Plasma Astrophysics (ASTR6880) Exercise 2

Return the solutions until lecture on Wednesday, October 23, 2013

1. Starting from ieal MHD equations (including pressure equation),

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \boldsymbol{v})=0, \\
& \rho\left[\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}\right]=-\nabla p+\frac{1}{\mu_{0}}(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}, \\
& \frac{\partial p}{\partial t}+(\boldsymbol{v} \cdot \nabla) p=-\gamma p \nabla \cdot \boldsymbol{v}, \\
& \frac{\partial \boldsymbol{B}}{\partial t}-\nabla \times(\boldsymbol{v} \times \boldsymbol{B})=0, \\
& \nabla \cdot \boldsymbol{B}=0, \\
& p=(\gamma-1) \rho e,
\end{aligned}
$$

derive the conservation form of total energy,

$$
\frac{\partial}{\partial t}\left(\frac{1}{2} \rho v^{2}+\rho e+\frac{B^{2}}{2 \mu_{0}}\right)+\nabla \cdot\left[\left(\frac{1}{2} \rho \boldsymbol{v}^{2}+\rho e+p+\frac{B^{2}}{\mu_{0}}\right) \boldsymbol{v}-(\boldsymbol{v} \cdot \boldsymbol{B}) \frac{\boldsymbol{B}}{\mu_{0}}\right]=0 .
$$

[Hint: adding the separate contributions of kinetic, internal and magnetic energy from equation of motion, pressure equation and induction equation.]
2. Calculate the Alfvén wave fundamental oscillation period in a coronal loop of length $5 \times 10^{7} \mathrm{~m}$ with background magnetic field of $10^{-3} \mathrm{~T}$ and particle density of $10^{15} \mathrm{~m}^{-3}$ (fully ionized hydrogen gas, $m=0.5 m_{i}, \mu=0.5$).
[Hint: fundamental oscillation mode has $\lambda=L / 2$.]
3. Starting from generalized wave equation,

$$
\begin{aligned}
\frac{\omega^{2} \boldsymbol{v}_{1}}{v_{A}^{2}}= & k^{2} \cos ^{2}\left(\theta_{k B_{0}}\right) \boldsymbol{v}_{1}-\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right) k \cos \left(\theta_{k B_{0}}\right) \hat{\boldsymbol{B}}_{0} \\
& +\left[\left(1+\frac{c_{s}^{2}}{v_{A}^{2}}\right)\left(\boldsymbol{k} \cdot \boldsymbol{v}_{1}\right)-k \cos \left(\theta_{k B_{0}}\right)\left(\hat{\boldsymbol{B}}_{0} \cdot \boldsymbol{v}_{1}\right)\right] \boldsymbol{k},
\end{aligned}
$$

derive the magnetoacoustic dispersion relation using two dot-product (\boldsymbol{k} and $\hat{\boldsymbol{B}}_{0}$),

$$
\omega^{4}-\omega^{2} k^{2}\left(c_{s}^{2}+v_{A}^{2}\right)+c_{s}^{2} v_{A}^{2} k^{4} \cos ^{2}\left(\theta_{k B_{0}}\right)=0
$$

[Hint: From these two equations obtained from two dot-product, deleted ($\boldsymbol{k} \cdot \boldsymbol{v}_{1}$) and $\left.\left(\hat{\boldsymbol{B}}_{0} \cdot \boldsymbol{v}_{1}\right)\right]$
4. Calculate the magnetoacoustic fast-mode wave phase speed in a $4 \times 10^{6} \mathrm{~K}$ stellar corona with particle density of $10^{14} \mathrm{~m}^{-3}$ (fully ionized hydrogen gas, $m=0.5 m_{i}, \mu=0.5$), consider a horizontal wave propagating at right angle $\left(90^{\circ}\right)$ to a background magnetic field of $10^{-3} \mathrm{~T}$.
[Hint: using ideal equation of state, $p=n k_{B} T$]

Please write the solutions in English.

