relation is written as  

v(1)
0 = v(2)
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RTI in uniform magnetic field (cont.)	  
•  This dispersion relation implies 
•  When no magnetic field, interface is unstable (w2 < 0) provided 

heavy plasma rests on top of light one (                   ) 
•  This instability is so-called Rayleigh-Taylor Instability 
•  If perturbations are uniform along the field direction (kx=0), the 

magnetic field has no effect on stability 
•  If perturbations are purely along the field (ky=0, kx=k): 2nd term is 

positive, so allow a stabilizing effect 
•  When                    , the interface is unstable for wavelength, 0< k<kc  
      where 
 

•  Fastest growing mode wavelength is 1/2 kc 

�(1)
0 > �(2)

0
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0 > �(2)

0

kc =
(�(1)

0 � �(2)
0 )gµ0

2B2
0



RTI in uniform magnetic field (cont.) 

•  For large wavelength (λ > 2π/kc), magnetic tension is insufficient to 
counteract gravity 

•  For short wavelength (λ < 2π/kc), magnetic tension strong enough 
to make stable 



RTI simulations 
3D hydro (random 
perturbation) 

2D hydro 
(single mode) 

Movie	  in	  here	   Movie	  in	  here	  



RTI in nature 
Crab nebula (SNR) 

Experiment of RTI 

Simulation 
of SNR 



•  Consider the velocity shear between the boundary (                   ) with 
no gravity force 

•  If displacement is occurred at the boundary, the plasma flowing 
parallel to the boundary is bended and feel a centrifugal force so that 
this bending is growing up.  

•  Then two plasmas are mixing each other.  
•  The magnetic field parallel to flow is affected to stabilized the 

instability by magnetic tension force 

Kelvin-Helmholtz 
instability  

v(0)
0 �= v(1)

0



Kelvin-Helmholtz instability (cont.)	  
•  Consider a uniform horizontal magnetic field (        )  parallel to the 

interface that separates uniform plasma  
with                  and 

•  The dispersion relation can be described as (same as eq. 7.43) 
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Kelvin-Helmholtz instability (cont.)	  
•  If no gravity, the interface is unstable when 

 
 
Where                                        
 
•   This is so-called Kelvin-Helmholtz instability 
•   Here, similar to RTI, the magnetic field has affected to stabilize the 

system. 
•  If no B-field and no gravity, all wavelengths are unstable as long as  
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Kelvin-Helmholtz instability (cont.)	  

•  If no B-field but with gravity and stable against RTI (                   ), 
the interface is unstable when  

•  Gravity is stabilize at long wavelength for KH instability 

�(2)
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KHI simulations	  

2D hydro 2D MHD 

2D jet 
propagation 

Movie	  in	  here	   Movie	  in	  here	  



KHI in nature	  
cloud 

Jupiter’s great red spot Relativistic jet in M87  

Movie	  in	  here	  



Summary 
•  There are many potentially growing instabilities in the universe. 
•   These instabilities are strongly related the dynamics in the 

universe. 

•  Important:  
–  what system is stable/unstable against instabilities (condition 

for stable/unstable of instability) 
–  What is the time scale of growing instabilities (growth rate). 

Does it affects the dynamics of system? 


