Plasma Astrophysics (ASTR6880) Exercise 1

Return the solutions until lecture on Wednesday, October 9, 2013

1. Calculate the electron plasma frequency ω_{p}, Debye length λ_{D}, plasma parameter Λ, and mean free path $\lambda_{m f p}$ for following plasmas (notes the units)
(a) Fusion experiment: $T_{e} \approx 10 \mathrm{keV}, n_{e} \approx 10^{19} \mathrm{~m}^{-3}, B \approx 1 \mathrm{~T}$
(b) High-latitude ionosphere at 150 km altitude: $T_{e} \approx 0.1 \mathrm{eV}, n_{e} \approx 10^{5} \mathrm{~cm}^{-3}, B \approx$ 50000 nT
(c) Solar wind at $1 \mathrm{AU}: T_{e} \approx 10 \mathrm{eV}, n_{e} \approx 10 \mathrm{~cm}^{-3}, B \approx 5 \mathrm{nT}$
(d) Core of Sun: $T_{e} \approx 1 \mathrm{keV}, n_{e} \approx 10^{26} \mathrm{~cm}^{-3}$, no B-field
(e) Neutron star environment: $T_{e} \approx 100 \mathrm{keV}, n_{e} \approx 10^{12} \mathrm{~cm}^{-3}, B \approx 10^{8} \mathrm{~T}$
2. Calculate the gyro frequency ω_{c} and Larmor radius r_{L} for the following particles (notes the units)
(a) A 10 keV electron moving with pitch angle of 45° with respect to Earth's magnetic field of 30000 nT
(b) Solar wind proton moving at $400 \mathrm{~km} / \mathrm{s}$ perpendicular to the interplanetary magnetic field 5 nT
(c) A $1 \mathrm{keV} \mathrm{He}{ }^{+}$ion in solar atmosphere near a sun spot where $B=5 \times 10^{-2} \mathrm{~T}$ $\left(v_{\|}=0\right)$

Please write the solutions in English.

