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Outtlow and Accretion

e In the universe, outflow and accretion are common feature.
* Qutflow

— Solar wind, stellar wind, Pulsar wind.

— Galactic disk wind

— Qutflow/jet from accretion disk

* Accretion: the gravitational attraction of gas onto a central
object.

— Galaxy, AGN (supper-massive BH)
— Binaries (from remnant star to compact object)
— Isolated compact object (white dwarf, neutron star, BH)

— T-Taur1 star (protostar), protoplanet



Solar wind

The solar corona cannot LASCO observation (white light)
remain 1n static

equilibrium but 1s

continually expanding.

The continual expansion

is called the solar wind.

Solar wind velocity ~

300-900 km/s near the Movie here

carth

Temperature 10°-10° K

Steady flow: solar wind
Transient flow: coronal
mass ejection



Parker wind model

Parker (1958): gas pressure of solar corona can drive the wind

Assume: the expanding plasma which 1s 1sothermal and steady
(thermal-driven wind).

Start with 3D HD equations with spherical symmetry and time steady

©/0t=0) V-(pv) = 0, (8.1)
p(v-V)v = —Vp+pg, (8.2)
R
= —pl, 8.3
p y p (8.3)
T = 1Ty (8.4)

We restrict our attention to the spherically symmetric solution. The

velocity v is taken as purely radial v = vr and the gravitational

acceleration g = g7 obeys the inverse square law,
G Mg

2

r



Parker wind model (cont.)

From isothermal, we have constant sound speed,

cc=p/p (36
For simplicity, we are interested in the dependence on the radial
direction only.

The expressions for the differential operators in the spherical
coordinates are

_da _ii 5
T dr’ V.A_T2d7“ (T Ar)

In the spherical geometry, the governing equations are

dv  dp GMgp

PUar = dr r2 (8.7)

Va

d_(,,ﬂpv) = 0 — r?pv = const. (8.8)
.



Parker wind model (cont.)

Substituting eq (8.6) and (8.7), exclude pressure from equations
dv oldp  GMg

= e 8.9
Ydr s o dr = (52
To exclude p, using eq (8.8),
d 9 _d o dp
dr(r pv) —pdr(r v) + 71 v =0
And obtain
ldp 1 d

Sdr T Y @10

Now eq (8.9) becomes

dv ¢ d r2) —

S _ 4 GM
dr  r2vdr

r2




Parker wind model (cont.)

Rewriting this equation, we obtain

( cg) dv 2¢¢2  GMg
U —_ — R
v

dr r r2

And, then

A2\ dv c?
_ 5 — 955 (p —p,
(U v)dr r2(r re)

Where r. = GMg/(2c¢?) is the critical radius (critical point or
sonic point) showing the position where the wind speed reaches the
sound speed, v = ¢




Parker wind model (cont.)

This 1s a separable ODE, which can readily be integrated,

2 2
/ (v — (;—8) dv = /2;—‘;(7“ — re)dr
The solution 1s
v\’ v\’ r r
(—) — log (—) = 4 log (—) +4—=+C
Cs Cs Te r

The constant of integration C can be determined from boundary
conditions, and 1t determines the specific solution.




Parker wind model (cont.)

* Several types of solution are present

Velocity /
sound speed |

v/cs

3_IIIIIIIIIIIIIIIII

Sonic

-

Sonic point

0L &,

| N T |
0 1

observed

K subsonic
3 4 S 6 1
e distance

Type I & II: double valued (two values of the velocity at the same
distance), non-physical.
Type I1I: has 1mitially supersonic speeds at the Sun which are not



Parker wind model (cont.)

Type IV (subsonic => subsonic): seem also be physically possible
(The ““solar breeze” solutions). But not fit observation.

The unique solution of type V passes through the critical point (r = r,
v =c,) and 1s given by C = -3. This 1s the “solar wind” solution. So the
solar wind 1s transonic flow.

For a typical coronal sound speed of about 10°> m/s and the critical
radius 1s
 GMg

e = ~ 6 x 10°m ~ 9 — 10R;
2¢2

At the Earth’s orbit, the solar wind speed can be obtained by using » =
214R sun, which gives v =310 km/s.



Parker wind model (cont.)
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* Parker wind speed depends on temperature.

* High temperature corona makes faster wind

* But this trend 1s not consistent with recent observation => need
other acceleration mechanism.



Parker spiral

Spiral Locus of

Solar atmosphere 1s high Fluid Parcels Emitted
o« . from a Fixed Source
conductivity- flux ‘frozen-in’ on Rotating Sun~.___

In photosphere/lower corona, fields
frozen 1n fluid rotate with the sun e

In outer corona, plasma (solar wind)

carries magnetic field outward with

it

For the radial flow, the rotation of | ...io of source

the Sun makes the solar magnetic et gose of coron

field twist up 1nto a spiral, so-called )
Sun Rotating with

the Parker spiral. Anqular Speed w’

/

/

,Location of Source

/ when First Parcel
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Parker spiral (cont.)

Magnetic field near the pole region can be treated as radial field.
From magnetic flux conservation
B, A = ByAy

Where 4 and A, are cross sectional area of magnetic field at distance
r and bases

Here, A = 4mr?and Ag = 477§

B,4mr* = Bodnrs — B, = Bo(rg/r?)



Parker spiral (cont.)

At lower latitudes, the 1nitial magnetic field at surface is radial
The foot point of magnetic field rotates with Sun, w,

As sun rotates and solar wind expands radially, it gets toroidal
component of magnetic field

WsT
o = —5r (v:w>

Using B, = B()(?“%/Tz)

7“2 WeT
By=—By | =2 °
¢ 0<T2> <U8w>

Resulting field 1s called Parker spiral




Parker spiral (cont.)

Average angle of equatorial magnetic field 1s

tan 0 = By /B, = rws/vsy

Magnetic field 1s more tangled with larger radius
Angular velocity of Sun is w, =2.87 x 10° s°!.

At the earth (1 AU = 1.50 x 10® km), the co-rotating velocity is
raog=429 km/s

From v ,~400-450 km/s, the angle of interplanetary magnetic
field at the earth 1s ~ 45 degree



Parker spiral (cont.)

4 Solar Wind
Speed

]l 400 km/s

Average IMF Strength and
Direction

At: Angle: Strength:

Mercury 21 35nT
Earth 45  7nT
Mars 56° 4nT

Jupiter 80° 1nT

Neptune 88° 0.2nT




Current status of Solar wind
observation

Ulysses First Orbit Ulysses Second Orbit
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* There are two type of solar wind, fast wind (~700-800 km/s) and
slow wind (~ 300-400 km/s).

* Wind speed varies to solar activity.

Current Sheet Tilt [deg]

WSO Radial



Solar wind (standard

paradigm)

Fast solar wind (steady)

— Emerges from open field
lines

Slow solar wind (steady)

— Escapes intermittently from
the streamer belt

Other sources (transient
event)

— Coronal mass ejections
(CMEs)

Coronal Helmet Streamer

/ A
(Closed Magnetic Field Lines)
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Magneto-centrifugal wind

Waver &Davis (1964): consider wind driven by magneto-
centrifugal force to model solar wind.

(But) From current status, it does not apply to solar wind model
because the rotation speed of sun is slow.

However, we can apply other astrophysical object to fast rotator
(magnetic rotator) or disk

Start with 3D MHD equations with spherical coordinate (r, ¢, 6)

Assume: time steady (9/0t = 0), axisymmetry (9/9¢ = 0 ),
magnetic field and velocity field are radial & toroidal

1.e., B=(B, B » 0), v=(v,, Vi 0), ideal (adiabatic) MHD, and 1D
(0/00 = 0) on the equatorial plane (0= 7/2)



Magneto-centrifugal wind (cont.)

Conservation of mass requires that

pv,r? = f = const (8.11)

where f1s mass flux.

Wind 1s perfect conductor, thus E=-v x B. From Maxwell’s equations

1 d
(V% E)y =~ [r(v,By — vsB,)] =0

But in a perfectly conducting fluid, v is parallel to B in a frame that
rotates with the Sun (or any rotating body).

r(v; By — vy By) = const. = —Qr*B, (3,12

Where €2 1s the angular velocity of the Sun (or any rotating body)
from which wind or jet comes out.



Magneto-centrifugal wind (cont.)
Since div B=0,
r? B, = const. = r%BO =3¢  (8.13)
where @ 1s the magnetic flux.
From toroidal component of equation of motion,

vr d 1 B, d
— = (J xB), = — B) x Bl = —(rB
P,rd,r(m}qb) (J x B)y MO[(VX ) X Bl Mordr(r é)
But
B, B,r?
= — const.

HOPUr  HoPURT?

Which allows to integrate the toroidal component of equation of
motion and obtained

B, B
r vy — — ® — const. = Q4 (8.14)
o PUr




Magneto-centrifugal wind (cont.)

From equation of state,

From total energy conservation law, we get

8.16)
1 1, 5 5 v p GM Q% (
§UE+§(U¢—QT) +ﬁ;_7_ 9 :COHSt.:E

Where E 1s total energy of the wind. This 1s Bernoulli’s equation
in rotational frame (including potential from centrifugal force).

The basic MHD equations are integrated into six conservation
equations eq (8.11) — (8.16).

These six parameter, f, @, Q, r,?, K, E are integral constant.
The unknown variables are also six, p, v, B, Vg By D

Hence, if these six constants are given, the equations are solved so
that six unknown physical quantities are determined at each r



Magneto-centrifugal wind (cont.)

Eliminating v,1n eq (8.12) and (8.14), we find

By 1 (1 —7“124/7“2)
B, v, (1 —vir/vg)

It follows that » must be equal to », when v. 1s equal to v,..

Here v4, = B, /(uop)/? is the Alfven velocity due to the radial
component of magnetic field.

r 4 1s called Alfven radius or Alfven point



Magneto-centrifugal wind (cont.)

Before solving equations, 1t will be useful to calculate the asymptotic
behavior of the physical quantities in this wind.

As r — oo, we find
B, o r~?

Since 1n adiabatic wind, wind velocity v, should tend to be constant
terminal velocity v from energy conservation, 1.e.,

Vr — Voo
Then we obtain 9
pPXT =,
VAr X Br/p1/2 17
By/B, o,
By rt

Hence, the degree of magnetic twist 1s increases with distance r



Magneto-centrifugal wind (cont.)

* C(Calculate singular points in this wind. We put eqs (8.11)-(8.15)
into eq(8.16) then get following equation only » and p

2 2,.2 2 /,.2\2
1 K GM () 1 —
H(T’, p) _ f — Y pfy—l o 4 r [( TA/T )2 o 1]
2 pPriy—1 r 2 [ (1—p/pa)
2
Uyl 8.17
Where - = ~ = M; &17
PA VArT»

M ,: Alfven Mach number

* Since the eq (8.11) 1s written as

2
1do,  1dp 2 G +F%5

vy dr  pdr v p%—l;[

Wind equation




Magneto-centrifugal wind (cont.)

Hence the point where 0 H/0p = 0 becomes the singular point.
From eq (8.17), we obtain

OH (02 = 02)(F — )
ap U% o 1}1247“
Here 02 — 1 [024—?}2 L2 \/(02+v2 + 0% )2 — 4c2v? J
sr 9 |78 Ar Ap S Ar A sY Ar
1
U]%r =3 [cg + U124’r + vi¢ + \/(cg + vir + 1)12%)2 _ 402“?44
Similarly,
pﬁ_H — _2/07% + GM — 7P |1 — vp (1= ri/rél)
or r r? (U% o 2}1247“)




Magneto-centrifugal wind (cont.)

 From these equation, we find when 90H/0p = 0 (i.e., v,= v, or
V,= V), OH/Or = 0 must be equal to zero. The point where

r

OH/Or = 0 are called slow point (» = ry) and fast point (r =ry).

Solution curve of 1D magneto-centrifugal wind (weber & Davis 1967)
Radial velocity

u

: ;
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— ———

XQK NS

\ ﬁ\&\\ %85, /f 1

% \ B 2 85 100 1015
r/rq

Radial distance

- r/ry
Alfven point ~ Fast point
Slow point



Magneto-centrifugal wind (cont.)

Weber-Davis model is considered equatorial plane.

But 1t can be applied any 2D field configuration which assume that
trans-field direction (perpendicular to poloidal field line) 1s
balanced and solve (poloidal) field aligned flow.

If we consider more realistic situation in 2D, we need to solve
additional equation, so-called Grad-Shafranov equation (trans-field
equation) which describing force balance perpendicular to poloidal
field line coupling with wind equations.

In general, GS equation 1s very complicated (second-order quasi-
linear partial differential equation) and difficult to find the solution.

This kind of study 1s applied to stellar outflows, astrophysical jets
from accretion disk and pulsar wind.



Bondi accretion

Consider spherically-symmetric steady accretion under the
gravitational field.

Spherical accretion onto gravitating body was first studied by
Bondi (1952), and 1s often called Bondi accretion

Spherical outflow 1s Parker wind.

Analogy 1s similar to that in Parker wind (only view point is
different).

Far from the accreting gravitating object, the plasma has a uniform
density and a uniform pressure ( poc and pso )

The sound speed far from the gravitating object has the value

Csoo — \//Ypoo/poo




Bondi accretion (cont.)

Consider a spherically symmetric flow around an object of mass M.
The flow 1s supposed to be steady and 1D 1n radial direction.

The flow 1s assumed to be inviscid and adiabatic, and magnetic and
radiation fields are 1gnored.

The continuity equations and equation of motion are

1 d

4mr? dr (
dv ldp GM

dr o dr r2

drripv) =0, (8.18)

(8.19)

Where v 1s flow velocity (positive for wind and negative for
accretion.)

The polytropic relation 1s assumed, p=Kp"



Bondi accretion (cont.)
Integrating the eq (8.18) & (8.19) yields

—47Tr2,0v: const. = M . (8.20)
1Ly, v p GM

= const. =F. (821
2 vy—1p r

Where M is mass accretion rate (which 1s constant in the present
case) and E 1s the Bernoulli constant.

Let us introduce the sound speed and rewrite the basic equation as
2

—4riel Ty = (K*y)ﬁM, (8.22)

1 1 GM

— E. (8.23)
2 v —1 r




Bond1 accretion (cont.)

* From the logarithmic differentiation of eq (8.20) we have
2 1d 1 dv
dp , 1dv

24 “22 0
r  pdr vdr

* Eliminating dpo/dr from eq (8.19), we obtain

1 dv 2 GM
2 o2ytav 2 5
(v CS)vdr rcs r2

* Here the sound speed 1s expressed as
GM 1
C§=(v—1)(E+ 2>

— —v
r 2



Bond1 accretion (cont.)

* In the adiabatic case, considering regularity condition v.=-c,, and
r=GM/2c? at critical point, from continuity and Bernoulli
equations, we have

(KN)YO" VM = dgr?|o |0/ 0D
D =37 o
vC
2(y - 1)
* These give the relations between the quantities at the critical point

and flow parameter. Furthermore, critical radius r_ 1s expressed in
terms of yand E as

,

E =

GM  (5-37)GM
22 4A(y—-1)E

S

Te

* From this critical radius 1s determined by Mass of central object
and flow energy.



Bond1 accretion (cont.)

Moreover, 1n order for the steady transonic solution to exist, £ must
be positive. Hence, the condition

1<vy<5/3

Should be satisfied in the case of spherically symmetric adiabatic
flow.

In adiabatic case, y=5/3 does not make transonic flow. To satisfy
y<5/3, we should consider non-adiabatic effect such as thermal
conduction or radiation cooling.

(Parker wind 1s assumed 1sothermal, therefore does not effect this
problem)



Bond1 accretion (cont.)

* Let us introduce the Mach number M = v/cs and derive the wind
equation

* In adiabatic case, we easily derive

aM _ N
dr D
D = M?’—-1

vy—1 5 2 v+ 1 1 GM
— A 1) 12 =

/rn




Bond1 accretion (cont.)

* Several types of solution are present
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Bondi accretion (cont.)

* Ifthe accretion is transonic, then we can uniquely determine the
accretion rate M; in terms of the mass M of the accreting object and

the density P~ and the sound speed Csoo at infinity (ambient value).
 From eq (8.23),

2 2 2
v* s GM ¢

2 " 4—1 7 v—1’

or 9 1/2
Csc = Csoo
(5 - 3v>

* This implies that
- 5=3GM

2
4 Cing

Te




Bond1 accretion (cont.)

Using the relation M = 4772 p,..cs., We find that the transonic
accretion rate 1s

G*M?po

3
Cso0

Mt — 47ch

Where L g\ (=329

The numerical value of g, ranges from g, = 1/4 at y=5/3 to g, = ¢*?/4~
1.12 when y=1.

If accreting medium 1s 1onized hydrogen, the transonic accretion rate
has

- M \? P Too \ 37
M; =1.2 x 100 R > >
! 8 & BEC (M@> (1024g Cm?’) <1O4K>

This amounts to about 10~ 19/ yr~! for a 1M, gravitating body.




Bond1 accretion (cont.)

The relation between the bulk velocity v(r) and the sound speed
c,(r) can be computed from the equation

M M < Cone 2/(y—1)
)

—D =

~ dmr2p(r) - ATr2poe \ Cs(T
Thus G.G2M? ([ cs(r) —2/(y—1)
V= — & S
r2Ci ( Csoo )
Or

v g [\ e PO
Csoo 4 \rq Csoo

Where | rq = 2GM /2| accretion radius or Bondi radius
The radius at which the density and sound speed start to
significantly increase from their ambient values of Poo and Csoo




Bond1 accretion (cont.)

* The relation between the critical radius and the accretion radius is

re = [(5—37)/8]ra
* At large radius (r >>r))

9
U@_Qccsoo r 1_lr_a
4 Ta 27

* From gas with y=5/3, at small radius (» <<r )

—1/2
DA e A Csoo r
N_SN_ -
2 Ta

P (7T
= 8 \r,




Bond1 accretion (cont.)

If 1 <y<35/3, the infall at » <<r_ 1s supersonic, and the infalling gas is
in free fall. From Bernoulli integral, we find v?/2 ~ GM/r or

—1/2
RNV
V= —Csoo0 | —

Ta

—3/2
Gepoo T
P 4 (ra>

Spherical accretion of gas thus has a characteristic density profile,
with p3? at small radius and p = constant at large radius.

The infall velocity profile is v-/2 at small radius



Bond1 accretion (cont.)

* If accreting body has a constant velocity V" with respect to ambient
medium, the transonic accretion rate 18

G*M? po

Mt = 47Tq~ (Cgoo T V2)3/2

* Where ¢ 1s a order of unity. When V' > ¢4, , a bow shock forms in
front of the accreting object which increases the temperature and
decreases the bulk infalling velocity relative to accreting central
object.

« Atr < rq ~2GM/(V? 4 2 ), the flow of the gas is approximately
radial, and takes the form of the spherically symmetric Bondi solution.



Summary

Study the steady spherically outflow and accretion.

The solution of wind equation with integral constants shows variety
of flow profile (outflow and accretion).

Transonic solution (pass through the sonic point) is the most
favorable solution for accretion and outflow.

In MHD case, there are three critical points (slow, Alfven and fast).
The solution should pass through all three critical points.

The twist of magnetic field is proportional to distance, i.e., in far
region, toroidal (azimuthal) magnetic field i1s dominant.



