Forces between heavy mesons

ETMC meeting – Bonn

Marc Wagner
Humboldt-Universität zu Berlin, Institut für Physik
Theorie der Elementarteilchen – Phänomenologie/Gittereichtheorie
mcwagner@physik.hu-berlin.de
http://people.physik.hu-berlin.de/~mcwagner/
March 29, 2010
Ongoing static-light projects

- Continuum limit of the static-light meson spectrum.
 [Chris Michael, Andrea Shindler, Marc Wagner]
 → Almost finished, draft circulated last week.

- f_B and f_{B_s}.
 [Chris Michael, Andrea Shindler]

- Static-light baryon spectrum.
 [Marc Wagner, Christian Wiese]
 → Talk by Christian Wiese.

- Forces between static-light mesons.
 [Marc Wagner]
 → This talk.

- String breaking.
 [Karl Jansen, Attila Nagy, Marc Wagner]
Goal: compute the potential of (or equivalently the force between) two B mesons:

- Treat the b quark in the static approximation.
- Consider only pseudoscalar mesons ($j^P = (1/2)^-$, denoted by S) and scalar mesons ($j^P = (1/2)^+$, denoted by P_-), which are among the lightest static-light mesons.
- Study the dependence of the mesonic potential $V(R)$ on
 * the light quark flavor u and/or d (isospin),
 * the light quark spin (the static quark spin is irrelevant),
 * the type of the meson S and/or P_-.
Motivation:

- First principles computation of a hadronic force.
- Until now it has only been studied in the quenched approximation.
(Pseudo)scalar B mesons

- Symmetries and quantum numbers of static-light mesons:
 - Isospin: $I = 1/2$, $I_z = \pm 1/2$, i.e. $B \equiv \bar{Q}u$ or $B \equiv \bar{Q}d$.
 - Parity: $\mathcal{P} = \pm$.
 - Rotations:
 * Light cloud angular momentum $j = 1/2$ (for S and P_-), $j_z = \pm 1/2$.
 * Static quark spin: irrelevant (static quarks can also be treated as spinless color charges).

- Static-light meson creation operators:
 - $\bar{Q}\gamma_5q$ (pseudoscalar, i.e. S), $q \in \{u, d\}$,
 - $\bar{Q}q$ (scalar, i.e. P_-)

(j_z is not well-defined, when using these operators).
Symmetries and quantum numbers of a pair of static-light mesons (separated along the z-axis):

- Isospin: $I = 0, 1, I_z = -1, 0, +1$.
- Rotations around the z-axis:
 * Angular momentum of the light degrees of freedom $j_z = -1, 0, +1$.
 * Static quark spin: irrelevant (the static quarks can be treated as spinless color charges).
- Parity: $\mathcal{P} = \pm$.
- If $j_z = 0$, reflection along the x-axis: $\mathcal{P}_x = \pm$.
- Instead of using $j_z = \pm 1$ one can also label states by $|j_z| = 1, \mathcal{P}_x = \pm$.

→ Label BB states by $(I, I_z, |j_z|, \mathcal{P}, \mathcal{P}_x)$.
To extract the potential(s) of a given sector (characterized by
$(I, I_z, |j_z|, \mathcal{P}, \mathcal{P}_x)$), compute the temporal correlation function of the trial state

$$(C\Gamma)_{AB}\left(\bar{Q}_C(-R/2)q_A^{(1)}(-R/2)\right)\left(\bar{Q}_C(+R/2)q_B^{(2)}(+R/2)\right)|\Omega\rangle,$$

where

- $C = \gamma_0\gamma_2$ (charge conjugation matrix),
- $q^{(1)}q^{(2)} \in \{ud - du, uu, dd, ud + du\}$ (isospin I, I_z),
- Γ is an arbitrary combination of γ matrices (spin $|j_z|$, parity $\mathcal{P}, \mathcal{P}_x$).

Marc Wagner, "Forces between heavy mesons", March 29, 2010
• Symmetries of twisted mass lattice QCD compared to QCD:
 – SU(2) isospin breaks down to U(1): I_z is still a good quantum number, I is not.
 – Parity P is replaced by $P^{(tm)}$, which is parity combined with light flavor exchange.
 – Twisted mass $B\bar{B}$ sectors:
 * $I_z = \pm 1$: \((I_z, |j_z|, \frac{P^{(tm)} P^{(tm)}_x}{P P_x})\),
 * $I_z = 0$: \((I_z, |j_z|, \frac{P^{(tm)} P^{(tm)}_x}{P x}, \frac{P^{(tm)} P^{(tm)}_x}{P x})\).
 \[
 \rightarrow \text{QCD sectors } (I, I_z, |j_z|, P, P_x) \text{ are pairwise combined.}
 \]
BB systems (4)

- **BB creation operators for** $I_z = +1$: 16 operators of type

\[
(C\Gamma)_{AB}\left(\bar{Q}_C(-R/2)^{(u)}(A,-R/2)\right)\left(\bar{Q}_C(+R/2)^{(u)}(B,+R/2)\right).
\]

| Γ twisted | $|j_z|$, $P^{(tm,light)}$, $P_x^{(tm,light)}$ | Γ pseudo physical | $|j_z|$, $P^{(light)}$, $P_x^{(light)}$ |
|-------------------|---------------------------------|---------------------|---------------------------------|
| γ_5 | 0, + | $\mp i$ | 0, −, − |
| $\gamma_0\gamma_5$ | 0, + | $+\gamma_0\gamma_5$ | 0, +, + |
| 1 | 0, + | $\mp i\gamma_5$ | 0, +, + |
| γ_0 | 0, − | $+\gamma_0$ | 0, +, − |
| γ_3 | 0, + | $+\gamma_3$ | 0, −, − |
| $\gamma_0\gamma_3$ | 0, + | $\mp i\gamma_0\gamma_3\gamma_5$ | 0, +, + |
| $\gamma_3\gamma_5$ | 0, − | $+\gamma_3\gamma_5$ | 0, −, + |
| $\gamma_0\gamma_3\gamma_5$ | 0, + | $\mp i\gamma_0\gamma_3$ | 0, −, − |
| γ_1 | 1, − | $+\gamma_1$ | 1, −, + |
| $\gamma_0\gamma_1$ | 1, − | $\mp i\gamma_0\gamma_1\gamma_5$ | 1, +, − |
| $\gamma_1\gamma_5$ | 1, + | $+\gamma_1\gamma_5$ | 1, −, − |
| $\gamma_0\gamma_1\gamma_5$ | 1, − | $\mp i\gamma_0\gamma_1$ | 1, −, + |
| … | … | … | … |

Marc Wagner, “Forces between heavy mesons”, March 29, 2010
BB systems (5)

- **BB** creation operators for $I_z = 0$: 32 operators of type

\[
(C\Gamma)_{AB}\left(\bar{Q}_C(-R/2)\chi_A^{(u)}(-R/2)\right)\left(\bar{Q}_C(+R/2)\chi_B^{(d)}(+R/2)\right) \pm (u \leftrightarrow d).
\]

| Γ twisted, \pm | $|j_z|$, $P_{(tm,\text{light})}$, $P_{x_{(tm,\text{light})}}$ | Γ pseudo physical, \pm | $|j_z|$, I, $P_{(\text{light})}$, $P_{x_{(\text{light})}}$ |
|-------------------------|------------------------------------|------------------------|-----------------------------------|
| γ_5, $+$ | 0, $+$, $+$ | $+\gamma_5$, $+$ | 0, 1, $+$, $+$ |
| $\gamma_0\gamma_5$, $+$| 0, $+$, $+$ | $+i\gamma_0$, $-$ | 0, 0, $-$, $-$ |
| 1, $-$ | 0, $-$, $+$ | $+1$, $-$ | 0, 0, $+$, $-$ |
| γ_0, $-$ | 0, $+$, $+$ | $+i\gamma_0\gamma_5$, $+$| 0, 1, $+$, $+$ |
| γ_5, $-$ | 0, $+$, $-$ | $+\gamma_5$, $-$ | 0, 0, $-$, $+$ |
| $\gamma_0\gamma_5$, $-$| 0, $+$, $-$ | $+i\gamma_0$, $+$ | 0, 1, $+$, $-$ |
| 1, $+$ | 0, $-$, $-$ | $+1$, $+$ | 0, 1, $-$, $-$ |
| γ_0, $+$ | 0, $+$, $-$ | $+i\gamma_0\gamma_5$, $-$| 0, 0, $-$, $+$ |
| γ_3, $+$ | 1, $-$, $-$ | $+i\gamma_3\gamma_5$, $-$| 1, 0, $+$, $+$ |
| $\gamma_0\gamma_3$, $+$| 1, $-$, $-$ | $+\gamma_0\gamma_3$, $+$| 1, 1, $-$, $-$ |
| $\gamma_3\gamma_5$, $-$| 1, $-$, $-$ | $+i\gamma_3$, $+$ | 1, 1, $-$, $-$ |
| $\gamma_0\gamma_3\gamma_5$, $-$| 1, $+$, $-$ | $+\gamma_0\gamma_3\gamma_5$, $-$| 1, 0, $-$, $+$ |

Marc Wagner, “Forces between heavy mesons”, March 29, 2010
Simulation setup

- $\beta = 3.90$, $L^3 \times T = 24^3 \times 48$, $\mu = 0.0040$
 - lattice spacing $a \approx 0.080$ fm
 - pion mass $m_{PS} \approx 336$ MeV.

- Preliminary results on 18 gauge configurations:
 - Effective mass plateaus are fitted at rather small temporal separation
 - contamination by excited states.

- 12 u and 12 d inversions per gauge configuration (stochastic timeslice sources located on the same timeslice).

- APE smearing of spatial links and Gaussian smearing of light quark fields to “optimize” the ground state overlap of trial states.

- Wilson lines of static quarks are discretized by path ordered products of ordinary links, i.e. no HYP static action.
Discussion of results (1)

- Four “types of potentials”:
 - Two attractive, two repulsive.
 - Two have asymptotic values, which are larger by ≈ 400 MeV.

- There are cases, where two potentials with identical quantum numbers are completely different (i.e. of different type)
 → at least one of the corresponding trial states must have very small ground state overlap
 → physical understanding, i.e. interpretation of trial states needed.

Marc Wagner, “Forces between heavy mesons”, March 29, 2010
Discussion of results (2)

- Expectation at large meson separation R: $V(R) \approx 2 \times \text{meson mass.}$
 - Potentials with smaller asymptotic value at $\approx 2 \times m(S)$.
 - $m(P_-) - m(S) \approx 400$ MeV: approximately the observed difference between different types of potentials.

→ Two types correspond to $S-S$ potentials.
→ Two types correspond to $S-P_-$ potentials.

- Can this be understood in detail on the level of the used BB creation operators?

Marc Wagner, "Forces between heavy mesons", March 29, 2010

![Graph showing potentials and meson separation](image)
• Rotate the BB creation operators to the pseudo physical basis and express them in terms of static-light meson creation operators (use suitable spin and parity projectors for the light quarks).

 – Examples:

 * uu, $\Gamma = \gamma_5 \rightarrow \Gamma^{(ppb)} = -i \rightarrow \mathcal{P} = -, \mathcal{P}_x = -$:

 $$(C\gamma_5)_{AB}\left(\bar{Q}_C(-R/2)\chi_A^{(u)}(-R/2)\right)\left(\bar{Q}_C(+R/2)\chi_B^{(u)}(+R/2)\right) =$$

 $$= +i(S_\uparrow P_\downarrow - S_\downarrow P_\uparrow + P_\uparrow S_\downarrow - P_\downarrow S_\uparrow).$$

 * uu, $\Gamma = \gamma_3 \rightarrow \gamma_3^{(ppb)} = \gamma_3 \rightarrow \mathcal{P} = -, \mathcal{P}_x = -$:

 $$(C\gamma_3)_{AB}\left(\bar{Q}_C(-R/2)\chi_A^{(u)}(-R/2)\right)\left(\bar{Q}_C(+R/2)\chi_B^{(u)}(+R/2)\right) =$$

 $$= -i(S_\uparrow S_\downarrow + S_\downarrow S_\uparrow - P_\uparrow P_\downarrow - P_\downarrow P_\uparrow).$$

 – SS/SP_- content and asymptotic values in agreement for all $12 + 24$ independent potentials \rightarrow asymptotic differences understood.
Discussion of results (4)

- Is there a general rule, about when a potential is repulsive and when attractive?

 - S–S potentials:
 * $(I = 0, s = 0)$ or $(I = 1, s = 1)$, i.e. $I = s$ \rightarrow attractive
 $(I = 0, s = 1)$ or $(I = 1, s = 0)$, i.e. $I \neq s$ \rightarrow repulsive
 (s: combined angular momentum of the two mesons).
 * Example: uu, $\Gamma = \gamma_3$ \rightarrow $\Gamma^{(ppb)} = \gamma_3$ \rightarrow $P = -$, $P_x = -$:
 $-i \left(S_{\uparrow}S_{\downarrow} + S_{\downarrow}S_{\uparrow} - P_{\uparrow}P_{\downarrow} - P_{\downarrow}P_{\uparrow} \right)$,
 i.e. $I = 1$, $s = 1$; the numerically obtained potential is attractive, i.e. in agreement with the above stated rule.
 * All $6 + 12$ independent S–S potentials fulfill the rule.
 * Agreement with similar quenched lattice studies.

Discussion of results (5)

- $S-P_-$ potentials:

 * Do not obey the above stated rule.

 * It can, however, easily be generalized by including parity, i.e. symmetry or antisymmetry under exchange of S and P_-:
 trial state symmetric under meson exchange \rightarrow attractive
 trial state antisymmetric under meson exchange \rightarrow repulsive
 (meson exchange \equiv exchange of flavor, spin and parity).

 * Example: $uu, \Gamma = \gamma_0 \rightarrow \Gamma^{(ppb)} = \gamma_0 \rightarrow \mathcal{P} = +, \mathcal{P}_x = -$:

 $-\left(S_{\uparrow}P_{\downarrow} - S_{\downarrow}P_{\uparrow} - P_{\uparrow}S_{\downarrow} + P_{\downarrow}S_{\uparrow} \right)$,

 i.e. $I = 1$ (symmetric), $s = 0$ (antisymmetric), antisymmetric with respect to $S \leftrightarrow P_-; \text{ the numerically obtained potential is attractive, i.e. in agreement with the above stated general rule.}$

 * All $6 + 12$ independent $S-P_-$ potentials (and all $6 + 12$ independent $S-S$ potentials) fulfill the general rule.
Summary and future plans

• Contraction and analysis code for computation of BB potentials (arbitrary flavor, spin and parity) ready.

• Preliminary results promising:
 – Qualitative agreement with existing quenched results for $S–S$ potentials.
 – Computation of $S–P_–$ potentials seems feasible.

• To do list:
 – Implement off-axis separations.
 – Increase statistics by a factor of ≈ 50.
 – Other $\beta, L^3 \times T, \mu$ values.
 – Partially quenched computations, to obtain $B_s B_s$ and/or $B_s B$ potentials.
 – Improve lattice meson potentials at small separations (where the suppression of UV fluctuations due to the lattice cutoff yields wrong results) with corresponding perturbative potentials.