The pseudoparticle approach

Marc Wagner
mcwagner@physik.hu-berlin.de
http://people.physik.hu-berlin.de/~mcwagner/
October 11, 2007
Outline

Part I: the pseudoparticle approach, a model for SU(2) Yang-Mills theory
 • Basic principle.
 • Numerical results: static quark antiquark potential, topological susceptibility, critical temperature, gluelump masses.

Part II: properties of confining gauge field configurations
 • Pseudoparticles of different profile.
 • Instantons, antiinstantons and akyrons.

Part III: fermions in the pseudoparticle approach
 • Problems with fermionic fields in the pseudoparticle approach.
 • The Gross-Neveu model as testing ground.

Summary and outlook

Part I: the pseudoparticle approach, a model for SU(2) Yang-Mills theory
Basic principle of the PP approach (1)

- A numerical technique to approximate Euclidean path integrals (in this talk: mainly SU(2) Yang-Mills theory):

\[\langle \mathcal{O} \rangle = \frac{1}{Z} \int DA \mathcal{O}[A] e^{-S[A]} \]

\[S[A] = \frac{1}{4g^2} \int d^4x \ F^a_{\mu\nu} F^a_{\mu\nu}, \quad F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + \epsilon^{abc} A^b_\mu A^c_\nu. \]

- A tool to analyze the importance of certain classes of gauge field configurations with respect to confinement.

- Related work:
 - Ensembles of calorons with non-trivial holonomy (P. Gerhold, E.-M. Ilgenfritz, M. Müller-Preussker, 2006).
 - Ensembles of dyons (D. Diakonov, V. Petrov, 2007).
• PP: any gauge field configuration \(a_{\mu}^{a} \), which is localized in space and in time.

• Consider only those gauge field configurations, which can be written as a sum of a fixed number (\(\approx 400 \)) of PPs:

\[
A_{\mu}^{a}(x) = \sum_{j} \rho^{ab}(j) a_{\mu}^{b}(x - z(j))
\]

\((j): \text{PP index; } \rho^{ab}(j): \text{degrees of freedom of the } j\text{-th PP, i.e. amplitude and color orientation; } z(j): \text{position of the } j\text{-th PP).}\)

• Define the functional integration as an integration over the PP degrees of freedom:

\[
\int DA \ldots \rightarrow \int \left(\prod_{j} d\rho^{ab}(j) \right) \ldots
\]
Building blocks of PP ensembles

$$a^{a}_{\mu, \text{instanton}}(x) = \eta^{a}_{\mu\nu} \frac{x_{\nu}}{x^2 + \lambda^2}$$

$$a^{a}_{\mu, \text{antiinstanton}}(x) = \bar{\eta}^{a}_{\mu\nu} \frac{x_{\nu}}{x^2 + \lambda^2}$$

$$a^{a}_{\mu, \text{akyron}}(x) = \delta^{a1}_{\mu} \frac{x_{\mu}}{x^2 + \lambda^2}.$$

- Instantons, antiinstantons and akyrons form a basis of all gauge field configurations in the “continuum limit”.

- Degrees of freedom: amplitudes $A(j) \in \mathbb{R}$, color orientations $C^{ab}(j) \in \text{SO}(3)$, positions $z(j) \in \mathbb{R}^4$.

$$A^{a}_{\mu}(x) = \sum_j A(j) C^{ab}(j) a^{a}_{\mu, \ldots}(x - z(j)).$$
PP ensembles (1)

- PP ensemble: a fixed number of PPs inside a spacetime hypersphere.
- Gauge field:

\[
A^a_\mu(x) = \sum_j A(j)C^{ab}(j)a^b_{\mu,\text{instanton}}(x - z(j)) + \sum_k A(k)C^{ab}(k)a^b_{\mu,\text{antiinstanton}}(x - z(k)) + \sum_l A(l)C^{ab}(l)a^b_{\mu,\text{akyron}}(x - z(l)).
\]

- Choose color orientations \(C^{ab}(j)\) and positions \(z(j)\) randomly.

- \(A^a_\mu\) is no classical solution (not even close to a classical solution)!

- Long range interactions between PPs.
• Approximation of the path integral:

\[
\langle \mathcal{O} \rangle = \frac{1}{Z} \int \left(\prod_j dA(j) \right) \mathcal{O}(A(j)) e^{-S(A(j))}
\]

(integration over PP amplitudes).

• Solve this multidimensional integral via Monte-Carlo simulations.

• Exclude boundary effects: observables have to be “measured” sufficiently far away from the boundary.
Numerical results (1)

- Static quark antiquark potential:
 - Linear for large separations, i.e. confinement.
 - Fit with $V(R) = V_0 - \alpha/R + \sigma R$:
 * String tension $\sigma > 0$ (in the following σ is used to set the scale).
 * Attractive $1/R$-correction, which is of the right order of magnitude compared to lattice results and the bosonic string picture.
 - Potentials for different quark representations exhibit Casimir scaling.

![Graphs of quark antiquark potential vs separation](image-url)
Numerical results (2)

- Further dimensionful quantities:
 - Topological susceptibility \(\chi = \langle Q_V^2 \rangle / V \).
 - Critical temperature of the confinement deconfinement phase transition \(T_{\text{critical}} \).
 - Mass of magnetic and electric gluelumps (adjoint representation) \(m_B \) and \(m_E \) (work done by Ch. Szasz).

- Dimensionless quantities (physically meaningful):
 \(\chi^{1/4}/\sigma^{1/2} \), \(T_{\text{critical}}/\sigma^{1/2} \), \(R^{B}_{SB}\sigma^{1/2} \), \(R^{E}_{SB}\sigma^{1/2} \).

- Considering different \(g \) amounts to considering different spacetime volumes.

- Qualitative agreement with lattice results.

- Consistent scaling behavior.
Part II: properties of confining gauge field configurations
Properties of confining gauge field ...

• What are essential properties of confining gauge field configurations?
• Which gauge field configurations are responsible for confinement?
• Apply the PP approach with different types of PPs to study the effect of different classes of gauge field configurations on confinement:
 – PPs with a limited range of interaction (PPs with Gaussian profile).
 – PPs without topological charge (akyrons).
 – ...
PPs with Gaussian profile (1)

- Consider ensembles with Gaussian localized PPs of different size λ:

\[
a^a_{\mu,\text{instanton}}(x) = \eta^a_{\mu\nu} x_{\nu} e^{-x^2/2\lambda^2}, \quad a^a_{\mu,\text{antiinstanton}}(x) = \bar{\eta}^a_{\mu\nu} x_{\nu} e^{-x^2/2\lambda^2},
\]

\[
a^a_{\mu,\text{akyron}}(x) = \delta^a_1 x_{\mu} e^{-x^2/2\lambda^2}.
\]

- Gaussian localized PPs have a limited range of interaction, which is proportional to their size λ.

- Typical PP profiles:

\[
(x_0/\lambda)\exp(-x_0^2/2\lambda^2) \text{ plotted against } x_0
\]

\[
(x_1/\lambda)\exp(-(x_0^2 + x_1^2)/2\lambda^2)|_{x_1=\lambda} \text{ plotted against } x_0
\]
PPs with Gaussian profile (2)

- Short range PPs ($\lambda \leq 0.50$)
 → little overlap between neighboring PPs.
 → no confinement.

- Long range PPs ($\lambda \geq 1.00$)
 → significant overlap between neighboring PPs.
 → confinement.

- PP percolation \leftrightarrow confinement.

Marc Wagner, "The pseudoparticle approach", October 11, 2007
Typical gauge field configurations ($\lambda = 0.25 \leftrightarrow \lambda = 1.00$)

- $\lambda = 0.25$: local UV fluctuations \rightarrow no confinement.
- $\lambda = 1.00$: global excitations \rightarrow confinement.

Gauge field configurations responsible for confinement contain extended structures and large area excitations.
Instantons, antiinstantons and akyrons

- Consider the following ensembles:
 - Akyron ensemble: 400 akyrons (topological charge density $q = 0$).
 - Standard ensemble: 150 instantons, 150 antiinstantons, 100 akyrons.
 - Instanton ensemble: 200 instantons, 200 antiinstantons.

- No confinement in the akyron ensemble
 \rightarrow akyrons alone are not suited to reproduce Yang-Mills physics.
 \rightarrow supports the expectation that confinement and topological charge are closely related.

- Standard ensemble \leftrightarrow instanton ensemble
 $\rightarrow (\chi^{1/4}/\sigma^{1/2})_{\text{standard}} = 0.35$
 $\quad (\chi^{1/4}/\sigma^{1/2})_{\text{instanton}} = 0.26$
 $\quad (\chi^{1/4}/\sigma^{1/2})_{\text{lattice}} = 0.49$.
 \rightarrow using akyrons is beneficial with respect to quantitative results.
Part III: fermionic fields in the pseudoparticle approach
Basic principle (fermionic fields) (1)

- How can fermions be included in the PP approach?

- Action and partition function of any theory with quadratic fermion interaction (no restriction to SU(2) Yang-Mills theory anymore):

\[
S[\psi, \bar{\psi}, \phi] = \int dx \left(\bar{\psi} Q(\phi) \psi + \mathcal{L}(\phi) \right)
\]

\[
Z = \int D\psi D\bar{\psi} D\phi e^{-S[\psi, \bar{\psi}, \phi]}
\]

\(Q: \) Dirac operator; \(\phi: \) any type and number of bosonic fields, e.g. the non-Abelian gauge field in QCD.

Basic principle (fermionic fields) (2)

- Consider only those fermionic field configurations, which can be represented by a linear superposition a fixed number of localized building blocks:

\[\psi(x) = \sum_j \eta_j G_j(x) \]

\(\eta_j \): Grassmann valued spinors; \(G_j \): functions, which are localized in space as well as in time, i.e. PPs).

- Define the functional integration over all fermionic field configurations as an integration over the Grassmann valued spinors:

\[\int D\psi D\bar{\psi} \ldots = \int \left(\prod_j d\eta_j d\bar{\eta}_j \right) \ldots \]
Basic principle (fermionic fields) (3)

- Integrate out the fermions:

\[S_{\text{effective}}[\phi] = \int d^{d+1}x \, \mathcal{L}(\phi) - \ln \left(\det \left(\langle G_j | Q | G_{j'} \rangle \right) \right) \]

\[Z \propto \int D\phi e^{-S_{\text{effective}}[\phi]} \]

(\[\langle G_j | Q | G_{j'} \rangle \] is a finite matrix; “Q-regularization”).

- If \(\det(Q) \) is real and positive, \(\det(Q) = \sqrt{\det(Q^\dagger Q)} \). This suggests another PP regularization:

\[S_{\text{effective}}[\phi] = \int d^{d+1}x \, \mathcal{L}(\phi) - \frac{1}{2} \ln \left(\det \left(\langle G_j | Q^\dagger Q | G_{j'} \rangle \right) \right) \]

(“\(Q^\dagger Q \)-regularization”).

- The “\(Q^\dagger Q \)-regularization” has significant advantages over the naive “Q-regularization”.

\(\mathcal{Q} \) versus \(\mathcal{Q}^\dagger \mathcal{Q} \) (1)

- For the sake of simplicity: consider all PPs \(G_j \) to be orthonormal, i.e.
 \(\langle G_j | G_{j'} \rangle = \delta_{jj'} \) (this is not a restriction!).

- The problem of the \(\mathcal{Q} \)-regularization:

 - **Applying the Dirac operator** \(\mathcal{Q} \) **to one of the PPs** \(G_{j'} \) **in general yields a function, which is (partially) outside the PP function space** \(\text{span}\{G_n\} \), i.e.
 \[
 QG_{j'}(x) = \sum_k a_{j'k} G_k(x) + h_{j'} H_{j'}(x)
 \]
 \((H_{j'} \text{ normalized, } H_{j'} \perp \text{span}\{G_n\}) \).

 - If \(|\sum_k a_{j'k} G_k| \gg |h_{j'}| \) → no problem.

 - If \(|\sum_k a_{j'k} G_k| \lesssim |h_{j'}| \) → when computing the fermionic matrix
 \(\langle G_j | \mathcal{Q} | G_{j'} \rangle \), a significant part of \(\mathcal{Q} G_{j'} \) is simply ignored, just because
 \(H_{j'} \) is perpendicular to the PP function space \(\text{span}\{G_n\} \).
The advantage of the $Q^\dagger Q$-regularization:

- Both the left hand sides $\langle G_j | Q^\dagger$ and the right hand sides $Q | G_{j'} \rangle$ of the matrix elements $\langle G_j | Q^\dagger Q | G_{j'} \rangle$ might be outside the PP function space $\text{span}\{G_n\}$, but they form the same function space, $\text{span}\{QG_n\}$, in which their overlap is computed.

Testing ground: Gross-Neveu model (1)

- Action and partition function of the 1+1-dimensional Gross-Neveu model:

\[
S = \int d^2 x \left(\sum_{n=1}^{N} \overline{\psi}^{(n)} \left(\gamma_0 (\partial_0 + \mu) + \gamma_1 \partial_1 \right) \psi^{(n)} \right) - \frac{g^2}{2} \left(\sum_{n=1}^{N} \overline{\psi}^{(n)} \psi^{(n)} \right)^2
\]

\[
Z = \int \left(\prod_{n=1}^{N} D\psi^{(n)} D\overline{\psi}^{(n)} \right) e^{-S}
\]

\((N: \text{number of flavors; } \mu: \text{chemical potential; } g: \text{coupling constant})\).
Testing ground: Gross-Neveu model (2)

- Introduce a real scalar field σ and integrate out the fermions:

$$S_{\text{effective}} = N \left(\frac{1}{2\lambda} \int d^2 x \, \sigma^2 - \ln \left(\det \left(\gamma_0 (\partial_0 + \mu) + \gamma_1 \partial_1 + \sigma \right) \right) \right)$$

$$Z \propto \int D\sigma e^{-S_{\text{effective}}}$$

$(\lambda = N g^2)$.

- Large-N limit:
 - $N \to \infty$, $\lambda = N g^2 = \text{constant}$.
 - There is no need to compute the σ-path integral anymore.
 - It is sufficient to minimize $S_{\text{effective}}$ with respect to σ.
 - $\sigma = -g^2 \sum_{n=1}^{N} \bar{\psi}^{(n)} \psi^{(n)}$ (chiral condensate).
Fermionic PPs

- Fermionic PPs (in this talk): a large number of uniformly distributed “hat functions” (B-spline basis functions of degree 2).
 - “Sensible set of field configurations” (any not too heavily oscillating field configuration can be approximated)
 → we can expect to reproduce correct Gross-Neveu results.
 - Piecewise polynomial functions
 → certain integrals can be calculated analytically.

Phase diagram

- Q-regularization: completely wrong and useless results.
 - No improvement, when using a larger number of PPs.
 - No improvement, when using a different type of PPs.

- $Q^\dagger Q$-regularization: excellent agreement with analytical results.
Summary and Outlook
Summary and conclusions (1)

• The PP approach with \(\approx 400 \) instantons, antiinstantons and akyrons is able to reproduce many essential features of SU(2) Yang-Mills theory:

 – **Linear quark antiquark potential, i.e. confinement.**
 – Casimir scaling for different quark representations.
 – **Consistent scaling behavior of** \(\sigma, \chi, T_{\text{critical}}, m_B \) **and** \(m_E \).
 – Dimensionless quantities are in qualitative agreement with lattice results.

• Essential properties of confining gauge field configurations:

 – Long range PPs necessary for confinement (PP percolation)
 \(\rightarrow \) **confinement** \(\leftrightarrow \) **extended structures and large area excitations.**
 – Instantons and antiinstantons (PPs with non-vanishing topological charge density) necessary for confinement
 \(\rightarrow \) **confinement** \(\leftrightarrow \) **topological charge.**
Summary and conclusions (2)

- Inclusion of fermions in the PP approach:
 - **Always apply the** $Q^\dagger Q$-**regularization and not the naive** Q-**regularization.**
 - The application of the PP approach to compute the phase diagram of the $1+1$-dimensional Gross-Neveu model in the large-N-limit has been a successful test.
 - Next steps:
 - Apply the PP approach to QCD.
 - Try to identify a small number of physically relevant fermionic PPs (PPs, which are able to approximate the low lying eigenmodes of the Dirac operator?).
Outlook

• Current research:
 – Improve the static quark antiquark potential:
 * Use improved operators (smeared Wilson loops) to extract the static quark antiquark potential (o.k.).
 * String breaking for the adjoint representation (???).
 – Consider SU(2) Yang-Mills theory with dynamical fermions:
 * Chiral symmetry breaking by computing the low lying eigenmodes of the Dirac operator in the quenched approximation (Banks-Casher relation) (???).

• Goal: obtain a model with a small number of degrees of freedom, which exhibits chiral symmetry breaking and a confinement deconfinement phase transition at the same time.

• Compute further observables: pion masses, ...