$B \bar{B}$ and $B \bar{B}$ static potentials and heavy tetraquarks from lattice QCD

Bethe Forum on methods in lattice field theory – Rheinische Friedrich-Wilhelms-Universität Bonn

Marc Wagner
Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik
mwagner@th.physik.uni-frankfurt.de
http://th.physik.uni-frankfurt.de/~mwagner/

in collaboration with Pedro Bicudo, Krzysztof Cichy, Antje Peters, Jonas Scheunert, Annabelle Uenver, Björn Wagenbach

March 25, 2015
Goals, motivation (1)

- Study tetraquarks/mesonic molecules by combining lattice QCD and phenomenology/model calculations.

- Basic idea:
 1. Compute the potential of two heavy quarks in the presence of two light quarks using lattice QCD.
 2. Explore, whether the potentials are sufficiently attractive to generate a bound state (a rather stable tetraquark/mesonic molecule) using phenomenology/model calculations.

Marc Wagner, “$B\bar{B}$ and $B\bar{B}$ static potentials and heavy tetraquarks from lattice QCD”, March 25, 2015
Why are such investigations important?

Quite a number of mesons are only poorly understood.

- Charged bottomonium states, e.g. $Z_b(10610)^{±}$ and $Z_b(10650)^{±}$... must be four quark states.
- Charged charmonium states, e.g. $Z_c(3940)^{±}$ and $Z_c(4430)^{±}$... must be four quark states.
- $X(3872)$ ($\bar{c}c$ state): mass not as expected from quark models; could be a $D-D^*$ molecule, a bound diquark-antidiquark, ...
Outline

- A brief introduction to lattice QCD hadron spectroscopy.
 - QCD (quantum chromodynamics).
 - Hadron spectroscopy.
 - Lattice QCD.
- Heavy-heavy-light-light tetraquarks.
- BB static potentials.
- BB tetraquarks.
- $B\bar{B}$ static potentials.
- Inclusion of B/B^* mass splitting.
- Outlook.
QCD (quantum chromodynamics)

- Quantum field theory of quarks (six flavors u, d, s, c, t, b, which differ in mass) and gluons.

- Part of the standard model explaining the formation of hadrons (usually mesons = $q\bar{q}$ and baryons = $qqq/\bar{q}\bar{q}\bar{q}$) and their masses; essential for decays involving hadrons.

- Definition of QCD simple:

 \[
 S = \int d^4x \left(\sum_{f \in \{u,d,s,c,t,b\}} \bar{\psi}(f) \left(\gamma_\mu \left(\partial_\mu - iA_\mu \right) + m^{(f)} \right) \psi(f) + \frac{1}{2g^2} \text{Tr} \left(F_{\mu\nu}F^{\mu\nu} \right) \right)
 \]

 \[
 F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu - i[A_\mu, A_\nu].
 \]

- However, no analytical solutions for low energy QCD observables, e.g. hadron masses, known, because of the absence of any small parameter (i.e. perturbation theory not applicable).

 → Solve QCD numerically by means of lattice QCD.
Hadron spectroscopy

• Proceed as follows:

(1) Compute the temporal correlation function $C(t)$ of a suitable hadron creation operator O (an operator O, which generates the quantum numbers of the hadron of interest, when applied to the vacuum $|\Omega\rangle$).

(2) Determine the corresponding hadron mass from the asymptotic exponential decay in time.

• Example: D meson mass m_D (valence quarks \bar{c} and u, $J^P = 0^-$),

$$O \equiv \int d^3r \; \bar{c}(\vec{r}) \gamma_5 u(\vec{r})$$

$$C(t) \equiv \langle \Omega | O(t) O(0) | \Omega \rangle \xrightarrow{t \to \infty} \propto \exp \left(-m_D t \right).$$

Marc Wagner, "$B\bar{B}$ and $B\bar{B}$ static potentials and heavy tetraquarks", March 25, 2015
Lattice QCD (1)

- To compute a temporal correlation function $C(t)$, use the path integral formulation of QCD,

\[
C(t) = \langle \Omega | O(t) O(0) | \Omega \rangle = \frac{1}{Z} \int \left(\prod_f D\psi^{(f)} D\bar{\psi}^{(f)} \right) DA_\mu O(t) O(0) e^{-S[\psi^{(f)}, \bar{\psi}^{(f)}, A_\mu]}.
\]

- $|\Omega\rangle$: ground state/vacuum.
- $O(t), O(0)$: functions of the quark and gluon fields (cf. previous slides).
- $\int \left(\prod_f D\psi^{(f)} D\bar{\psi}^{(f)} \right) DA_\mu$: integral over all possible quark and gluon field configurations $\psi^{(f)}(x, t)$ and $A_\mu(x, t)$.
- $e^{-S[\psi^{(f)}, \bar{\psi}^{(f)}, A_\mu]}$: weight factor containing the QCD action.
Lattice QCD (2)

• Numerical implementation of the path integral formalism in QCD:

 – Discretize spacetime with sufficiently small lattice spacing
 \[a \approx 0.05 \text{ fm} \ldots 0.10 \text{ fm} \]
 \[\rightarrow \text{“continuum physics”}. \]

 – “Make spacetime periodic” with sufficiently large extension
 \[L \approx 2.0 \text{ fm} \ldots 4.0 \text{ fm} \text{ (4-dimensional torus)} \]
 \[\rightarrow \text{“no finite volume effects”}. \]

Marc Wagner, “\(B\bar{B}\) and \(B\bar{B}\) static potentials and heavy tetraquarks from lattice QCD”, March 25, 2015
Lattice QCD (3)

- Numerical implementation of the path integral formalism in QCD:
 - After discretization the path integral becomes an ordinary multidimensional integral:
 \[
 \int D\psi D\bar{\psi} DA \ldots \rightarrow \prod_{x_\mu} \left(\int d\psi(x_\mu) d\bar{\psi}(x_\mu) dU(x_\mu) \right) \ldots
 \]
 - Typical present-day dimensionality of a discretized QCD path integral:
 * \(x_\mu : 32^4 \approx 10^6 \) lattice sites.
 * \(\psi = \psi^{a,(f)}_A \): 24 quark degrees of freedom for every flavor
 (\(\times 2 \) particle/antiparticle, \(\times 3 \) color, \(\times 4 \) spin), 2 flavors.
 * \(U = U^{ab}_{\mu} \): 32 gluon degrees of freedom (\(\times 8 \) color, \(\times 4 \) spin).
 * In total: \(32^4 \times (2 \times 24 + 32) \approx 83 \times 10^6 \) dimensional integral.

→ standard approaches for numerical integration not applicable
→ sophisticated algorithms mandatory (stochastic integration techniques, so-called Monte-Carlo algorithms).
Heavy-heavy-light-light-light tetraquarks (1)

- Study possibly existing $\bar{Q}Qqq$ and $\bar{Q}Q\bar{q}q$ tetraquark states ($q \in \{u, d, s, c\}$):
 - Use the static approximation for the heavy quarks $\bar{Q}Q$ and $\bar{Q}Q$ (reduces the necessary computation time significantly).
 - Most appropriate for $\bar{Q}Q \equiv \bar{b}b$ and $\bar{Q}Q \equiv \bar{b}b$, e.g. $Z_b(10610)^+$ and $Z_b(10650)^+$.
 - Could also provide information about $\bar{Q}Q \equiv \bar{c}c$ and $\bar{Q}Q \equiv \bar{c}c$, e.g. $Z_c(3940)^\pm$ and $Z_c(4430)^\pm$.

- Proceed in two steps:
 1. Compute the potential of two heavy quarks $\bar{Q}Q$ and $\bar{Q}Q$ in the presence of two “light quarks” qq and $\bar{q}q$ ($q \in \{u, d, s, c\}$) using lattice QCD.
 2. Solve the non-relativistic Schrödinger equation for the relative coordinate of the heavy quarks $\bar{Q}Q$ and $\bar{Q}Q$; the existence of a bound state would indicate a rather stable tetraquark state.
Since heavy b quarks are treated in the static approximation, their spins are irrelevant (mesons are labeled by the spin of the light degrees of freedom j).

Consider only pseudoscalar/vector mesons ($j^P = (1/2)^-$, PDG: B, B^*) and scalar/pseudovector mesons ($j^P = (1/2)^+$, PDG: B_0^*, B_1^*), which are among the lightest static-light mesons.

Study the dependence of the mesonic potential $V(R)$ on

- the “light” quark flavors u, d, s and/or c (isospin),
- the “light” quark spin (the static quark spin is irrelevant),
- the type of the meson B, B^* and/or B_0^*, B_1^*.

→ Many different channels/quantum numbers ... attractive, repulsive ...

\[V(R) = ? \]
In the following $\bar{Q}\bar{Q}qq$, i.e. “BB” (not $\bar{Q}Q\bar{q}q$, i.e. “$B\bar{B}$”).

To extract the potential(s) of a given sector $(I, I_z, |j_z|, \mathcal{P}, \mathcal{P}_x)$, compute the temporal correlation function of the trial state

$$(C\Gamma)_{AB}(C\tilde{\Gamma})_{CD}\left(\bar{Q}_C(-R/2)q^{(1)}_A(-R/2)\right)\left(\bar{Q}_D(+R/2)q^{(2)}_B(+R/2)\right)|\Omega\rangle.$$

- $C = \gamma_0\gamma_2$ (charge conjugation matrix).
- $q^{(1)}q^{(2)} \in \{ud - du, uu, dd, ud + du, ss, cc\}$ (isospin I, I_z).
- Γ is an arbitrary combination of γ matrices (spin $|j_z|$, parity $\mathcal{P}, \mathcal{P}_x$).
\[I = 0 \text{ (left) and } I = 1 \text{ (right); } |j_z| = 0 \text{ (top) and } |j_z| = 1 \text{ (bottom).} \]
Why are certain channels attractive and others repulsive? (1)

- Wave function of two identical fermions (light quarks $q^{(1)}q^{(2)}$) must be antisymmetric (Pauli principle); in qft/QCD automatically realized on the level of states.
- $q^{(1)}q^{(2)}$ isospin: $I = 0$ antisymmetric, $I = 1$ symmetric.
- $q^{(1)}q^{(2)}$ spin: $j = 0$ antisymmetric, $j = 1$ symmetric.
- $q^{(1)}q^{(2)}$ color:

 - $(I = 0, j = 0)$ and $(I = 1, j = 1)$: must be antisymmetric, i.e. a triplet $\bar{3}$.
 - $(I = 0, j = 1)$ and $(I = 1, j = 0)$: must be symmetric, i.e. a sextet 6.

- The four quarks $\bar{Q}\bar{Q}q^{(1)}q^{(2)}$ must form a color singlet:

 - $q^{(1)}q^{(2)}$ in a color triplet $\bar{3}$ \rightarrow static quarks $\bar{Q}\bar{Q}$ also in a triplet 3.
 - $q^{(1)}q^{(2)}$ in a color sextet 6 \rightarrow static quarks $\bar{Q}\bar{Q}$ also in a sextet $\bar{6}$.
Why are certain channels attractive and others repulsive? (2)

- Attractive/repulsive behavior of $Q\bar{Q}$ at small separations r is mainly due to 1-gluon exchange (the static quarks $Q\bar{Q}$ are rather close, inside a large light quark cloud formed by $q^{(1)}q^{(2)}$, i.e. no color screening of the color charges $Q\bar{Q}$ due to $q^{(1)}q^{(2)}$):
 - color triplet 3 is attractive, $V(r) = -2\alpha_s/3r$,
 - color sextet $\bar{6}$ is repulsive, $V(r) = +\alpha_s/3r$

(easy to calculate in LO perturbation theory).

- Summary:
 - $(I = 0, j = 0)$ and $(I = 1, j = 1)$ → attractive $Q\bar{Q}$ potential $V(r)$.
 - $(I = 0, j = 1)$ and $(I = 1, j = 0)$ → repulsive $Q\bar{Q}$ potential $V(r)$.

This expectation is consistent with the obtained lattice results.
BB static potentials (5)

- Focus on the two attractive channels between ground state static-light mesons "B and B^*" (probably the best candidates to find a tetraquark):

 - Scalar isosinglet (more attractive):
 \[qq = (ud - du)/\sqrt{2}, \Gamma = \gamma_5 + \gamma_0\gamma_5, \]
 quantum numbers \((I, |j_z|, P, P_x) = (0, 0, -, +)\).

 - Vector isotriplet (less attractive):
 \[qq \in \{uu, (ud + du)/\sqrt{2}, dd\}, \Gamma = \gamma_j + \gamma_0\gamma_j, \]
 quantum numbers \((I, |j_z|, P, P_x) = (1, \{0, 1\}, -, \pm)\).

- Computations for \(qq = ll, ss, cc\) \((l \in \{u, d\})\) to study the mass dependence.
Two competing effects:

- The potential for light quarks is wider/deeper, i.e. favors the existence of a bound state (a tetraquark).
- Heavier quarks correspond to heavier mesons \((m(B) < m(B_s) < m(B_c))\), which form more readily a bound state (a tetraquark), i.e. require a less wide/deep potential for a bound state.

BB tetraquarks (1)

- Solve the non-relativistic Schrödinger equation for the relative coordinate of the heavy quarks $\bar{Q}Q$,

$$\left(-\frac{1}{2\mu} \Delta + V(r) \right) \psi(r) = E\psi(r), \quad \mu = \frac{m(B_{(s,c)})}{2};$$

a bound state, i.e. $E_0 < 0$, would be an indication for a tetraquark state.

- There is a bound state for the scalar isosinglet and $qq = ll$ (i.e. BB), binding energy $E \approx -50$ MeV, confidence level $\approx 2\sigma$.

- No binding for the vector isotriplet or for $qq = ss, cc$ (i.e. B_sB_s, B_cB_c).
To quantify “no binding”, we list for each channel the factor, by which the effective mass μ in Schrödinger’s equation has to be multiplied, to obtain binding with confidence level 1σ and 2σ (the potential is not changed).

<table>
<thead>
<tr>
<th>flavor</th>
<th>confidence level for binding</th>
<th>light</th>
<th>strange</th>
<th>charm</th>
</tr>
</thead>
<tbody>
<tr>
<td>scalar isosinglet</td>
<td>1σ</td>
<td>2σ</td>
<td>1σ</td>
<td>2σ</td>
</tr>
<tr>
<td>vector isotriplet</td>
<td>0.8</td>
<td>1.0</td>
<td>1.9</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>1.9</td>
<td>2.1</td>
<td>2.5</td>
<td>2.7</td>
</tr>
</tbody>
</table>

- Factors ≤ 1.0 indicate binding.
- Light quarks (u/d) are unphysically heavy (correspond to $m_\pi \approx 340$ MeV); physically light u/d quarks are expected to yield stronger binding for the scalar isosinglet, might lead to binding also for the vector isotriplet (computations in progress).
- Mass splitting $m(B^*) - m(B) \approx 50$ MeV, neglected at the moment, is expected to weaken binding (coupled channel analysis; see later slides).

What are the quantum numbers of the $\bar{b}\bar{b}ll$ tetraquark (light scalar isosinglet)?

- Light scalar isosinglet: $I = 0$, $j = 0$, ll in a color 3, $\bar{b}\bar{b}$ in a color 3 (antisymmetric) ... as discussed above.

- Wave function of $\bar{b}\bar{b}$ must also be antisymmetric (Pauli principle); in the lattice QCD computation not automatically realized (static quarks are spinless color charges, which can be distinguished by their positions).

 - $\bar{b}\bar{b}$ is flavor symmetric.

 - $\bar{b}\bar{b}$ spin must also be symmetric, i.e. $j_b = 1$.

- The $\bar{b}\bar{b}ll$ tetraquark has quantum numbers isospin \(I = 0 \), spin \(J = 1 \), parity \(\mathcal{P} = + \) (parity not obvious).
$B \bar{B}$ static potentials

- Experimentally more interesting case: $QQ\bar{q}q$, i.e. “$B \bar{B}$”, trial states

$$\Gamma_{AB} \tilde{\Gamma}_{CD} (\bar{Q}_C(-R/2)q_B^{(1)}(-R/2))(\bar{q}_A^{(2)}(+R/2)Q_D(+R/2))|\Omega\rangle.$$

- At the moment only preliminary results for $\bar{q}q = \bar{c}c$, “$I = 1$”.

- Qualitative difference to $Q\bar{Q}qq$: all channels are attractive (for $Q\bar{Q}qq$ half of them are attractive, half of them are repulsive).

- Can again be understood by the 1-gluon exchange potential of $\bar{Q}Q$:
 - No Pauli principle for $\bar{q}^{(1)}q^{(2)}$ (particle and antiparticle are not identical).
 - $\bar{q}^{(1)}q^{(2)}$ can be in a symmetric color singlet 1 for any isospin/spin orientation.
 - $\bar{q}^{(1)}q^{(2)}$ in a color singlet 1 \rightarrow static quarks $\bar{Q}Q$ also in a singlet 1.
 - Color singlet is attractive, $V(r) = -4\alpha_s/3r$ (LO perturbation theory).
Inclusion of B/B^* mass splitting (1)

- Mass splitting $m_{B^*} - m_B \approx 50$ MeV has been neglected so far.
- Mass splitting $m_{B^*} - m_B$ is, however, of the same order of magnitude as the previously obtained binding energy $E \approx -50$ MeV.
- Moreover, two competing effects:
 - An attractive $Q\bar{Q}qq$ channel correspond to a linear combination of BB, BB^* and/or B^*B^*, e.g.
 \[
 \text{scalar isosinglet} \equiv BB + B_xB_x^* + B_yB_y^* + B_zB_z^*.
 \]
 - The BB interaction is a superposition of attractive and repulsive $Q\bar{Q}qq$ potentials.
- Goal: take mass splitting $m_{B^*} - m_B \approx 50$ MeV into account
 \rightarrow refined model calculation with the computed $Q\bar{Q}qq$ potentials.
- Will there still be a bound state?

Marc Wagner, “$B\bar{B}$ and $B\bar{B}$ static potentials and heavy tetraquarks from lattice QCD”, March 25, 2015
Inclusion of B/B^* mass splitting (2)

Solve a coupled channel Schrödinger equation (1)

• Previously:
 – A wave function ψ with 1 component corresponding to BB ($B \equiv B^*$).

• Now:
 – A static light meson can correspond to B or $B^* = (B^*_x, B^*_y, B^*_z)$.
 – Therefore, a wave function $\vec{\psi}$ with 16 components corresponding to $(BB, BB^*_x, BB^*_y, BB^*_z, B^*_xB, B^*_yB, B^*_zB, \ldots, B^*_zB)$.

• Coupled channel Schrödinger equation $H\vec{\psi}(r_1, r_2) = E\vec{\psi}(r_1, r_2)$,

\[
H = M \otimes 1 + 1 \otimes M + \frac{p_1^2}{2} (M \otimes 1)^{-1} + \frac{p_2^2}{2} (1 \otimes M)^{-1} + V(|r_1 - r_2|),
\]

where $M = \text{diag}(m_B, m_{B^*}, m_{B^*}, m_{B^*})$ and V is a 16 × 16 non-diagonal matrix containing the $\bar{Q}Qqq$ potentials (both attractive and repulsive).

Marc Wagner, “BB and $B\bar{B}$ static potentials and heavy tetraquarks from lattice QCD”, March 25, 2015
Inclusion of B/B^* mass splitting (3)

Solve a coupled channel Schrödinger equation (2)

- Coupled channel Schrödinger equation $H\vec{\psi}(r_1, r_2) = E\vec{\psi}(r_1, r_2)$,

\[
H = M \otimes 1 + 1 \otimes M + \frac{p_1^2}{2} (M \otimes 1)^{-1} + \frac{p_2^2}{2} (1 \otimes M)^{-1} + V(|r_1 - r_2|),
\]

where $M = \text{diag}(m_B, m_B^*, m_B^*, m_B^*)$ and V is a 16×16 non-diagonal matrix containing the $\bar{Q}\bar{Q}qq$ potentials (both attractive and repulsive).

- Specific limits:
 - $V = 0$, i.e. no interactions:
 \[
 E = m_B + m_B + \frac{p_1^2}{2m_B} + \frac{p_2^2}{2m_B}, \quad m_B + m_B^* + \frac{p_1^2}{2m_B} + \frac{p_2^2}{2m_{B^*}}, \ldots
 \]
 - $m_{B^*} = m_B$, i.e. “old 1-component SE calculation”:
 \[
 E \approx 2m_B - 50 \text{ MeV}.
 \]
Inclusion of B/B^* mass splitting (4)

Solve a coupled channel Schrödinger equation (3)

- Transform the 16×16 Schrödinger equation to block diagonal structure:
 - Total spin $J = 0$: 2×2 structure.
 - Total spin $J = 1$: 3×3 structure ($3 \times$ due to J_z degeneracy).
 - Total spin $J = 2$: 1×1 structure ($5 \times$ due to J_z degeneracy).

- Work in progress ...
 - First very preliminary results indicate that for $J = 0$ the bound state does not exist anymore (however, still very close to a bound state).
 - However:
 * More realistic/relevant $J = 1$ equation not yet investigated.
 * Unphysically heavy u/d quarks ($m_\pi \approx 340$ MeV) ... physically light quarks will lead to more attractive $\bar{Q}Qqq$ potentials.
 * $M = \text{diag}(m_B, m_{B^*}, m_{B^*}, m_{B^*})$; for small $\bar{Q}Q$ separation $M = m_b$ would be more appropriate ... should enhance binding.
Outlook (1)

- Future plans for BB and $B\bar{B}$:
 - Computations with light u/d quarks of physical mass ($m_\pi \approx 140$ MeV instead of $m_\pi \approx 340$ MeV).
 - Light quarks of different mass: BB_s, BB_c and B_sB_c potentials.
Outlook (2)

• Future plans for \(BB \) and \(B\bar{B} \):

 – Study the structure of the states corresponding to the computed potentials:

 * In a lattice computation two different creation operators generating the same quantum numbers yield the same potential.
 * At the moment exclusively creation operators of mesonic molecule type.
 * For \(BB \) use also
 · creation operators of diquark-antidiquark type.
 * For \(B\bar{B} \) use also
 · creation operators of diquark-antidiquark type,
 · creation operators of bottomonium + pion type (\(Q\bar{Q} \) string + \(\pi \)),
 · for \(I = 0 \) creation operators of bottomonium type (\(Q\bar{Q} \) string).
 * Resulting correlation matrices provide information about the structure.