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Abstract

This thesis discusses possible problems in the calculation of masses of hadrons using
the generalised eigenvalue problem, or GEVP for short. In particular, an implemen-
tation of the GEVP, that has been used for years to determine masses of hadrons
and has always produced reliable results, is examined for possible misbehaviour in
the assignment of the obtained energies En. During this process, artificial data of
possibly problematic systems are generated, which are then studied and analysed
with the GEVP program. Subsequently, a new sorting method is implemented in
the source code that corrects the issue identified in this thesis.
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Chapter 1

Introduction

One of the biggest questions in physics, which Greek philosophers already addressed
thousands of years ago, is the fundamental structure of the matter surrounding us.
In the early 1970s, the so-called Standard Model of particle physics was developed,
summarising the understanding of the structure of matter and three of the forces
involved. Since then, it has successfully explained a great number of experimental
results in particle physics and predicted a variety of phenomena, such as the discov-
ery of particles. Thus, over the years, the Standard Model has established itself as
a well-tested and widely known physical model.

According to the Standard Model of particle physics, all matter consists of tiny fun-
damental building blocks, the quarks and leptons, as well as their exchange particles,
the bosons. The interaction of quarks and their exchange particles, the so-called glu-
ons, is described by quantum chromodynamics (QCD), which plays an important
role in the Standard Model. In analogy to quantum electrodynamics (QED), in
which the interaction of electrically charged particles is described, QCD describes
the interaction of particles with colour charge (hence the name, chromodynamics).
Quarks and gluons have three different colour charges, which are arbitrarily called
red, green and yellow. Altogether there are six different quarks, known as flavours,
which form the hadrons and are related in three pairs, the generations. The first
generation, consisting of the light up u and down d quark, makes up all the stable
matter in the universe. On the other hand, the second and third generation, con-
sisting of the charm c and strange s quark and the top t and bottom b quark, form
purely unstable matter and are hundreds to several thousand times heavier than
those of the first generation [1].

In recent years, numerical simulations from first principles have become a widespread
and very successful technique to calculate physical observables, e.g. masses of
hadrons. First principles mean that these quantities are calculated without any
simplifying assumptions or approximations. This makes it possible to verify the
Standard Model as the correct model of particle physics to a certain degree of
accuracy, and to predict states that have not yet been experimentally discovered,
like e.g. tetraquark systems. Such results can therefore provide useful hints and
input for future experiments and can contribute to new physical insights [2].

Exactly such tetraquark systems are studied, for example, in our working group. To
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Chapter 1. Introduction

determine hadron masses, a program based on the so-called generalised eigenvalue
problem has been used for years and has since provided reliable results. However,
the suspicion arose that incorrect assignments of the energy levels could occur in a
small number of constellations. Since this program is used for ongoing research in our
working group, the task of this thesis was to identify possible erroneous behaviour
and to find and implement a solution for this.

This thesis is structured as follows: First, chapter 2 deals with the theoretical fun-
damentals that are essential for understanding the thesis. In particular, quantum
chromodynamics generally, techniques of lattice QCD and the generalised eigenvalue
problem are covered, all of which are important parts of this work. Subsequently, in
chapter 3 the approach to the issue of this thesis is shown and how it was corrected
by a sorting of the eigenvectors vn(t) and eigenvalues λn(t). In chapter 4, results of
the newly implemented code extension are presented and analysed both from artifi-
cially generated data and from real data. Finally, in chapter 5 the results are briefly
summarised, conclusions are drawn and outlooks are given.
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Chapter 2

Theoretical Basics

2.1 Quantum Chromodynamics

Quantum chromodynamics (QCD) is a quantum field theory that describes the
strong interaction, i.e. the interaction of quarks mediated by gluons. Together they
are the constituents of the hadrons, which include the mesons (q̄q states, such as
the pion π or the kaon K) and the baryons (qqq states, such as the proton p or the
neutron n).

2.2 Lattice QCD

In QCD, the interacting quarks and gluons are described by quantum fields that
propagate throughout continuous space at all times. To solve the resulting equations
exactly, one would have to calculate infinite-dimensional integrals, which is, however,
impossible in practice. One of the best established non-perturbative approaches to
solving this issue is lattice QCD. As the name implies, lattice QCD circumvents
the problem by reducing the continuous spacetime to discrete spacetime points, the
lattice, and thereby making the integrals finite-dimensional. To this end, several
actions are taken for the following contents [2, 3]:

• The Euclidean time evolution is used (Wick rotation): t → −i t.

• The spacetime is discretised: xµ ∈ R4 → xµ = nµ × a, nµ ∈ Z4, where a
denotes the lattice spacing.

• A discrete energy eigenvalue spectrum is assumed, where EΩ ≤ E0 ≤ E1 . . . .

• The spacetime is considered periodic: xµ ≡ xµ+Leµ(ν), with L = aNa, where
eµ(ν) denotes the unit vector in ν direction and Na the number of lattice sites
in each spacetime direction.

A commonly calculated observable in lattice QCD from which physical properties,
such as energy spectra, can be obtained is the temporal correlation function or
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Chapter 2. Theoretical Basics

correlation matrix, which is defined in the following way:

Cjk(t) =
〈
Oj(t)Ok †(0)

〉
=

1

Z

∫
D[Φ]Oj[Φ(., t)]Ok †[Φ(., 0)] e−SE [Φ] , (2.1)

with the normalisation factor Z =
∑

n e
−En T and the periodic temporal expansion

of the lattice T . The right-hand side of the equation is the Euclidean path integral
over all possible configurations of the gauge field Φ. For this purpose, the operators
of the two interpolating fields Oj and Ok were translated into functionals and the
Boltzmann factor was multiplied into the integral, containing the classical Euclidean
action SE[Φ]. This weighting factor is used to perform an importance sampling and
to evaluate the integral on the basis of it. Using stochastic integration techniques (so-
called Monte Carlo algorithms) this type of integral can be calculated numerically,
whereby the temporal correlation function is obtained. The middle part of the
equation, i.e. the correlation function, can be expanded for further use as follows
[4–7]: 〈

Oj(t)Ok †(0)
〉
=

1

Z

∑
m,n

⟨m|e−H (T−t) Oj e−H t|n⟩ ⟨n|Ok †|m⟩

=
1

Z

∑
m,n

e−Em (T−t) ψjmn e
−En t (ψkmn)

∗ ,
(2.2)

with ψjmn = ⟨m|Oj|n⟩, the Hamiltonian H of the system, the energy eigenstates |n⟩
and the corresponding energy eigenvalues En. When we now extract the vacuum
energy factor e−EΩ T from both the numerator and the denominator and, for conve-
nience, use En to denote the energy differences relative to the vacuum henceforth
(i.e. En instead of En − EΩ), we obtain:

〈
Oj(t)Ok †(0)

〉
=

∑
m,n e

−Em (T−t) ψjmn e
−En t (ψkmn)

∗

1 + e−E0 T + e−E1 T + . . .
. (2.3)

Considering the limit T → ∞, only the terms with |m⟩ = |Ω⟩ (i.e. Em = 0) remain in
the numerator and the denominator becomes equal to 1. This gives us an expression
from a sum of exponentials, where each exponent corresponds to an energy level:

lim
T → ∞

〈
Oj(t)Ok †(0)

〉
=

∑
n

ψjn (ψ
k
n)

∗ e−En t , (2.4)

with ψjn = ⟨Ω|Oj|n⟩. For sufficiently large t, the terms with n > 0 are strongly
suppressed, since in general En > E0 ∀ n > 0. Thus, the ground state energy E0

can be calculated from the exponential decay of the temporal correlation function.

2.3 Generalised Eigenvalue Problem

A well-known and quite common technique for analysing correlation matrices is the
so-called GEVP method. The extraction of several energy levels can thereby be
achieved by solving the generalised eigenvalue problem (GEVP)

C(t) vn(t, t0) = λn(t, t0)C(t0) vn(t, t0), n = 0, . . . , N − 1, t > t0 , (2.5)
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Chapter 2. Theoretical Basics

with the correlation matrix C(t), the eigenvectors vn(t, t0), the corresponding eigen-
values λn(t, t0) and a variable input parameter t0. If we now use Eq. (2.4) and select
appropriate states |n⟩, with n = 0, . . . , N − 1, the entries of the resulting truncated
correlation matrix

C̃jk(t) =
N−1∑
n=0

ψjn (ψ
k
n)

∗ e−En t (2.6)

approximate the correlation matrix C(t) from Eq. (2.5) rather well, which is why we
consider them equivalent in the following [8]. In order to use this equation for the
GEVP method, we first introduce the dual (time independent) vectors un ∝ vn(t, t0)
defined by (un, ψm) = δmn, m, n < N . We then multiply these from the right to Eq.
(2.6) to obtain [9, 10]:

C(t)un = e−En t ψn

= λn(t, t0) C(t0)un︸ ︷︷ ︸
=e−Ent0 ψn

. (2.7)

Comparing the upper with the lower part of this equation, it is immediately obvious
that λn(t, t0) and En have a simple mathematical relationship:

λn(t, t0) = e−En (t−t0) . (2.8)

From the eigenvalues λn(t, t0), the effective energies Eeff
n (t, t0) can subsequently be

defined as follows:

Eeff
n (t, t0) =

1

a
ln

(
λn(t, t0)

λn(t+ a, t0)

)
,

En = lim
t→ ∞

Eeff
n (t, t0) ,

(2.9)

where the effective energies are time-dependent and form plateaus for large times
t. To obtain the energies En from these in the next step, t is chosen as large as
necessary so that the plateaus are reached, but at the same time the errors are as
small as possible. Thus, by solving the GEVP of a given correlation matrix C(t),
one can simply obtain a number of N energies En, which is why the GEVP method
so commonly used.

An important orthogonality of the vectors un, that will be used later in this work,
has the following form:

⟨um|C(t)un⟩ = δmn e
−En t (2.10)

and is valid for all times t.
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Chapter 3

Approach and Implementation

3.1 The Code

The program was developed by Prof. Dr. Marc Wagner during his dissertation in
order to obtain energy levels and masses of different systems of hadrons. The pro-
gramming language used is C / C++ and the functionality is based on the GEVP
method described in chapter 2.3.

In order to use the code and therefore the compiled program, the temporal cor-
relation matrix matrix C(t) of the system to be analysed is needed. As already
mentioned in section 2.2, this can be obtained numerically, using Monte Carlo al-
gorithms, for example. With the help of the GNU Scientific Library (GSL), the
program solves the generalised eigenvalue problem (2.5) of the correlation matrix
averaged over all samples and calculates the N effective energies Eeff

n (t) with Eq.
(2.9) [11]. For the error calculation, the so-called jackknife method is used. Here,
the GEVP is additionally calculated for all reduced samples (where one sample was
removed in each case during the averaging of the correlation matrix), with which a
statistical error can be determined (see for example [12]).

3.2 Identifying the Source(s) of Error

At the beginning of the work, it was not entirely clear where an improvement of the
code might be appropriate, since this implementation of the generalised eigenvalue
problem has provided reliable results for analyses and computations for years. How-
ever, it was suspected that in a few rare cases the energy levels might be sorted and
thus assigned incorrectly. Two problematic situations came to mind, which could
possibly lead to the effective energies being mixed up:

1. Effective energy plateaus very close to each other: Energies En that differ only
minimally could become indistinguishable with increasing t due to their errors,
which could lead to incorrect assignments.

2. Intersecting effective energies Eeff
n (t): Since the effective energies form plateaus

with increasing t, a prior overlapping of these could lead to unwanted mix-ups.
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Chapter 3. Approach and Implementation

In the following sections, artificial data of possibly problematic systems are generated
and subsequently analysed for potential unintended behaviour of the program (e.g.
incorrect assignments) in order to specifically check these assumptions.

3.2.1 Artificial Data

Since the code uses correlation matrices for calculating the effective energies, these
must consequently be generated artificially. This is achieved using a self-written
program that calculates the entries of the correlation matrices via Eq. (2.6) and
then adds an uncorrelated Gaussian error with the standard deviation σ. To avoid
introducing unnecessary complexity and possible sources of error into the system,
we initially assume 2× 2 correlation matrices

C(t) =
∑
n

(
(ψ1

n)
2 ψ1

n ψ
2
n

ψ2
n ψ

1
n (ψ2

n)
2

)
e−En t , (3.1)

where the states En and the prefactors ψjn are chosen in such a way that the prob-
lematic systems and situations described in the previous section arise.

3.2.2 Findings

Let us now examine the first problematic scenario, i.e. systems with energy levels
close to each other. For this we assume the simplest case, with two decoupled
states, resulting in a diagonalised correlation matrix and use comparable large errors
(σ ≈ 10−4). Therefore, we construct the operator O1 with an overlap to the first
state E0 and the operator O2 with an overlap to the second state E1. Figure 3.1
shows both the effective energies aEeff

n (t) of two such systems and the corresponding
normalised eigenvector components |vjn(t)|2. At first glance as well as on closer
inspection, no wrong behaviour can be seen. Although the effective energies are
occasionally the other way round for increasing t, this is not a sign of a false result.
On the one hand, the error bars (i.e. the uncertainties) are quite large here and, on
the other hand, one must always consider that the effective energies are calculated
via the ratio of the eigenvalues λn(t) and λn(t + a). Thus, different errors in t and
t + a can lead to such momentary swaps. The eigenvector components behave as
theoretically expected as well.

left system

n ψ1
n ψ2

n aEn

0 1.0 0 0.59
1 0 1.0 0.61

right system

n ψ1
n ψ2

n aEn

0 1.0 0 0.54
1 0 1.0 0.56

Table 3.1: Input parameters of the artificial data shown in Figure 3.1.

8



Chapter 3. Approach and Implementation

Figure 3.1: Effective energies aEeff
n (t) and normalised eigenvector components

|vjn(t)|2 of two artificial systems.

Secondly, we consider the situation where the two effective energies Eeff
n (t) cross.

Again, we assume the simplest case, with three decoupled states and use small
errors (σ ≈ 10−5). Hence, we construct the operator O1 with both an overlap to
the first state E0 and the third state E2 and the operator O2 with only an overlap
to the second state E1. Figure 3.2 again shows the effective energies aEeff

n (t) and
the normalised eigenvector components |vjn(t)|2 of two such systems, where one can
immediately see that these results cannot be correct. In the left plot, the energies
intersect as expected at t ≈ 3, but at t = 7 the two curves oddly swap. The same
behaviour occurs with the eigenvector components underneath. At the moment
when the effective energies switch, they also switch. The rest of the plots then
correspond to the expectations, except that the assignments are swapped. It is also
noticeable that the effective energies do not simply swap, but that one data point
is lowered or raised respectively. Thus, the energy levels bend in the direction of
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Chapter 3. Approach and Implementation

the other energy level before the erroneous swap. Since the energies are calculated
from the ratio of the eigenvalues λn(t) and λn(t+ a), this misbehaviour is probably
related to the sorting of the eigenvalues. It is therefore logical that we take a closer
look at the eigenvalues in the following.

left system

n ψ1
n ψ2

n aEn

0 0.7 0 0.2
1 0 1.0 0.3
2 1.0 0 1.0

right system

n ψ1
n ψ2

n aEn

0 0.2 0 0.3
1 0 1.0 0.5
2 1.0 0 1.0

Table 3.2: Input parameters of the artificial data shown in Figure 3.2.

Figure 3.2: Effective energies aEeff
n (t) and normalised eigenvector components

|vjn(t)|2 of another two artificial systems.
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Chapter 3. Approach and Implementation

In Figure 3.3 the eigenvalues λn(t) of the left system from Figure 3.2 are plotted.
At the time when the swap occurs in the effective energy plot, the eigenvalues λ1
and λ2 are tangent to each other and have a small kink in their curve. It is partic-
ularly noticeable that the eigenvalues do not intersect, contrary to their apparent
progression. The larger eigenvalue is thereby assigned to the same effective energy
Eeff

1 (t) at every time t, which seems incorrect.

Figure 3.3: Eigenvalues λn(t) of the left system in Figure 3.2.

With the source code, this undesired behaviour can be understood. The program
sorts the eigenvalues in descending order so that the largest eigenvalue always be-
longs to the same effective energy. In many cases this matching is correct, however,
as this example shows, this is not always the case. We therefore have to implement
a code extension that sorts the eigenvalues in a different and logical way.

3.3 Enhancing the Code

A reasonable sorting can be achieved using Eq. (2.10). This is because the eigenvec-
tors vn(t) obtained by the GEVP are orthogonalised in the base of the correlation
matrix C(t0). Hence, it can be determined which eigenvalue λm(t) and related eigen-
vector vm(t) belong to each effective energy Eeff

n (t), resulting in a correct sorting.

To implement this sorting method, the scalar product of all eigenvectors in the base
of the correlation matrix must first be normalised. This is achieved as follows:

v̂n(t) =
1√

⟨vn(t)|C(t0) vn(t)⟩
vn(t) → ⟨v̂m(t)|C(t0) v̂n(t)⟩ = δmn . (3.2)

The next step is to define a reference time tref, chosen at the moment when the
plateaus of effective energies Eeff

n (t) first form, and which is later set by the user.
The program then calculates the scalar product ⟨v̂m(t)|C(t0) v̂n(tref)⟩ for all m and
assigns the eigenvalue λm(t) and associated eigenvector vm(t) for which the scalar
product becomes maximal to the effective energy Eeff

n (t) (due to the normalisation
≈ 1). This procedure is then repeated for all n and t and carried out for the sample as
well as for all subsamples. The resulting sorting of the eigenvalues and eigenvectors
should thus solve the problem of incorrect assignments.

11



Chapter 3. Approach and Implementation

3.4 Instructions for Using the Extension

The sorting function has been implemented as an extension to the persistent program
so that the operation is fairly straightforward. First, one has to plot the effective
energies Eeff

n (t) as prior to the extension and then take the reference time tref from
them. As already described in the section 3.3, the reference time should be chosen at
the moment when the plateaus of the effective energies first form. It should be noted
that data, for which no plateaus are formed and therefore no reference time can be
chosen, are physically nonsensical. In order to use the extended sorting function,
one only has to insert the following line into the script file under each calculation of
the effective energies Eeff

n (t) and eigenvectors vn(t):

SORTING GEP tref tref . . . tref︸ ︷︷ ︸
N times

with the number of effective energies N . As a result, the updated sorting method
is used in the calculations.

12



Chapter 4

Results

First, we re-analyse the artificial data generated in section 3.2 with the newly imple-
mented sorting method and check whether the false results are rectified. The next
step is then to apply the code extension to real data and compare these results with
those of the original program.

4.1 Artificial Data

Here we first take a look at the eigenvalues λn(t), which were already discussed in
the previous chapter. Figure 4.1 shows the eigenvalues from Figure 3.3, except that
they have now been re-sorted with the new code extension, using tref = 9. One can
directly see the behaviour we expected, namely an intersection of the two eigenvalues
between t = 7 and t = 8. The two exponentially decreasing curves therefore no
longer have a discontinuous slope, suggesting that the sorting was successful.

Figure 4.1: Newly sorted eigenvalues λn(t) of the left system in Figure 3.2.

When looking at the effective energies Eeff
n (t) and the normalised eigenvector compo-

nents |vjn(t)|2, shown in Figure 4.2, one can clearly see the differences and improve-
ments to the previous results (Figure 3.2). Both the swapping of the energy levels
and the eigenvector components as well as the previous bending in the direction of
the respective other energy levels no longer occur. The results with the new sorting
of the eigenvalues thus now agree with the theoretical expectations and no longer

13



Chapter 4. Results

show the unintended swapping. For the new sorting method, tref = 9 was used for
both plots.

Figure 4.2: Newly sorted effective energies aEeff
n (t) and normalised eigenvector com-

ponents |vjn(t)|2 of the artificial systems 3.2.

Since real data mostly involve correlation matrices with dimensions d > 2, larger
artificial correlation matrices C(t) are investigated hereafter in preparation for real
data sets. For this, Eq. (3.1) is first extended as follows:

C(t) =
∑
n

(ψ1
n)

2 ψ1
n ψ

2
n ψ1

n ψ
3
n

ψ2
n ψ

1
n (ψ2

n)
2 ψ2

n ψ
3
n

ψ3
n ψ

1
n ψ3

n ψ
2
n (ψ3

n)
2

 e−En t (4.1)

and then used to generate artificial data, as described in section 3.2. Therefore,
we construct the operator O1 with both an overlap to the first state E0 and the
fourth state E3 and the operators O2 and O3 with overlaps to the second state

14



Chapter 4. Results

E1 and the third state E2. Figure 4.3 shows the effective energies Eeff
n (t) and the

eigenvector components |vjn(t)|2 of such a system before and after sorting, where
tref = 8 was chosen. As can be seen, the code extension works reliably even with
larger correlation matrices and corrects both the erroneous assignment at t = 8 and
the one at t = 14. This illustrates that the application to larger correlation matrices
and thus real data is generally possible.

n ψ1
n ψ2

n ψ3
n En

0 0.7 0 0 0.4
1 0 0.5 0.5 0.45
2 0 0.5 -0.5 0.5
3 0.9 0 0 1.0

Table 4.1: Input parameters of the artificial data shown in Figure 4.3.
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Chapter 4. Results

Figure 4.3: Effective energies aEeff
n (t) and eigenvector components |vjn(t)|2 of a bigger

artificial system before (left) and after (right) the sorting.

4.2 Real Data

During this thesis, only artificially created data have been used so far, both to find
possible unintentional behaviour of the program and for subsequent analysis with
the newly implemented sorting function. The data extraction from real systems was
completely left out. Since the generation of these would go beyond the scope of this
thesis, real data from already existing correlation matrices are used in the following
section to test and apply the code extension on it [13].

Figure 4.4 shows the effective energies Eeff
n (t) and the normalised eigenvector compo-

nents |vjn(t)|2 of a b̄b̄us tetraquark system before and after the new sorting method,
where tref = 8 was used. It can be observed that the effective energies Eeff

1 (t) and
Eeff

2 (t) hold their plateau slightly longer after sorting. While they were previously
stable until t = 16 and then disappeard, they now remain stable at their level for
about two time units longer. The eigenvector v3(t) is also more stable after sort-
ing and remains at its original component ratio for t > 17. Otherwise, no real
improvement can be seen.

16



Chapter 4. Results

Figure 4.4: Effective energies aEeff
n (t) and eigenvector components |vjn(t)|2 of a real

b̄b̄us tetraquark system before (left) and after (right) the sorting.

In addition to the above-mentioned b̄b̄us system, other tetraquark systems have
been analysed with the new code extension, although no improved results have been
achieved so far. Also the system shown in figure 4.4 was already well evaluable

17



Chapter 4. Results

prior to the new sorting. The implementation has therefore not led to any improved
analysis, but it has been demonstrated that the sorting works.

18



Chapter 5

Conclusions and Outlook

The main focus of this thesis was to implement an enhancement of a program for
determining hadron masses, which has always produced reliable results. Using arti-
ficially produced data, it was possible to locate unexpected behaviour in the sorting
of the effective energies Eeff

n (t) that occurred in a small number of systems and to
correct it using a newly implemented sorting method. In the case of the examined
artificial data, all erroneous behaviour could thus be rectified. With the analysed
real data, however, no significant improvement could be observed yet.

Based on the rather insufficient results of the evaluation of the real data, the next
step will be to apply the sorting extension to many more different real systems. The
focus here will be to investigate the practical usefulness of the code extension. Since
the investigated b̄b̄us systems sometimes had 7 × 7 large correlation matrices, the
extension might have reached its limitations there.

Should this also not lead to any improved analyses and results, the next step would
be to revise the implemented sorting function and possibly even find a new criterion
for sorting.
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