Static-light meson masses from twisted mass lattice QCD

and

The 1/2 versus 3/2 puzzle

11. Meeting of SFB/TR9 Computational Particle Physics, Aachen

Marc Wagner
Humboldt University Berlin
mcwagner@physik.hu-berlin.de
http://people.physik.hu-berlin.de/~mcwagner/
October 6, 2008
Heavy-light mesons

- Heavy-light meson: a meson made from a heavy quark (b, c) and a light quark (u, d, s), e.g. $B = \{\bar{b}u, \bar{b}d\}$, $B_s = \bar{b}s$, $D = \{\bar{c}u, \bar{c}d\}$, $D_s = \bar{c}s$.

- Static limit, i.e. $m_b, m_c \to \infty$:
 - No interactions involving the static quark spin.
 - Classify states according to parity P and total angular momentum of the light cloud j.

- m_b, m_c finite, but heavy:
 - Classify states according to parity P and total angular momentum J.

<table>
<thead>
<tr>
<th>j^P</th>
<th>J^P</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1/2)^-$</td>
<td>0^-</td>
</tr>
<tr>
<td></td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>H^*</td>
</tr>
<tr>
<td>$(1/2)^+$</td>
<td>0^+</td>
</tr>
<tr>
<td></td>
<td>H_0^*</td>
</tr>
<tr>
<td></td>
<td>$H_0^{1/2}$</td>
</tr>
<tr>
<td></td>
<td>1^+</td>
</tr>
<tr>
<td></td>
<td>H_1^*</td>
</tr>
<tr>
<td></td>
<td>$H_1^{1/2}$</td>
</tr>
<tr>
<td>$(3/2)^+$</td>
<td>1^+</td>
</tr>
<tr>
<td></td>
<td>H_1</td>
</tr>
<tr>
<td></td>
<td>$H_1^{3/2}$</td>
</tr>
<tr>
<td></td>
<td>2^+</td>
</tr>
<tr>
<td></td>
<td>H_2^*</td>
</tr>
<tr>
<td></td>
<td>$H_2^{3/2}$</td>
</tr>
</tbody>
</table>
Static-light meson masses from twisted mass lattice QCD

in collaboration with
Karl Jansen, Chris Michael, Andrea Shindler
Basic principle (1)

- Let $O(x)$ be a suitable “static-light meson creation operator”, i.e. an operator such that $O(x)|\Omega\rangle$ is a state containing a static-light meson at position x ($|\Omega\rangle$: vacuum).

- Determine the mass of the ground state of the corresponding static-light meson from the exponential behavior of the corresponding correlation function C at large Euclidean times T:

$$C(T) = \langle \Omega| \left(O(x, T) \right)^\dagger O(x, 0)|\Omega\rangle =$$

$$= \langle \Omega| e^{+HT} \left(O(x, 0) \right)^\dagger e^{-HT} O(x, 0)|\Omega\rangle =$$

$$= \sum_n \left| \langle n| O(x, 0)|\Omega\rangle \right|^2 \exp \left(- \left(E_n - E_\Omega \right) T \right) \approx \quad \text{(for } T \gg 1)$$

$$\approx \left| \langle 0| O(x, 0)|\Omega\rangle \right|^2 \exp \left(- \left(E_0 - E_\Omega \right) T \right).$$

Marc Wagner, “Static-light meson masses from twisted mass lattice QCD”, October 6, 2008
Basic principle (2)

- **General form of a static-light meson creation operator**:

\[
O(x) = \bar{Q}(x) \int d\hat{n} \Gamma(\hat{n}) U(x; x + d\hat{n}) q(x + d\hat{n}).
\]

- \(\bar{Q}(x) \) creates an infinitely heavy i.e. static antiquark at position \(x \).
- \(q(x + d\hat{n}) \) creates a light quark at position \(x + d\hat{n} \) separated by a distance \(d \) from the static antiquark.
- The spatial parallel transporter

\[
U(x; x + d\hat{n}) = P \left\{ \exp \left(+i \int_{x}^{x+d\hat{n}} dz_j A_j(z) \right) \right\}
\]

connects the antiquark and the quark in a gauge invariant way via gluons.
- The integration over the unit sphere \(\int d\hat{n} \) combined with a suitable weight factor \(\Gamma(\hat{n}) \) yields well defined total angular momentum \(J \) and parity \(\mathcal{P} \) (\(\Gamma(\hat{n}) \) is a combination of spherical harmonics \(\rightarrow \) angular momentum] and \(\gamma \)-matrices \(\rightarrow \) spin]; Wigner-Eckart theorem).
Basic principle (3)

- **General form of a static-light meson creation operator:**

\[O(x) = \bar{Q}(x) \int d\hat{n} \Gamma(\hat{n}) U(x; x + d\hat{n}) q(x + d\hat{n}). \]

- **List of operators** (*J*: total angular momentum; *j*: total angular momentum of the light cloud; *P*: parity):

<table>
<thead>
<tr>
<th>(\Gamma(\hat{n}))</th>
<th>(J^P)</th>
<th>(j^P)</th>
<th>(O_h)</th>
<th>lattice (j^P)</th>
<th>notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma_5, \gamma_5 \gamma_j \hat{n}_j) 1, (\gamma_j \hat{n}_j)</td>
<td>0(^-) [1(^-)]</td>
<td>(1/2(^-))</td>
<td>(A_1)</td>
<td>(1/2(^-)), (7/2(^-)), ...</td>
<td>(S)</td>
</tr>
<tr>
<td>(\gamma_1 \hat{n}_1 - \gamma_2 \hat{n}_2) (and cyclic) (\gamma_5(\gamma_1 \hat{n}_1 - \gamma_2 \hat{n}_2)) (and cyclic)</td>
<td>2(^+) [1(^+)]</td>
<td>(3/2(^+))</td>
<td>(E)</td>
<td>(3/2(^+)), (5/2(^+)), ...</td>
<td>(P_+)</td>
</tr>
<tr>
<td>(\gamma_1 \hat{n}_2 \hat{n}_3 + \gamma_2 \hat{n}_3 \hat{n}_1 + \gamma_3 \hat{n}_1 \hat{n}_2) (\gamma_5(\gamma_1 \hat{n}_2 \hat{n}_3 + \gamma_2 \hat{n}_3 \hat{n}_1 + \gamma_3 \hat{n}_1 \hat{n}_2))</td>
<td>3(^-) [2(^-)]</td>
<td>(5/2(^-))</td>
<td>(A_2)</td>
<td>(5/2(^-)), (7/2(^-)), ...</td>
<td>(D_+)</td>
</tr>
</tbody>
</table>

Marc Wagner, “Static-light meson masses from twisted mass lattice QCD”, October 6, 2008
Twisted mass lattice QCD

- Twisted mass action (two degenerate flavors, “continuum version”):

\[
S_{\text{fermionic}} = \int d^4x \bar{\chi} \left(\gamma_\mu D_\mu + m + i \mu \gamma_5 \tau_3 - \frac{a \Box}{2} \right) \chi
\]

\[
\psi = e^{i \omega \gamma_5 \tau_3 / 2} \chi
\]

(\(\psi\): physical basis quark fields; \(\chi\): twisted basis quark fields; \(\mu\): twisted mass; \(\tau_3\): third Pauli matrix acting in flavor space; \(a\): lattice spacing).

- Wilson term: removes fermionic doublers.
- Twisted mass term: automatic \(O(a)\) improvement, when tuned to maximal twist \((\omega = \pi/2)\).

+ Automatic \(O(a)\) improvement.
+ Numerically cheap, i.e. large lattices and small lattice spacings possible.

- Explicit breaking of parity and flavor symmetry.
Simulation setup

• $24^3 \times 48$ lattices.

• Twisted mass Dirac operator with two degenerate flavors:

\[Q^{(x)} = \gamma_\mu D_\mu + m + i\mu\gamma_5 + \frac{a}{2}\Box, \quad m + 4 = \frac{1}{2\kappa} \]

with $\kappa = 0.160856$.

• Tree-level Symanzik improved gauge action with $\beta = 3.9$.

• Lattice spacing $a \approx 0.0855(5)$ fm, spatial lattice extension $24 \times a \approx 2.05$ fm.

<table>
<thead>
<tr>
<th>μ</th>
<th>m_{PS} in MeV</th>
<th>number of gauges</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0040</td>
<td>314(2)</td>
<td>1400</td>
</tr>
<tr>
<td>0.0064</td>
<td>391(1)</td>
<td>1450</td>
</tr>
<tr>
<td>0.0085</td>
<td>448(1)</td>
<td>1350</td>
</tr>
<tr>
<td>0.0100</td>
<td>485(1)</td>
<td>900</td>
</tr>
<tr>
<td>0.0150</td>
<td>597(2)</td>
<td>1000</td>
</tr>
</tbody>
</table>

Marc Wagner, “Static-light meson masses from twisted mass lattice QCD”, October 6, 2008
• Linear extrapolation in \((m_\pi)^2\) to physical light quark masses:

 – “\(B\) mesons”: \(u/d\) quark extrapolation \((m_{PS} = 139.6\, \text{MeV})\).

 – “\(B_s\) mesons”: \(s\) quark extrapolation \((m_{PS} = 700.0\, \text{MeV})\).

 • However: sea of two degenerate \(s\) instead of \(u\) and \(d\).
Results (2)

- Prediction for excited B states B_0^*, B_1^*, B_1 and B_2^* (P wave states):
 - Linear interpolation in m_c/m_Q to physical b quark mass (input: u/d extrapolated lattice data for $m_Q = \infty$, experimental data for $m_Q = m_c$).

- Experimental results:
 - CDF and DØ (both $j^P = (3/2)^+$ states, i.e. B_1 and B_2^*).
 - PDG (unknown j^P, denoted by B_J^*).

\begin{tabular}{|c|c|c|c|c|}
\hline
 & $m - m(B^0_0)$ in MeV & \\
state & lattice & CDF & DØ & PDG \\
\hline
B_0^* & 406(19) & & & \\
B_1^* & 428(19) & & & \\
B_1 & 508(8) & 454(5) & 441(4) & \\
B_2^* & 520(8) & 458(6) & 467(4) & \\
B_J^* & & & & 418(8) \\
\hline
\end{tabular}
Results (3)

- Prediction for excited B_s states B_{s0}^*, B_{s1}^*, B_{s1} and B_{s2}^* (P wave states):
 - Linear interpolation in m_c/m_Q to physical b quark mass (input: s extrapolated lattice data for $m_Q = \infty$, experimental data for $m_Q = m_c$).

- Experimental results:
 - CDF and DØ (both $j^P = (3/2)^+$ states, i.e. B_{s1} and B_{s2}^*).
 - PDG (unknown j^P, denoted by B_{sJ}^*).

<table>
<thead>
<tr>
<th>state</th>
<th>$m - m(B_s)$ in MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{s0}^*</td>
<td>$493(16)$</td>
</tr>
<tr>
<td>B_{s1}^*</td>
<td>$535(16)$</td>
</tr>
<tr>
<td>B_{s1}</td>
<td>$510(13)$</td>
</tr>
<tr>
<td>B_{s2}^*</td>
<td>$521(13)$</td>
</tr>
<tr>
<td>B_{sJ}^*</td>
<td>$487(16)$</td>
</tr>
</tbody>
</table>

Marc Wagner, “Static-light meson masses from twisted mass lattice QCD”, October 6, 2008
Summary

- Static-light meson masses have been computed via twisted mass lattice QCD at a small value of the lattice spacing \(a = 0.0855 \text{ fm} \) and at small values of the pion mass \(300 \text{ MeV} \lesssim m_{\pi S} \lesssim 600 \text{ MeV} \):
 - Total angular momentum of the light cloud \(j = 1/2, 3/2, 5/2 \).
 - Parity \(\mathcal{P} = +, - \).

- Interpolation/extrapolation to physical quark masses allows predictions for the spectrum of \(B \) mesons and \(B_s \) mesons:
 - Agreement up to 15\% with experimental \(P \) wave \(B \) meson results.
 - Agreement up to 10\% with experimental \(P \) wave \(B_s \) meson results.

- Outlook:
 - Extrapolate to the continuum.
 - Include a sea of \(u/d \) quarks for \(B_s \) computations by using 2+1+1 flavor twisted mass lattice QCD.
The 1/2 versus 3/2 puzzle

in collaboration with

Benoit Blossier, Karl Jansen, Olivier Pène
1/2 versus 3/2: experimental side

- Consider the semileptonic decay $B \rightarrow X_c l \nu$.
- Experiments, which have studied this decay: ALEPH, BaBar, BELLE, CDF, DELPHI, DØ.
- What is X_c?
 - $\approx 75\%$ D and D^*, i.e. S wave states (agreement with theory).
 - $\approx 10\%$ $D^{3/2}_1$ and $D^{3/2}_2$, i.e. $j = 3/2$ P wave states (agreement with theory).
 - For the remaining $\approx 15\%$ the situation is not clear:
 * A “natural candidate” would be $D^{1/2}_0$ and $D^{1/2}_1$, i.e. $j = 1/2$ P wave states.
 * This would imply $\Gamma(B \rightarrow D^{1/2}_{0,1} l \nu) > \Gamma(B \rightarrow D^{3/2}_{1,2} l \nu)$, which is in “conflict” with theory.
 * This “conflict” between experiment and theory is called the “1/2 versus 3/2 puzzle”.

Marc Wagner, “The 1/2 versus 3/2 puzzle”, October 6, 2008
1/2 versus 3/2: theory side (1)

• Static limit \((m_b, m_c \to \infty)\) with both \(b\) and \(c\) quark at rest:

\[
\langle D_0^{1/2} | \bar{c} \gamma_5 \gamma_j D_k b | B \rangle = -ig_{jk} \left(m(D_0^{1/2}) - m(B) \right) \tau_{1/2}
\]

\[
\langle D_2^{3/2} | \bar{c} \gamma_5 \gamma_j D_k b | B \rangle = +i\sqrt{3}\epsilon_{jk} \left(m(D_2^{3/2}) - m(B) \right) \tau_{3/2}
\]

and

\[
\frac{\Gamma(B \to D_{0,1}^{1/2} l \nu)}{\Gamma(B \to D_{1,2}^{3/2} l \nu)} = \frac{|\tau_{1/2}|^2}{|\tau_{3/2}|^2}.
\]

\((\tau_{1/2}, \tau_{3/2}: \text{Isgur-Wise form factors}).\)
Phenomenological models:

- $|\tau_{1/2}| < |\tau_{3/2}|$, which is in “conflict” with experiment.

OPE:

- Uraltsev sum rule:

$$\sum_n |\tau_{3/2}^{(n)}|^2 - |\tau_{1/2}^{(n)}|^2 = \frac{1}{4}$$

$$(\tau_{1/2} \equiv \tau_{1/2}^{(0)} \text{ and } \tau_{3/2} \equiv \tau_{3/2}^{(0)})$$

- From experience with sum rules one would expect approximate saturation from the ground states, i.e.

$$|\tau_{3/2}^{(0)}|^2 - |\tau_{1/2}^{(0)}|^2 \approx \frac{1}{4},$$

which also implies $|\tau_{1/2}| < |\tau_{3/2}|$, which is in “conflict” with experiment.
\[\frac{1}{2} \text{ versus } \frac{3}{2}: \text{ possible explanations} \]

- **Experiment:**
 - The signal for the remaining 15\% of \(X_c \) is rather vague; therefore, only a small part might be \(D_{0,1}^{1/2} \).

- **Phenomenological models:**
 - Models might give a wrong answer.

- **OPE:**
 - Sum rules hold in the static limit and might change significantly for finite quark masses.
 - Sum rules might not be saturated by the ground states.

- **A lattice computation of** \(\tau_{1/2} \) and \(\tau_{3/2} \) could shed some light on this puzzle.
Lattice computation of $\tau_{1/2}$ and $\tau_{3/2}$ (1)

- Simulation setup:
 - As before, but only a single value of the light quark mass ($\mu = 0.0040$, corresponding to $m_{PS} \approx 300\, \text{MeV}$).
 - Preliminary results (computations have been performed on ≈ 100 gauge configurations only [1400 available]).
Lattice computation of $\tau_{1/2}$ and $\tau_{3/2}$ (2)

- "Effective form factors",

$$\tau_{1/2,\text{effective}}(T_0 - T_1, T_1 - T_2) = \frac{N(\tilde{P}_-) N(\tilde{S}) \langle \tilde{P}_-(T_0) | (\bar{Q} \gamma_5 \gamma_3 D_3 Q)(T_1) | \tilde{S}(T_2) \rangle}{(m(\tilde{P}_-) - m(\tilde{S})) \langle \tilde{P}_-(T_0) | \tilde{P}_-(T_1) \rangle \langle \tilde{S}(T_1) | \tilde{S}(T_2) \rangle}$$

$$\tau_{3/2,\text{effective}}(T_0 - T_1, T_1 - T_2) = \sqrt{\frac{1}{6}} \frac{N(\tilde{P}_+) N(\tilde{S}) \langle \tilde{P}_+(T_0) | (\bar{Q} \gamma_5 (\gamma_1 D_1 - \gamma_2 D_2) Q)(T_1) | \tilde{S}(T_2) \rangle}{(m(\tilde{P}_+) - m(\tilde{S})) \langle \tilde{P}_+(T_0) | \tilde{P}_+(T_1) \rangle \langle \tilde{S}(T_1) | \tilde{S}(T_2) \rangle}.$$

- $N(X)$: norm of state $|X\rangle$.
- $m(X)$: mass of state $|X\rangle$.
- Three-point functions (T_0, T_1 and T_2).
- Two-point functions (T_0 and T_1 or T_1 and T_2).

$$\tau_{1/2} = \lim_{T_0-T_1, T_1-T_2 \to \infty} \tau_{1/2,\text{effective}}, \quad \tau_{3/2} = \lim_{T_0-T_1, T_1-T_2 \to \infty} \tau_{3/2,\text{effective}}.$$

Marc Wagner, “The 1/2 versus 3/2 puzzle”, October 6, 2008
Lattice computation of $\tau_{1/2}$ and $\tau_{3/2}$ (3)

- $\tau_{1/2,\text{effective}}(T_0 - T_1, T_1 - T_2) = \frac{N(\tilde{P}_-) N(\tilde{S}) \langle \tilde{P}_-(T_0) | (\bar{Q} \gamma_5 \gamma_3 D_3 Q)(T_1) | \tilde{S}(T_2) \rangle}{(m(\tilde{P}_-) - m(\tilde{S})) \langle \tilde{P}_-(T_0) | \tilde{P}_-(T_1) \rangle \langle \tilde{S}(T_1) | \tilde{S}(T_2) \rangle}$, ...

- Two-point function $\langle \tilde{S}(T_1) | \tilde{S}(T_2) \rangle$: a standard lattice computation.

- Determine the norm of $|\tilde{S}\rangle$, $N(\tilde{S})$, by performing a χ^2 minimizing fit with

$$f(T) = N(\tilde{S})^2 e^{-m(S)T}$$

- to $\langle \tilde{S}(T) | \tilde{S}(0) \rangle$ at large T.

- Analogously for the others.
Lattice computation of $\tau_{1/2}$ and $\tau_{3/2}$ (4)

- $\tau_{1/2,\text{effective}}(T_0 - T_1, T_1 - T_2) = \left| \frac{N(\tilde{P}_-) N(\tilde{S}) \langle \tilde{P}_-(T_0) | (\bar{Q} \gamma_5 \gamma_3 D_3 Q)(T_1) | \tilde{S}(T_2) \rangle}{(m(\tilde{P}_-) - m(\tilde{S})) \langle \tilde{P}_-(T_0) | \tilde{P}_-(T_1) \rangle \langle \tilde{S}(T_1) | \tilde{S}(T_2) \rangle} \right|$, \ldots

- Three-point functions $\langle \tilde{P}_-(T_0) | (\bar{Q} \gamma_5 \gamma_3 D_3 Q)(T_1) | \tilde{S}(T_2) \rangle$:

- Analogously for the other three-point functions.

- Mass differences $m(P_-) - m(S)$ and $m(P_+) - m(S)$:
 cf. the first part of this talk.
Lattice computation of $\tau_{1/2}$ and $\tau_{3/2}$ (5)

- $\tau_{1/2,\text{effective}}(T_0 - T_1, T_1 - T_2)$ and $\tau_{3/2,\text{effective}}(T_0 - T_1, T_1 - T_2)$ exhibit nice plateaus due to “optimized” trial states $|\tilde{S}\rangle$, $|\tilde{P}_-\rangle$ and $|\tilde{P}_+\rangle$.

- $T_0 - T_2 = 8$:
 - $\tau_{1/2} = 0.32$, $\tau_{3/2} = 0.47$.
 - $(\tau_{3/2})^2 - (\tau_{1/2})^2 = 0.12$.

- $T_0 - T_2 = 10$:
 - $\tau_{1/2} = 0.30$, $\tau_{3/2} = 0.54$.
 - $(\tau_{3/2})^2 - (\tau_{1/2})^2 = 0.20$.

- $\tau_{3/2} > \tau_{1/2}$, i.e. theoretical expectation confirmed.

- “Consistent” with Uraltsev sum rule:
 $$\sum_n |\tau_{3/2}^{(n)}|^2 - |\tau_{1/2}^{(n)}|^2 = \frac{1}{4}.$$
Lattice computation of $\tau_{1/2}$ and $\tau_{3/2}$ (6)

- Comparison with the only existing lattice study (quenched, exploratory):
 - $16^3 \times 40$ lattice, $m_{\text{sea}} = \infty$, $m_{\text{PS}} = 800$ MeV.
 - $\tau_{1/2} = 0.38(4)$, $\tau_{3/2} = 0.53(8)$.
Conclusions

- $\tau_{1/2}$ and $\tau_{3/2}$ have been computed on dynamical ETMC gauge field configurations.

- Preliminary results indicate that in the static limit

\[
\Gamma(B \to D_{0,1}^{1/2} l \nu) < \Gamma(B \to D_{1,2}^{3/2} l \nu)
\]

(as expected from OPE and phenomenological models).

- “To do list”:
 - Improve statistics.
 - Consider different light quark masses to extrapolate to u/d masses.
 - Perform the continuum limit.
 - Compute HQET $1/m_Q$ corrections.