Computation of B mesons and b baryons with lattice QCD

Marc Wagner
Humboldt-Universität zu Berlin, Institut für Physik
Theorie der Elementarteilchen – Phänomenologie/Gitterreichtheorie
mcwagner@physik.hu-berlin.de
http://people.physik.hu-berlin.de/~mcwagner/

January 20, 2011
Outline

(1) Introduction to lattice computations, QCD and lattice QCD (≈ 15 minutes).

(2) Selected research results from the field of B physics (≈ 25 minutes):
 - Masses of B and B_s mesons.
 - Masses of b baryons.
 - Forces between B mesons.
 - Semileptonic decays $B \rightarrow D^{**}$.

(3) Further research interests and planned research (≈ 5 minutes).
Part 1: Introduction to lattice computations, QCD and lattice QCD.
Lattice computations in QM (1)

- Introduce the basic principle of lattice computations via a simple example, the 1-dimensional harmonic oscillator in quantum mechanics.

- (Euclidean) action of the harmonic oscillator:

 \[S[x] = \int dt \left(\frac{m}{2} \dot{x}(t)^2 + \frac{m\omega^2}{2} x(t)^2 \right). \]

- Goal: compute the average quadratic oscillation \(x^2 \) for the ground state \(|0\rangle\), i.e. \(\langle 0|x^2|0 \rangle \), by means of a lattice computation.

- Starting point: path integral formulation (equivalent to Schrödinger’s equation),

 \[\langle 0|x^2|0 \rangle = \frac{1}{Z} \int Dx \ x^2 e^{-S[x]}, \quad Z = \int Dx \ e^{-S[x]}. \]

 - \(\int Dx \): integral over all possible paths \(x(t) \), i.e. an integral over a function space (= “integral over infinitely many variables”).

 - \(e^{-S[x]} \): weight factor containing the action of the harmonic oscillator.
Lattice computations in QM (2)

• Starting point: path integral formulation (equivalent to Schrödinger’s equation),
\[
\langle 0 | x^2 | 0 \rangle = \frac{1}{Z} \int Dx \; x^2 e^{-S[x]}, \quad Z = \int Dx \; e^{-S[x]}.
\]

• Discretize and compactify time:
\[t \in \mathbb{R} \rightarrow t_j = j \times \Delta t, \quad j = 0, 1, \ldots, N - 1\]
\[\rightarrow \text{path integral reduced to an ordinary multi-dimensional integral, i.e.}\]
\[
\int Dx \; e^{-S[x]} \rightarrow \int \left(\prod_{j=0}^{N-1} dx(t_j) \right) e^{-S[x(t_0), \ldots, x(t_{N-1})]}.
\]

• Solve this multi-dimensional by means of a (high performance) computer.
“Standard model of particle physics”

- Four fundamental forces, which correspond to gauge bosons.
- Matter: six types of quarks and six types of leptons.
- QCD (quantum chromodynamics): quarks and gluons and their interactions.
QCD (quantum chromodynamics)

- Quantum field theory of quarks (six flavors \(u, d, s, c, t, b\), which differ in mass) and gluons.

- Part of the standard model explaining the formation of hadrons (mesons = \(q\bar{q}\), baryons = \(qqq/\bar{q}\bar{q}\bar{q}\)) and their masses; essential for decays involving hadrons.

- Definition of QCD by means of an action simple:

\[
S = \int d^4x \left(\sum_{f \in \{u,d,s,c,t,b\}} \bar{\psi}^{(f)} \left(\gamma_{\mu} \left(\partial_{\mu} - iA_{\mu} \right) + m^{(f)} \right) \psi^{(f)} + \frac{1}{2g^2} \text{Tr} \left(F_{\mu\nu}F_{\mu\nu} \right) \right)
\]

\[
F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - i[A_{\mu}, A_{\nu}].
\]

- However, no analytical solutions for low energy QCD observables, e.g. hadron masses, known, because of the absence of any small parameter (i.e. perturbation theory not applicable).

Marc Wagner, “Computation of \(B\) mesons and \(b\) baryons with lattice QCD”, January 20, 2011
Lattice QCD (1)

- Goal: compute QCD observables, e.g. hadron masses, from first principles with controllable systematic error.

- Use the path integral formulation of QCD,

\[
\langle \mathcal{O}(\psi(f), \bar{\psi}(f), A_\mu) \rangle = \frac{1}{Z} \int \left(\prod_f D\psi(f) \, D\bar{\psi}(f) \right) DA_\mu \, \mathcal{O}(\psi(f), \bar{\psi}(f), A_\mu) e^{-S[\psi(f), \bar{\psi}(f), A_\mu]}.
\]

- \(\langle \ldots \rangle \): ground state/vacuum expectation value.

- \(\mathcal{O}(\psi(f), \bar{\psi}(f), A_\mu) \): function of the quark and gluon fields, which can be related to an observable, e.g. a specific meson/baryon mass.

- \(\int (\prod_f D\psi(f) \, D\bar{\psi}(f)) DA_\mu \): integral over all possible quark and gluon field configurations \(\psi(f)(x, t) \) and \(A_\mu(x, t) \).

- \(e^{-S[x]} \): weight factor containing the QCD action.

Note that this path integral is analogous to the quantum mechanical example,

\[
\langle 0 | x^2 | 0 \rangle = \frac{1}{Z} \int Dx \, x^2 e^{-S[x]}.
\]
Lattice QCD (2)

- Numerical implementation of the path integral formalism in QCD:
 - Discretize spacetime with sufficiently small lattice spacing
 \(a \approx 0.05 \text{ fm} \ldots 0.10 \text{ fm} \)
 \(\rightarrow \) “continuum physics”.
 - “Make spacetime periodic” with sufficiently large extension
 \(L \approx 2.0 \text{ fm} \ldots 4.0 \text{ fm} \) (4-dimensional torus)
 \(\rightarrow \) “no finite size effects”.

\[x_\mu = (n_0, n_1, n_2, n_3) \in \mathbb{Z}^4 \]
Lattice QCD (3)

- Numerical implementation of the path ...
 - Quark fields:
 * Action (in the continuum):
 \[S_{E,\text{quarks}} = \int d^4x \sum_f \bar{\psi}^{(f)}(x) \left(\gamma_\mu \left(\partial_\mu - iA_\mu \right) + m_f \right) \psi^{(f)}(x). \]
 * “Direct discretization” of the quark fields \(\psi^{(f)} \), i.e. quark fields are defined on the lattice sites.
 * Conceptually more difficult, high performance computer systems needed:
 - Fermion doubling (cf. my previous presentation).
 - Chiral symmetry explicitly broken.
 - Simulations at physically realistic values of the \(u \) and \(d \) quark masses extremely computer time consuming.
 - Discretization errors proportional to the lattice spacing \(a \), i.e. rather large discretization errors.
Lattice QCD (4)

- Numerical implementation of the path integral formalism in QCD:
 - After discretization the path integral becomes an ordinary multidimensional integral:
 \[\int D\psi D\bar{\psi} DA \ldots \rightarrow \prod_{x_\mu} \left(\int d\psi(x_\mu) d\bar{\psi}(x_\mu) dU(x_\mu) \right) \ldots \]
 - Typical present-day dimensionality of a discretized QCD path integral:
 * \(x_\mu: 32^4 \approx 10^6 \) lattice sites.
 * \(\psi = \psi_A^{a,(f)} \): 24 quark degrees of freedom for every flavor (\(\times 2 \) particle/antiparticle, \(\times 3 \) color, \(\times 4 \) spin), 2 flavors.
 * \(U = U^{ab}_\mu \): 32 gluon degrees of freedom (\(\times 8 \) color, \(\times 4 \) spin).
 * In total: \(32^4 \times (2 \times 24 + 32) \approx 83 \times 10^6 \) dimensional integral.

→ standard approaches for numerical integration not applicable
→ sophisticated algorithms mandatory (stochastic integration techniques, so-called Monte-Carlo algorithms).
Twisted mass lattice QCD, ETMC

- Discretizing the QCD action is not unique.
- **Twisted mass lattice QCD** is a specific lattice discretization of QCD:
 - Advantages of twisted mass lattice QCD:
 (+) Automatic $\mathcal{O}(a)$ improvement of physical observables
 \rightarrow lattice discretization errors due to fermions (quarks) do not appear linearly in the small lattice spacing a, only quadratically.
 (+) Compared to certain other lattice discretizations rather cheap
 \rightarrow large lattice extensions and small lattice spacings feasible.
- The **European Twisted Mass Collaboration** (ETMC), a collaboration of more than twenty European universities and research institutes, of which I am a member, successfully uses this this discretization for already a couple of years to perform large scale computations of QCD with 2 quark flavors; recently we have started a similar major project to simulate 2+1+1 quark flavors.

Marc Wagner, “Computation of B mesons and b baryons with lattice QCD”, January 20, 2011
Part 2: Selected research results from the field of B physics.
B physics, B mesons, b baryons (1)

- **B physics**, typical questions: properties of **B** mesons and **b** baryons, e.g. masses, investigations of their decays; ...
 - **B mesons**: bound quark antiquark pairs, where one of the quarks is a heavy “bottom” or **b** quark, the other is a light **u**, **d** or **s** quark.
 - **b baryons**: bound systems of three quarks/antiquarks, where one of the quarks is a heavy **b** quark, the remaining two are light **u**, **d** or **s** quarks.

<table>
<thead>
<tr>
<th>quark</th>
<th>mass in MeV/c²</th>
<th>electrical charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>up down</td>
<td>1.5...3.3</td>
<td>+2/3e</td>
</tr>
<tr>
<td></td>
<td>3.5...6</td>
<td>−1/3e</td>
</tr>
<tr>
<td>strange</td>
<td>104^{+26}_{−34}</td>
<td>−1/3e</td>
</tr>
<tr>
<td>charm</td>
<td>1270^{+70}_{−11}</td>
<td>+2/3e</td>
</tr>
<tr>
<td>bottom</td>
<td>4200^{+170}_{−70}</td>
<td>−1/3e</td>
</tr>
<tr>
<td>top</td>
<td>170900 ± 1800</td>
<td>+2/3e</td>
</tr>
</tbody>
</table>

Marc Wagner, “Computation of B mesons and b baryons with lattice QCD”, January 20, 2011
B physics, B mesons, b baryons (2)

- Discovery of the b quark 1977.
- Present-day experiments:
 - BaBar experiment, SLAC (USA).
 - Belle experiment, KEK (Japan).
 - LHCb experiment, CERN (Switzerland).
 - ...

\[B\text{ meson: } B^+ \quad b\text{ baryon: } \Lambda_b^0 \]
Masses of B and B_s mesons (1)

- B/B_s meson:
 - Bound quark antiquark pair (a heavy b quark and a light u, d/s quark).
 - “Hydrogen atom of QCD”: a light particle (u, d, or s) “orbits” a heavy particle (\bar{b}).
 - States are characterized by:
 * Total angular momentum/spin of the light degrees of freedom j (light quarks and gluons); we perform computations in the limit $m_B \to \infty$ (static limit), which amounts to neglecting hyperfine splitting; hyperfine splitting is “reincluded” at the end.
 * Parity \mathcal{P}.
 * Radial quantum number; in the following, however, mostly ground states in the corresponding $j^\mathcal{P}$ sectors.

Consequently, states are labeled by $j^\mathcal{P}$.
Masses of B and B_S mesons (2)

- Compute static-light meson masses (B/B_S mesons with $m_b \to \infty$) for different light u/d quark masses and different lattice spacings:
 - Different u/d quark masses to extrapolate to the physical u/d quark mass (due to technical reasons $m_\pi^{(\text{lattice})} \gtrsim 300$ MeV, $m_\pi^{\text{physical}} \approx 135$ MeV).
 - Different lattice spacings to extrapolate to the continuum.
 - Horizontal axis: pion mass $(m_\pi^{(\text{lattice})})^2$.
 - Vertical axis: $M(j^P) - m_B$ mass difference between radially and orbitally excited B mesons (B_0^*, B_1^*, B_1, B_2^*, ...) and the ground state B meson ($B^+/B^0/B^* \equiv j^P = (1/2)^{-}$) ... analogous for B_S mesons.
Masses of B and B_{s} mesons (3)

- Summary of the computed static-light meson spectrum:

<table>
<thead>
<tr>
<th>j^P</th>
<th>alternative notation</th>
<th>B mesons ($\bar{b}u$ or $\bar{b}d$): $M($meson$) - M(B)$ in MeV</th>
<th>B_{s} mesons ($\bar{b}s$): $M($meson$) - M(B_{s})$ in MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1/2)^+$</td>
<td>P_-</td>
<td>406(19)</td>
<td>413(12)</td>
</tr>
<tr>
<td>$(3/2)^+$</td>
<td>$P_+</td>
<td>516(18)</td>
<td>504(12)</td>
</tr>
<tr>
<td>$(3/2)^-$, $(5/2)^-$</td>
<td>D_{\pm}</td>
<td>870(27)</td>
<td>770(26)</td>
</tr>
<tr>
<td>$(5/2)^-$</td>
<td>$D_+</td>
<td>930(28)</td>
<td>960(24)</td>
</tr>
<tr>
<td>$(5/2)^+$, $(7/2)^+$</td>
<td>F_{\pm}</td>
<td>1196(30)</td>
<td>1179(37)</td>
</tr>
<tr>
<td>$(1/2)^-$</td>
<td>S^*</td>
<td>755(16)</td>
<td>751(26)</td>
</tr>
</tbody>
</table>

- Motivation/achievements:
 - Continuum limit (among the first).
 - Dependence on the light u/d sea quark mass (for the first time).
 - Valuable input for model builders (e.g. no reversal of $M(P_-)$ and $M(P_+)$, ...).
Masses of B and B_s mesons (4)

- Comparison to experimental results:
 - Extrapolation to the physical (finite) b quark mass $m_B \approx 4200$ MeV by means of rather precise experimental results for c quarks, i.e. D mesons (amounts to “reincluding” hyperfine splitting):

<table>
<thead>
<tr>
<th>name</th>
<th>lattice</th>
<th>experiment</th>
<th>name</th>
<th>lattice</th>
<th>experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_0^*</td>
<td>443(21)</td>
<td></td>
<td>B_{s0}^*</td>
<td>391(8)</td>
<td></td>
</tr>
<tr>
<td>B_1^*</td>
<td>460(22)</td>
<td></td>
<td>B_{s1}^*</td>
<td>440(8)</td>
<td></td>
</tr>
<tr>
<td>B_1</td>
<td>530(12)</td>
<td>444(2)</td>
<td>B_{s1}</td>
<td>526(8)</td>
<td>463(1)</td>
</tr>
<tr>
<td>B_2^*</td>
<td>543(12)</td>
<td>464(5)</td>
<td>B_{s2}^*</td>
<td>539(8)</td>
<td>473(1)</td>
</tr>
<tr>
<td>B_J^*</td>
<td>418(8)</td>
<td></td>
<td>B_{sJ}^*</td>
<td></td>
<td>487(15)</td>
</tr>
</tbody>
</table>

- Difference between lattice and experimental results: scale setting problem?

[K. Jansen, C. Michael, A. Shindler and M.W. [ETM Collaboration], JHEP 0812, 058 (2008)]
[C. Michael, A. Shindler and M.W. [ETM Collaboration], JHEP 1008, 009 (2010)]
Masses of b baryons (1)

- b baryon: bound system of three quarks/antiquarks (a heavy b quark and two light u, d or s quarks).
- Computation of masses similar to that of B and B_s mesons.
- Summary of the computed static-light baryon spectrum:

<table>
<thead>
<tr>
<th>j^P</th>
<th>I</th>
<th>S</th>
<th>name</th>
<th>$m(\text{baryon}) - m(B)$ in MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0$^+$</td>
<td>0</td>
<td>0</td>
<td>Λ^0_b</td>
<td>434(46)</td>
</tr>
<tr>
<td>1$^+$</td>
<td>1</td>
<td>0</td>
<td>Σ_b/Σ_b^*</td>
<td>671(46)/632(39)</td>
</tr>
<tr>
<td>0$^-$</td>
<td>0</td>
<td>0</td>
<td>$-$</td>
<td>1389(113)</td>
</tr>
<tr>
<td>1$^-$</td>
<td>1</td>
<td>0</td>
<td>$-$</td>
<td>1008(92)/1014(79)</td>
</tr>
<tr>
<td>0$^+$</td>
<td>1/2</td>
<td>-1</td>
<td>Ξ_b^-</td>
<td>630(41)/677(36)</td>
</tr>
<tr>
<td>1$^+$</td>
<td>1/2</td>
<td>-1</td>
<td>$-$</td>
<td>789(45)/798(49)</td>
</tr>
<tr>
<td>0$^-$</td>
<td>1/2</td>
<td>-1</td>
<td>$-$</td>
<td>1200(90)/1262(77)</td>
</tr>
<tr>
<td>1$^-$</td>
<td>1/2</td>
<td>-1</td>
<td>$-$</td>
<td>1233(58)/1285(69)</td>
</tr>
<tr>
<td>1$^+$</td>
<td>0</td>
<td>-2</td>
<td>Ω_b^-</td>
<td>903(42)</td>
</tr>
<tr>
<td>1$^-$</td>
<td>0</td>
<td>-2</td>
<td>$-$</td>
<td>1315(79)</td>
</tr>
</tbody>
</table>
Masses of \(b \) baryons (2)

- Comparison to experimental results:
 - Extrapolation to the physical (finite) \(b \) quark mass \(m_B \approx 4200 \) MeV by means of rather precise experimental results for \(c \) quarks, i.e. charm baryons.

<table>
<thead>
<tr>
<th>name</th>
<th>lattice</th>
<th>experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Lambda_b^0)</td>
<td>429(30)</td>
<td>341(2)</td>
</tr>
<tr>
<td>(\Sigma_b)</td>
<td>629(28)</td>
<td>528(3)</td>
</tr>
<tr>
<td>(\Sigma^*_b)</td>
<td>651(28)</td>
<td>550(3)</td>
</tr>
<tr>
<td>(\Xi_b^-)</td>
<td>635(25)</td>
<td>513(3)</td>
</tr>
<tr>
<td>(\Omega_b^-)</td>
<td>877(27)</td>
<td>775(7)</td>
</tr>
</tbody>
</table>

- Differences between lattice and experimental results similar as for \(B/B_s \).

- In progress: continuum limit.

Forces between B mesons (1)

- Goal: compute the potential of (or equivalently the force between) two B mesons:
 - Treat the b quark in the static approximation.
 - Consider only pseudoscalar mesons ($j^P = (1/2)^-$) and scalar mesons ($j^P = (1/2)^+$), which are among the lightest static-light mesons.
 - Study the dependence of the mesonic potential $V(R)$ on
 * the light quark flavor u and/or d (isospin),
 * the light quark spin (the static quark spin is irrelevant),
 * the type of the meson, i.e. $j^P = (1/2)^-$ or $j^P = (1/2)^+$.
Forces between B mesons (2)

- Motivation/achievements:
 - First principles computation of a hadronic force, i.e. nuclear physics from elementary particles and their interactions.
 - For the first time with dynamical quarks (until now only quenched results).
 - For the first time also $j^P = (1/2)^+$ mesons (until now only $j^P = (1/2)^-$ mesons).

[M.W. [ETM Collaboration], PoS LATTICE2010, 162 (2010)]
Semileptonic decays $B \rightarrow D^{**}$ (1)

- The weak interactions change quark flavor, e.g. $b \rightarrow c + l + \nu$.
- Consider the specific weak decays

 $B \rightarrow D^{**} + l + \nu$.

 - B: $j = (1/2)^{-}$ B meson.
 - D^{**}:
 * Orbitally excited D meson (e.g. $\bar{c}u$) with parity $\mathcal{P} = +$.
 * Coupling of angular momentum $L = 1$ ("P wave") and the light and the heavy quark spin yields four possible states:
 - Two $1/2$ D^{**} ($L = 1$ and light quark spin $1/2$ are coupled to total angular momentum $j = 1/2$).
 - Two $3/2$ D^{**} ($L = 1$ and light quark spin $1/2$ are coupled to total angular momentum $j = 3/2$).

 - $l + \nu$: lepton and corresponding neutrino.
Semileptonic decays $B \rightarrow D^{**}$ (2)

- There is a conflict between theory and experiment:
 - **Theory** (operator product expansion, sum rules):
 * Decay of B to $3/2 \ D^{**}$ is more likely.
 * However:
 - Statements only hold in the limit $m_B \rightarrow \infty$.
 - Assumption: excited states can be neglected in sum rules.
 - Statements apply only for the “zero recoil situation”.
 - **Experiment**:
 * Decay of B to $1/2 \ D^{**}$ is more likely.
 * However:
 - The measured signal for $1/2 \ D^{**}$ is extremely weak.
 - Assumption: no contributions of states “above D^{**}”.

→ Lattice computations can help, to resolve this conflict.
Semileptonic decays $B \rightarrow D^{**}$ (3)

- Computation of the decay probabilities:
 - Based on time-dependent perturbation theory (Fermi’s golden rule).
 * “Unperturbed” theory: QCD.
 * “Perturbing Hamiltonian”: weak interactions.
 * One has to compute the matrix elements
 $$\mathcal{M}_{fi} = \langle D^{**}_{1/2|3/2} l \nu | \mathcal{H}_{weak} | B \rangle.$$
 - \mathcal{M}_{fi} can be splitted into a leptonic part (contains l, ν) and a hadronic part (contains $D^{**}_{1/2|3/2}$, B).
 - The leptonic part can be calculated analytically (“kinematical factors” in differential decay rates).
 - The hadronic part can be computed by means of lattice QCD (“Isgur-Wise functions” $\tau_{1/2}$ and $\tau_{3/2}$ in differential decay rates).
Semileptonic decays $B \rightarrow D^{**} (4)$

- Lattice result:

$$\tau_{1/2} = 0.30(3), \quad \tau_{3/2} = 0.53(2)$$

("$|\tau_{1/2}|^2$ is proportional to the decay probability in $1/2 D^{**}$"; ...).

[B. Blossier, M.W. and O. Pene [ETM Collaboration], JHEP 0906, 022 (2009)]

- Theory result (sum rules):

$$\left|\tau_{3/2}\right|^2 - \left|\tau_{1/2}\right|^2 \approx \frac{1}{4}$$

(comparison with the lattice result: $0.53^2 - 0.30^2 = 0.19 \approx 1/4$; sum rule fulfilled by around 80%).

- Experimental result (Belle):

$$\tau_{1/2} \approx 1.28, \quad \tau_{3/2} \approx 0.75.$$
Summary

- Lattice QCD is a method to compute QCD observables from first principles; systematic errors can be controlled and removed by suitable extrapolations.

- Lattice QCD is a powerful tool in the field of B physics.

- Goals:
 - Precision computations followed by comparisons to experimental results ("search for new physics")
 \rightarrow necessary accuracy for B physics observables not yet reached.
 - Prediction/computation of observables, which are difficult/impossible to access experimentally
 \rightarrow example: masses of excited B mesons beyond $j = (3/2)^+$;
 \rightarrow example: isospin, spin and parity dependent forces between B mesons.
 - Qualitative understanding
 \rightarrow example: level ordering of states, e.g. no reversal for P_- and P_+;
 \rightarrow example: decay of B into $3/2$-D^{**} more likely than into $1/2$-D^{**}.
Part 3: Further research interests and planned research.
Further research interests (1)

- During the past four years I roughly invested 1/3 of my research time for questions related to B physics (the projects and results I have been reporting).

- Roughly another 1/3 went into a major project of the European Twisted Mass Collaboration concerned with simulations of QCD with 2+1+1 dynamical quark flavors (we are worldwide among the first to perform such simulations).
Further research interests (2)

- The remaining time I used for a variety of smaller projects:
 - **Determination of** $\Lambda_{\overline{\text{MS}}}$ **(establish contact between lattice QCD and perturbative QCD).**
 - **String breaking** in adjoint Yang-Mills theory and in QCD (theoretical aspects and numerical demonstration).
 - **Topology on the lattice, simulations at fixed topology** (preparatory steps for mixed action setups [overlap on twisted mass]).
 - (SU(2) four flavor) **QCD under extreme conditions** (finite temperature, strong external magnetic fields).
 - **Models based on topological excitations** for Yang-Mills theory/QCD both at zero temperature (merons, instantons, dimerons) and finite temperature (dyons) (qualitative understanding in particular regarding the phenomenon of confinement).
Planned research

- Continue ongoing projects, in particular ETMC simulations with 2+1+1 dynamical twisted mass quarks.

- Strange and charm meson spectroscopy (kaons, D mesons, D_s mesons, charmonium) with 2+1+1 dynamical twisted mass quarks.

- QCD at finite temperature (part of the Twisted Mass Finite Temperature Collaboration is located at the Johann Wolfgang Goethe University Frankfurt).

- QCD simulations at fixed topology, dependence of physical observables on the topological sector (relevant for mixed action setups including overlap quarks and for fully dynamical overlap simulations).

- ...

Marc Wagner, “Computation of B mesons and b baryons with lattice QCD”, January 20, 2011
some additional slides
Lattice QCD (A1)

- Numerical implementation of the path ...

 - Gluon field:
 * Action (in the continuum):
 \[
 S_{E,\text{gluons}} = \int d^4x \frac{1}{2g^2} \text{Tr}(F_{\mu\nu}F_{\mu\nu}).
 \]
 * To preserve gauge invariance, “indirect discretization” of the gluon field \(A_\mu \) via so-called gauge links (parallel transporters, which connect neighboring lattice sites):
 \[
 U_\mu(x) = P\left\{ \exp \left(-i \int_x^{x+ae_\mu} dz_\mu A_\mu(z) \right) \right\} \approx \exp \left(-ia A_\mu(x) \right).
 \]
 * Example: (no sum over \(\mu \) and \(\nu \)):
 \[
 a^4 \left(\text{Tr}(F_{\mu\nu}F_{\mu\nu}) + \mathcal{O}(a^2) \right) = \\
 = 6 \left(1 - \frac{1}{3} \text{Re} \left(\text{Tr} \left(U_\mu(x)U_\nu(x+ae_\mu)U_\mu^\dagger(x+ae_\nu)U_\nu^\dagger(x) \right) \right) \right)
 \]
 (in electrodynamics this expression would be \(\propto (E_x)^2 \) or \((B_x)^2 \) or ...).
\(b \) quarks with lattice QCD (A1)

- In contrast to light \(u, d \) and \(s \) quarks, heavy \(b \) quarks cannot be treated by means of the lattice techniques explained:
 - Field configurations close to classical solutions with small action are only weakly suppressed by \(e^{-S_E} \), i.e. play an important role in the path integral.
 - The classical equation of motion for quarks is the Dirac equation ("relativistic version of Schrödinger’s equation"):
 \[
 \left(\gamma_\mu (\partial_\mu - i A_\mu) + m_f \right) \psi^{(f)} = 0
 \]
 \((\psi^{(f)} \) has four spin components; \(\gamma_\mu : 4 \times 4 \) matrices).
 - Solutions in the free case (\(A_\mu = 0 \)) are plane waves:
 \[
 \psi^{(f)}_{-s} = e^{-i(E(p)t - px)} u^s(p), \quad \psi^{(f)}_{+s} = e^{+i(E(p)t - px)} (u^s(p))^\dagger
 \]
 with \(E(p) = \sqrt{m_f^2 + p^2} \approx m_f \) for small momenta \(p \) and \(s = 1, 2 \), i.e. two solutions \(\psi^{(f)}_{-,s} \propto e^{-im_ft} \) and two solutions \(\psi^{(f)}_{+,s} \propto e^{+im_ft} \).

Marc Wagner, “Computation of \(B \) mesons and \(b \) baryons with lattice QCD”, January 20, 2011
b quarks with lattice QCD (A2)

- In contrast to light \(u, d \) and \(s \) quarks, heavy \(b \) quarks cannot be treated by means of the lattice techniques just explained:

 - Lattice representation of these solutions for \(b \) quarks:

 * \(m_b \approx 4000 \text{ MeV} \approx 20/\text{fm} \).
 * Typical lattice spacing: \(a = (1/10) \text{ fm} \).
 * Oscillations of the \(b \) quark field \(\psi_{\pm,s}^{(b)} \propto e^{\pm im_b t} \) cannot be resolved at typical present-day lattice spacings.
 * No such problems with light quarks (larger wave length of \(e^{\pm im_f t} \)).

b quarks with lattice QCD (A3)

- **Solution:** HQET (Heavy Quark Effective Theory).
 - Rewrite the b quark field in terms of a new field according to

 $$
 \psi^{(b)} \rightarrow \psi'^{(b)} = e^{+im_bt}\psi^{(b)},
 $$

 i.e. perform a simple change of variables.
 - Two of the four solutions “loose” the strongly oscillating phase factor:
 $$
 \psi'_{-,s} \propto 1.
 $$
 - Two of the four solutions oscillate even stronger:
 $$
 \psi'_{+,s} \propto e^{-i2m_bt}.
 $$

 However, one can analytically perform the integration over field configurations corresponding to these strongly oscillating solutions.
 - Result: power series in $1/m_b$, where the leading order describes static ($=\text{infinitely heavy}$) b quarks.

Marc Wagner, “Computation of B mesons and b baryons with lattice QCD”, January 20, 2011
Masses of B and B_s mesons (A1)

- Construction of a B meson state:
 - The quark field operator $\psi^{(u)}(x)$ creates a u quark at position x.
 - The quark field operator $\bar{\psi}^{(b)}(x)$ generates a b antiquark at position x.
 - The following state contains a B meson at position x:

 $$B^{(\Gamma)}|\Omega\rangle = \bar{\psi}^{(b)}(x)\Gamma\psi^{(u)}(x)|\Omega\rangle$$

 ($B^{(\Gamma)}$: meson creation operator).

 Γ: suitably chosen 4×4 matrix.
 - Acts on the spin indices of the quarks; realizes the desired angular momentum J and/or j as well as parity P.
 - A combination of the γ matrices from the Dirac equation, e.g. $\Gamma = \gamma_5$ corresponds to $J^P = 0^-$ and $j^P = (1/2)^-$, the lightest B meson.

 $B^{(\Gamma)}|\Omega\rangle$ is a superposition of b meson states, which have the same quantum numbers j^P, but which differ in their radial quantum number.
Masses of B and B_S mesons (A2)

- Computation of the B meson mass ($J = 0^-, j = (1/2)^-$):
 - Compute the vacuum expectation value
 \[
 C(t) = \langle \Omega | \left(\bar{\psi}^{(b)}(x, t) \gamma_5 \psi^{(u)}(x, t) \right)^\dagger \bar{\psi}^{(b)}(x, 0) \gamma_5 \psi^{(u)}(x, 0) | \Omega \rangle
 \]
 as a function of t by means of lattice QCD.
 - $C(t)$: “meson correlation function”.

Marc Wagner, “Computation of B mesons and b baryons with lattice QCD”, January 20, 2011
Masses of B and B_S mesons (A3)

- Computation of the B meson mass ($J = 0^-, j = (1/2)^-$):

 - Insert an identity in terms of energy eigenstates:

 $$C(t) = \langle \Omega | (B^{(\Gamma)}(t))^\dagger B^{(\Gamma)}(0) | \Omega \rangle = \ldots \approx_{t \gg 1} \text{const} \times e^{-m_B t}$$

 (m_B: mass of the B meson; const: an irrelevant constant).

 - Extract m_B e.g. by fitting $Ae^{-m_B t}$ to the computed points of $C(t)$ with A and m_B being the fit parameters.