Plasma Astrophysics
 Chapter 8:Outflow and Accretion

Yosuke Mizuno
Institute of Astronomy
National Tsing-Hua University

Outflow and Accretion

- In the universe, outflow and accretion are common feature.
- Outflow
- Solar wind, stellar wind, Pulsar wind.
- Galactic disk wind
- Outflow/jet from accretion disk
- Accretion: the gravitational attraction of gas onto a central object.
- Galaxy, AGN (supper-massive BH)
- Binaries (from remnant star to compact object)
- Isolated compact object (white dwarf, neutron star, BH)
- T-Tauri star (protostar), protoplanet

Solar wind

- The solar corona cannot remain in static equilibrium but is continually expanding. The continual expansion is called the solar wind.
- Solar wind velocity ~ $300-900 \mathrm{~km} / \mathrm{s}$ near the earth
- Temperature $10^{5}-10^{6} \mathrm{~K}$
- Steady flow: solar wind
- Transient flow: coronal mass ejection

LASCO observation (white light)

Parker wind model

- Parker (1958): gas pressure of solar corona can drive the wind
- Assume: the expanding plasma which is isothermal and steady (thermal-driven wind).
- Start with 3D HD equations with spherical symmetry and time steady

$$
\begin{align*}
(\partial / \partial t=0) \quad \nabla \cdot(\rho \boldsymbol{v}) & =0 \tag{8.1}\\
\rho(\boldsymbol{v} \cdot \nabla) \boldsymbol{v} & =-\nabla p+\rho \boldsymbol{g} \\
p & =\frac{R}{\mu} \rho T \tag{8.2}\\
T & =T_{0} \tag{8.3}
\end{align*}
$$

- We restrict our attention to the spherically symmetric solution. The velocity \boldsymbol{v} is taken as purely radial $\boldsymbol{v}=v \hat{r}$ and the gravitational acceleration $\boldsymbol{g}=g \hat{r}$ obeys the inverse square law,

$$
\begin{equation*}
g=-\frac{G M_{\odot}}{r^{2}} \tag{8.5}
\end{equation*}
$$

Parker wind model (cont.)

- From isothermal, we have constant sound speed,

$$
\begin{equation*}
c_{s}^{2}=p / \rho \tag{8.6}
\end{equation*}
$$

- For simplicity, we are interested in the dependence on the radial direction only.
- The expressions for the differential operators in the spherical coordinates are

$$
\nabla a=\frac{d a}{d r}, \quad \nabla \cdot A=\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} A_{r}\right)
$$

- In the spherical geometry, the governing equations are

$$
\begin{align*}
\rho v \frac{d v}{d r} & =-\frac{d p}{d r}-\frac{G M_{\odot} \rho}{r^{2}} \tag{8.7}\\
\frac{d}{d r}\left(r^{2} \rho v\right) & =0 \rightarrow r^{2} \rho v=\mathrm{const} \tag{8.8}
\end{align*}
$$

Parker wind model (cont.)

- Substituting eq (8.6) and (8.7), exclude pressure from equations

$$
\begin{equation*}
v \frac{d v}{d r}=-c_{s}^{2} \frac{1}{\rho} \frac{d \rho}{d r}-\frac{G M_{\odot}}{r^{2}} \tag{8.9}
\end{equation*}
$$

- To exclude ρ, using eq (8.8),

$$
\frac{d}{d r}\left(r^{2} \rho v\right)=\rho \frac{d}{d r}\left(r^{2} v\right)+r^{2} v \frac{d \rho}{d r}=0
$$

- And obtain

$$
\begin{equation*}
\frac{1}{\rho} \frac{d \rho}{d r}=-\frac{1}{r^{2} v} \frac{d}{d r}\left(r^{2} v\right) \tag{8.10}
\end{equation*}
$$

- Now eq (8.9) becomes

$$
v \frac{d v}{d r}=\frac{c_{s}^{2}}{r^{2} v} \frac{d}{d r}\left(r^{2} v\right)-\frac{G M_{\odot}}{r^{2}}
$$

Parker wind model (cont.)

- Rewriting this equation, we obtain

$$
\left(v-\frac{c_{s}^{2}}{v}\right) \frac{d v}{d r}=\frac{2 c_{s}^{2}}{r}-\frac{G M_{\odot}}{r^{2}}
$$

- And, then

$$
\left(v-\frac{c_{s}^{2}}{v}\right) \frac{d v}{d r}=2 \frac{c_{s}^{2}}{r^{2}}\left(r-r_{c}\right)
$$

- Where $r_{c}=G M_{\odot} /\left(2 c_{s}^{2}\right)$ is the critical radius (critical point or sonic point) showing the position where the wind speed reaches the sound speed, $v=c_{\mathrm{s}}$

Parker wind model (cont.)

- This is a separable ODE, which can readily be integrated,

$$
\int\left(v-\frac{c_{s}^{2}}{v}\right) d v=\int 2 \frac{c_{s}^{2}}{r^{2}}\left(r-r_{c}\right) d r
$$

- The solution is

$$
\left(\frac{v}{c_{s}}\right)^{2}-\log \left(\frac{v}{c_{s}}\right)^{2}=4 \log \left(\frac{r}{r_{c}}\right)+4 \frac{r_{c}}{r}+C
$$

- The constant of integration C can be determined from boundary conditions, and it determines the specific solution.

Parker wind model (cont.)

- Several types of solution are present

- Type I \& II: double valued (two values of the velocity at the same distance), non-physical.
- Type III: has initially supersonic speeds at the Sun which are not observed

Parker wind model (cont.)

- Type IV (subsonic => subsonic): seem also be physically possible (The "solar breeze" solutions). But not fit observation.
- The unique solution of type V passes through the critical point ($r=r_{\mathrm{c}}$, $v=c_{\mathrm{s}}$) and is given by $C=-3$. This is the "solar wind" solution. So the solar wind is transonic flow.
- For a typical coronal sound speed of about $10^{5} \mathrm{~m} / \mathrm{s}$ and the critical radius is

$$
r_{c}=\frac{G M_{\odot}}{2 c_{s}^{2}} \approx 6 \times 10^{9} \mathrm{~m} \approx 9-10 R_{\odot}
$$

- At the Earth's orbit, the solar wind speed can be obtained by using $r=$ $214 R$ _sun, which gives $v=310 \mathrm{~km} / \mathrm{s}$.

Parker wind model (cont.)

- Parker wind speed depends on temperature.
- High temperature corona makes faster wind
- But this trend is not consistent with recent observation => need other acceleration mechanism.

Parker spiral

- Solar atmosphere is high conductivity- flux 'frozen-in'
- In photosphere/lower corona, fields frozen in fluid rotate with the sun
- In outer corona, plasma (solar wind) carries magnetic field outward with it
- For the radial flow, the rotation of the Sun makes the solar magnetic field twist up into a spiral, so-called the Parker spiral.

Parker spiral (cont.)

- Magnetic field near the pole region can be treated as radial field.
- From magnetic flux conservation

$$
B_{r} A=B_{0} A_{0}
$$

- Where A and A_{0} are cross sectional area of magnetic field at distance r and bases
- Here, $A=4 \pi r^{2}$ and $A_{0}=4 \pi r_{0}^{2}$

$$
B_{r} 4 \pi r^{2}=B_{0} 4 \pi r_{0}^{2} \rightarrow B_{r}=B_{0}\left(r_{0}^{2} / r^{2}\right)
$$

Parker spiral (cont.)

- At lower latitudes, the initial magnetic field at surface is radial
- The foot point of magnetic field rotates with Sun, ω_{s}
- As sun rotates and solar wind expands radially, it gets toroidal component of magnetic field

$$
B_{\phi}=-B_{r}\left(\frac{\omega_{s} r}{v_{s w}}\right)
$$

- Using $B_{r}=B_{0}\left(r_{0}^{2} / r^{2}\right)$

$$
B_{\phi}=-B_{0}\left(\frac{r_{0}^{2}}{r^{2}}\right)\left(\frac{\omega_{s} r}{v_{s w}}\right)
$$

- Resulting field is called Parker spiral

Parker spiral (cont.)

- Average angle of equatorial magnetic field is

$$
\tan \theta=B_{\phi} / B_{r}=r \omega_{s} / v_{s w}
$$

- Magnetic field is more tangled with larger radius
- Angular velocity of Sun is $\omega_{\mathrm{s}}=2.87 \times 10^{6} \mathrm{~s}^{-1}$.
- At the earth $\left(1 \mathrm{AU}=1.50 \times 10^{8} \mathrm{~km}\right)$, the co-rotating velocity is $r \omega_{\mathrm{s}}=429 \mathrm{~km} / \mathrm{s}$
- From $v_{\mathrm{sw}} \sim 400-450 \mathrm{~km} / \mathrm{s}$, the angle of interplanetary magnetic field at the earth is ~ 45 degree

Parker spiral (cont.)

Solar Wind Speed
$400 \mathrm{~km} / \mathrm{s}$
$2000 \mathrm{~km} / \mathrm{s}$

Average IMF Strength and Direction

At:	Angle: Strength:	
Mercury	21°	35 nT
Earth	45°	7 nT
Mars	56°	4 nT
Jupiter	80°	1 nT
Neptune	88°	0.2 nT

Current status of Solar wind observation

Ulysses First Orbit

Ulysses Second Orbit

Ulysses Third Orbit

Solar wind (standard paradigm)

- Fast solar wind (steady)
- Emerges from open field lines
- Slow solar wind (steady)

- Escapes intermittently from the streamer belt
- Other sources (transient event)
- Coronal mass ejections (CMEs)

Magneto-centrifugal wind

- Waver \&Davis (1964): consider wind driven by magnetocentrifugal force to model solar wind.
- (But) From current status, it does not apply to solar wind model because the rotation speed of sun is slow.
- However, we can apply other astrophysical object to fast rotator (magnetic rotator) or disk
- Start with 3D MHD equations with spherical coordinate (r, ϕ, θ)
- Assume: time steady $(\partial / \partial t=0)$, axisymmetry $(\partial / \partial \phi=0)$, magnetic field and velocity field are radial \& toroidal i.e., $\boldsymbol{B}=\left(B_{\mathrm{r}}, B_{\phi}, 0\right), \boldsymbol{v}=\left(v_{\mathrm{r}}, v_{\phi}, 0\right)$, ideal (adiabatic) MHD, and 1D $(\partial / \partial \theta=0)$ on the equatorial plane $(\theta=\pi / 2)$

Magneto-centrifugal wind (cont.)

- Conservation of mass requires that

$$
\begin{equation*}
\rho v_{r} r^{2}=f=\mathrm{const} \tag{8.11}
\end{equation*}
$$

where f is mass flux.

- Wind is perfect conductor, thus $\boldsymbol{E}=-\boldsymbol{v} \times \boldsymbol{B}$. From Maxwell's equations

$$
(\nabla \times \boldsymbol{E})_{\phi}=\frac{1}{r} \frac{d}{d r}\left[r\left(v_{r} B_{\phi}-v_{\phi} B_{r}\right)\right]=0
$$

- But in a perfectly conducting fluid, \boldsymbol{v} is parallel to \boldsymbol{B} in a frame that rotates with the Sun (or any rotating body).

$$
\begin{equation*}
r\left(v_{r} B_{\phi}-v_{\phi} B_{r}\right)=\text { const. }=-\Omega r^{2} B_{r} \tag{8.12}
\end{equation*}
$$

- Where Ω is the angular velocity of the Sun (or any rotating body) from which wind or jet comes out.

Magneto-centrifugal wind (cont.)

- Since $\operatorname{div} \boldsymbol{B}=0$,

$$
\begin{equation*}
r^{2} B_{r}=\text { const. }=r_{0}^{2} B_{0}=\Phi \tag{8.13}
\end{equation*}
$$

where Φ is the magnetic flux.

- From toroidal component of equation of motion,

$$
\rho \frac{v_{r}}{r} \frac{d}{d r}\left(r v_{\phi}\right)=(\boldsymbol{J} \times \boldsymbol{B})_{\phi}=\frac{1}{\mu_{0}}[(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}]_{\phi}=\frac{B_{r}}{\mu_{0} r} \frac{d}{d r}\left(r B_{\phi}\right)
$$

- But

$$
\frac{B_{r}}{\mu_{0} \rho v_{r}}=\frac{B_{r} r^{2}}{\mu_{0} \rho v_{r} r^{2}}=\text { const. }
$$

- Which allows to integrate the toroidal component of equation of motion and obtained

$$
\begin{equation*}
r\left(v_{\phi}-\frac{B_{r} B_{\phi}}{\mu_{0} \rho v_{r}}\right)=\text { const. }=\Omega r_{A}^{2} \tag{8.14}
\end{equation*}
$$

Magneto-centrifugal wind (cont.)

- From equation of state,

$$
\begin{equation*}
p=K \rho^{\gamma} \tag{8.15}
\end{equation*}
$$

- From total energy conservation law, we get

$$
\begin{equation*}
\frac{1}{2} v_{r}^{2}+\frac{1}{2}\left(v_{\phi}^{2}-\Omega r\right)^{2}+\frac{\gamma}{\gamma-1} \frac{p}{\rho}-\frac{G M}{r}-\frac{\Omega^{2} r^{2}}{2}=\text { const. }=E \tag{8.16}
\end{equation*}
$$

- Where E is total energy of the wind. This is Bernoulli's equation in rotational frame (including potential from centrifugal force).
- The basic MHD equations are integrated into six conservation equations eq (8.11) - (8.16).
- These six parameter, $f, \Phi, \Omega, r_{\mathrm{A}}{ }^{2}, K, E$ are integral constant.
- The unknown variables are also six, $\rho, v_{\mathrm{r}}, B_{\mathrm{r}}, v_{\phi}, B_{\phi}, p$
- Hence, if these six constants are given, the equations are solved so that six unknown physical quantities are determined at each r

Magneto-centrifugal wind (cont.)

- Eliminating v_{ϕ} in eq (8.12) and (8.14), we find

$$
\frac{B_{\phi}}{B_{r}}=-\frac{r \Omega}{v_{r}} \frac{\left(1-r_{A}^{2} / r^{2}\right)}{\left(1-v_{A r}^{2} / v_{r}^{2}\right)}
$$

- It follows that r must be equal to r_{A} when v_{r} is equal to v_{Ar}.
- Here $v_{A r}=B_{r} /\left(\mu_{0} \rho\right)^{1 / 2}$ is the Alfven velocity due to the radial component of magnetic field.
- r_{A} is called Alfven radius or Alfven point

Magneto-centrifugal wind (cont.)

- Before solving equations, it will be useful to calculate the asymptotic behavior of the physical quantities in this wind.
- As $r \rightarrow \infty$, we find

$$
B_{r} \propto r^{-2}
$$

- Since in adiabatic wind, wind velocity ν_{r} should tend to be constant terminal velocity v_{∞} from energy conservation, i.e.,

$$
v_{r} \rightarrow v_{\infty}
$$

- Then we obtain

$$
\begin{aligned}
& \rho \propto r^{-2} \\
& v_{A r} \propto B_{r} / \rho^{1 / 2} \propto r^{-1} \\
& B_{\phi} / B_{r} \propto r \\
& B_{\phi} \propto r^{-1}
\end{aligned}
$$

- Hence, the degree of magnetic twist is increases with distance r

Magneto-centrifugal wind (cont.)

- Calculate singular points in this wind. We put eqs (8.11)-(8.15) into eq(8.16) then get following equation only r and ρ

$$
H(r, \rho)=\frac{f^{2}}{2} \frac{1}{\rho^{2} r^{4}} \frac{\gamma K}{\gamma-1} \rho^{\gamma-1}-\frac{G M}{r}+\frac{\Omega^{2} r^{2}}{2}\left[\frac{\left(1-r_{A}^{2} / r^{2}\right)^{2}}{\left(1-\rho / \rho_{A}\right)^{2}}-1\right]
$$

$$
\begin{equation*}
\text { Where } \frac{\rho}{\rho_{A}}=\frac{v_{r} r^{2}}{v_{A r} r_{A}^{2}}=M_{A}^{2} \tag{8.17}
\end{equation*}
$$

M_{A} : Alfven Mach number

- Since the eq (8.11) is written as

$$
\frac{1}{v_{r}} \frac{d v_{r}}{d r}=-\frac{1}{\rho} \frac{d \rho}{d r}-\frac{2}{r}=-\frac{\frac{\partial H}{\partial r}+\frac{2 \rho}{r} \frac{\partial H}{\partial \rho}}{\rho \frac{\partial H}{\partial \rho}}
$$

Wind equation

Magneto-centrifugal wind (cont.)

- Hence the point where $\partial H / \partial \rho=0$ becomes the singular point.
- From eq (8.17), we obtain

$$
\rho \frac{\partial H}{\partial \rho}=-\frac{\left(v_{r}^{2}-v_{s r}^{2}\right)\left(v_{r}^{2}-v_{f r}^{2}\right)}{v_{r}^{2}-v_{A r}^{2}}
$$

- Here

$$
\begin{aligned}
v_{s r}^{2} & =\frac{1}{2}\left[c_{s}^{2}+v_{A r}^{2}+v_{A \phi}^{2}-\sqrt{\left(c_{s}^{2}+v_{A r}^{2}+v_{A \phi}^{2}\right)^{2}-4 c_{s}^{2} v_{A r}^{2}}\right] \\
v_{f r}^{2} & =\frac{1}{2}\left[c_{s}^{2}+v_{A r}^{2}+v_{A \phi}^{2}+\sqrt{\left(c_{s}^{2}+v_{A r}^{2}+v_{A \phi}^{2}\right)^{2}-4 c_{s}^{2} v_{A r}^{2}}\right]
\end{aligned}
$$

- Similarly,

$$
\rho \frac{\partial H}{\partial r}=-\frac{2 v_{r}^{2}}{r}+\frac{G M}{r^{2}}-r \Omega^{2}\left[1-\frac{v_{r}^{4}\left(1-r_{A}^{4} / r^{4}\right)}{\left(v_{r}^{2}-v_{A r}^{2}\right)}\right]
$$

Magneto-centrifugal wind (cont.)

- From these equation, we find when $\partial H / \partial \rho=0$ (i.e., $v_{\mathrm{r}}=v_{\mathrm{sr}}$ or $\left.v_{\mathrm{r}}=v_{\mathrm{fr}}\right), \partial H / \partial r=0$ must be equal to zero. The point where $\partial H / \partial r=0$ are called slow point $\left(r=r_{\mathrm{sr}}\right)$ and fast point $\left(r=r_{f r}\right)$.

Solution curve of 1D magneto-centrifugal wind (weber \& Davis 1967) Radial velocity

Magneto-centrifugal wind (cont.)

- Weber-Davis model is considered equatorial plane.
- But it can be applied any 2D field configuration which assume that trans-field direction (perpendicular to poloidal field line) is balanced and solve (poloidal) field aligned flow.
- If we consider more realistic situation in 2D, we need to solve additional equation, so-called Grad-Shafranov equation (trans-field equation) which describing force balance perpendicular to poloidal field line coupling with wind equations.
- In general, GS equation is very complicated (second-order quasilinear partial differential equation) and difficult to find the solution.
- This kind of study is applied to stellar outflows, astrophysical jets from accretion disk and pulsar wind.

Bondi accretion

- Consider spherically-symmetric steady accretion under the gravitational field.
- Spherical accretion onto gravitating body was first studied by Bondi (1952), and is often called Bondi accretion
- Spherical outflow is Parker wind.
- Analogy is similar to that in Parker wind (only view point is different).
- Far from the accreting gravitating object, the plasma has a uniform density and a uniform pressure (ρ_{∞} and p_{∞})
- The sound speed far from the gravitating object has the value

$$
c_{s \infty}=\sqrt{\gamma p_{\infty} / \rho_{\infty}}
$$

Bondi accretion (cont.)

- Consider a spherically symmetric flow around an object of mass M.
- The flow is supposed to be steady and 1D in radial direction.
- The flow is assumed to be inviscid and adiabatic, and magnetic and radiation fields are ignored.
- The continuity equations and equation of motion are

$$
\begin{align*}
& \frac{1}{4 \pi r^{2}} \frac{d}{d r}\left(4 \pi r^{2} \rho v\right)=0 \tag{8.18}\\
& v \frac{d v}{d r}=-\frac{1}{\rho} \frac{d p}{d r}-\frac{G M}{r^{2}} \tag{8.19}
\end{align*}
$$

- Where v is flow velocity (positive for wind and negative for accretion.)
- The polytropic relation is assumed, $p=K \rho^{\prime \prime}$

Bondi accretion (cont.)

- Integrating the eq (8.18) \& (8.19) yields

$$
\begin{align*}
& -4 \pi r^{2} \rho v=\text { const. }=\dot{M}, \tag{8.20}\\
& \frac{1}{2} v^{2}+\frac{\gamma}{\gamma-1} \frac{p}{\rho}-\frac{G M}{r}=\text { const. }=E . \tag{8.21}
\end{align*}
$$

- Where \dot{M} is mass accretion rate (which is constant in the present case) and E is the Bernoulli constant.
- Let us introduce the sound speed and rewrite the basic equation as

$$
\begin{align*}
& -4 \pi r^{2} c_{s}^{\frac{2}{\gamma-1}} v=(K \gamma)^{\frac{1}{\gamma-1}} \dot{M}, \tag{8.22}\\
& \frac{1}{2} v^{2}+\frac{1}{\gamma-1} c_{s}^{2}-\frac{G M}{r}=E . \tag{8.23}
\end{align*}
$$

Bondi accretion (cont.)

- From the logarithmic differentiation of eq (8.20) we have

$$
\frac{2}{r}+\frac{1}{\rho} \frac{d \rho}{d r}+\frac{1}{v} \frac{d v}{d r}=0
$$

- Eliminating $\mathrm{d} \rho / \mathrm{d} r$ from eq (8.19), we obtain

$$
\left(v^{2}-c_{s}^{2}\right) \frac{1}{v} \frac{d v}{d r}=\frac{2}{r} c_{s}^{2}-\frac{G M}{r^{2}}
$$

- Here the sound speed is expressed as

$$
c_{s}^{2}=(\gamma-1)\left(E+\frac{G M}{r}-\frac{1}{2} v^{2}\right)
$$

Bondi accretion (cont.)

- In the adiabatic case, considering regularity condition $v_{\mathrm{c}}=-c_{\mathrm{sc}}$ and $r_{\mathrm{c}}=G M / 2 c_{\mathrm{sc}}{ }^{2}$ at critical point, from continuity and Bernoulli equations, we have

$$
\begin{aligned}
(K \gamma)^{1 /(\gamma-1)} \dot{M} & =4 \pi r_{c}^{2} \mid v_{c}(\gamma+1) /(\gamma-1) \\
E & =\frac{5-3 \gamma}{2(\gamma-1)} v_{c}^{2}
\end{aligned}
$$

- These give the relations between the quantities at the critical point and flow parameter. Furthermore, critical radius r_{c} is expressed in terms of γ and E as

$$
r_{c}=\frac{G M}{2 c_{s}^{2}}=\frac{(5-3 \gamma) G M}{4(\gamma-1) E}
$$

- From this critical radius is determined by Mass of central object and flow energy.

Bondi accretion (cont.)

- Moreover, in order for the steady transonic solution to exist, E must be positive. Hence, the condition

$$
1<\gamma<5 / 3
$$

- Should be satisfied in the case of spherically symmetric adiabatic flow.
- In adiabatic case, $\gamma=5 / 3$ does not make transonic flow. To satisfy $\gamma<5 / 3$, we should consider non-adiabatic effect such as thermal conduction or radiation cooling.
- (Parker wind is assumed isothermal, therefore does not effect this problem)

Bondi accretion (cont.)

- Let us introduce the Mach number $\mathcal{M} \equiv v / c_{s}$ and derive the wind equation
- In adiabatic case, we easily derive

$$
\begin{aligned}
& \frac{d \mathcal{M}}{d r}=\frac{\mathcal{N}}{\mathcal{D}} \\
\mathcal{D}= & \mathcal{M}^{2}-1 \\
\mathcal{N}= & \mathcal{M}\left(\frac{\gamma-1}{2} \mathcal{M}^{2}+1\right)\left[\frac{2}{r}-\frac{\gamma+1}{2(\gamma-1)} \frac{1}{E+\frac{G M}{r}} \frac{G M}{r^{2}}\right]
\end{aligned}
$$

Bondi accretion (cont.)

- Several types of solution are present

Bondi accretion (cont.)

- If the accretion is transonic, then we can uniquely determine the accretion rate \dot{M}_{t} in terms of the mass M of the accreting object and the density ρ_{∞} and the sound speed $c_{s \infty}$ at infinity (ambient value).
- From eq (8.23),

$$
\frac{v^{2}}{2}+\frac{c_{s}^{2}}{\gamma-1}-\frac{G M}{r}=\frac{c_{s \infty}^{2}}{\gamma-1}
$$

or

$$
c_{s c}=c_{s \infty}\left(\frac{2}{5-3 \gamma}\right)^{1 / 2}
$$

- This implies that

$$
r_{c}=\frac{5-3 \gamma}{4} \frac{G M}{c_{s \infty}^{2}}
$$

or

$$
\rho_{r c}=\rho_{\infty}\left(\frac{2}{5-3 \gamma}\right)^{1 /(\gamma-1)}
$$

Bondi accretion (cont.)

- Using the relation $\dot{M}=4 \pi r_{c}^{2} \rho_{r c} c_{s c}$, we find that the transonic accretion rate is

$$
\dot{M}_{t}=4 \pi q_{c} \frac{G^{2} M^{2} \rho_{\infty}}{c_{s \infty}^{3}}
$$

- Where

$$
q_{c}(\gamma)=\frac{1}{4}\left(\frac{2}{5-3 \gamma}\right)^{(5-3 \gamma) /(2 \gamma-2)}
$$

- The numerical value of q_{c} ranges from $q_{\mathrm{c}}=1 / 4$ at $\gamma=5 / 3$ to $q_{\mathrm{c}}=e^{3 / 2 / 4 \sim}$ 1.12 when $\gamma=1$.
- If accreting medium is ionized hydrogen, the transonic accretion rate has

$$
\dot{M}_{t}=1.2 \times 10^{10} \mathrm{~g} \mathrm{sec}^{-1}\left(\frac{M}{M_{\odot}}\right)^{2}\left(\frac{\rho_{\infty}}{10^{-24} \mathrm{~g} \mathrm{~cm}^{-3}}\right)\left(\frac{T_{\infty}}{10^{4} \mathrm{~K}}\right)^{-3 / 2}
$$

- This amounts to about $10^{-16} M_{\odot} \mathrm{yr}^{-1}$ for a $1 M_{\odot}$ gravitating body.

Bondi accretion (cont.)

- The relation between the bulk velocity $v(r)$ and the sound speed $c_{\mathrm{s}}(r)$ can be computed from the equation

$$
-v=\frac{\dot{M}}{4 \pi r^{2} \rho(r)}=\frac{\dot{M}}{4 \pi r^{2} \rho_{\infty}}\left(\frac{c_{s \infty}}{c_{s}(r)}\right)^{2 /(\gamma-1)}
$$

- Thus

$$
v=-\frac{q_{c} G^{2} M^{2}}{r^{2} c_{s \infty}^{3}}\left(\frac{c_{s}(r)}{c_{s \infty}}\right)^{-2 /(\gamma-1)}
$$

- Or

$$
\frac{v}{c_{s \infty}}=-\frac{q_{c}}{4}\left(\frac{r}{r_{a}}\right)^{-2}\left(\frac{c_{s}(r)}{c_{s \infty}}\right)^{-2 /(\gamma-1)}
$$

- Where $r_{a} \equiv 2 G M / c_{s \infty}^{2}$ accretion radius or Bondi radius The radius at which the density and sound speed start to significantly increase from their ambient values of ρ_{∞} and $c_{s \infty}$

Bondi accretion (cont.)

- The relation between the critical radius and the accretion radius is

$$
r_{c}=[(5-3 \gamma) / 8] r_{a}
$$

- At large radius $\left(r \gg r_{a}\right)$

$$
\begin{aligned}
& v \approx-\frac{q_{c} c_{s \infty}}{4}\left(\frac{r}{r_{a}}\right)^{-2}\left[1-\frac{1}{2} \frac{r_{a}}{r}\right] \\
& c_{s} \approx c_{s \infty}\left[1+\frac{\gamma-1}{4} \frac{r_{a}}{r}\right] \\
& \rho \approx \rho_{\infty}\left[1+\frac{1}{2} \frac{r_{a}}{r}\right]
\end{aligned}
$$

- From gas with $\gamma=5 / 3$, at small radius $\left(r \ll r_{a}\right)$

$$
\begin{aligned}
& v \approx-c_{s} \approx-\frac{c_{s \infty}}{2}\left(\frac{r}{r_{a}}\right)^{-1 / 2^{\prime}} \\
& \rho \approx \frac{\rho_{\infty}}{8}\left(\frac{r}{r_{a}}\right)^{-3 / 2}
\end{aligned}
$$

Bondi accretion (cont.)

- If $1<\gamma<5 / 3$, the infall at $r \ll r_{\mathrm{c}}$ is supersonic, and the infalling gas is in free fall. From Bernoulli integral, we find $v^{2} / 2 \sim G M / r$ or

$$
\begin{aligned}
& v \approx-c_{s \infty}\left(\frac{r}{r_{a}}\right)^{-1 / 2} \\
& \rho \approx \frac{q_{c} \rho_{\infty}}{4}\left(\frac{r}{r_{a}}\right)^{-3 / 2}
\end{aligned}
$$

- Spherical accretion of gas thus has a characteristic density profile, with $\rho^{-3 / 2}$ at small radius and $\rho=$ constant at large radius.
- The infall velocity profile is $v^{-1 / 2}$ at small radius

Bondi accretion (cont.)

- If accreting body has a constant velocity V with respect to ambient medium, the transonic accretion rate is

$$
\dot{M}_{t}=4 \pi \tilde{q} \frac{G^{2} M^{2} \rho_{\infty}}{\left(c_{s \infty}^{2}+V^{2}\right)^{3 / 2}}
$$

- Where \tilde{q} is a order of unity. When $V>c_{s \infty}$, a bow shock forms in front of the accreting object which increases the temperature and decreases the bulk infalling velocity relative to accreting central object.
- At $r \ll r_{a} \sim 2 G M /\left(V^{2}+c_{s \infty}^{2}\right)$, the flow of the gas is approximately radial, and takes the form of the spherically symmetric Bondi solution.

Summary

- Study the steady spherically outflow and accretion.
- The solution of wind equation with integral constants shows variety of flow profile (outflow and accretion).
- Transonic solution (pass through the sonic point) is the most favorable solution for accretion and outflow.
- In MHD case, there are three critical points (slow, Alfven and fast).
- The solution should pass through all three critical points.
- The twist of magnetic field is proportional to distance, i.e., in far region, toroidal (azimuthal) magnetic field is dominant.

